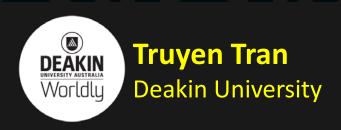
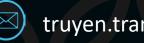
Advances in Neural Turing Machines



Aug 2018



truyen.tran@deakin.edu.au

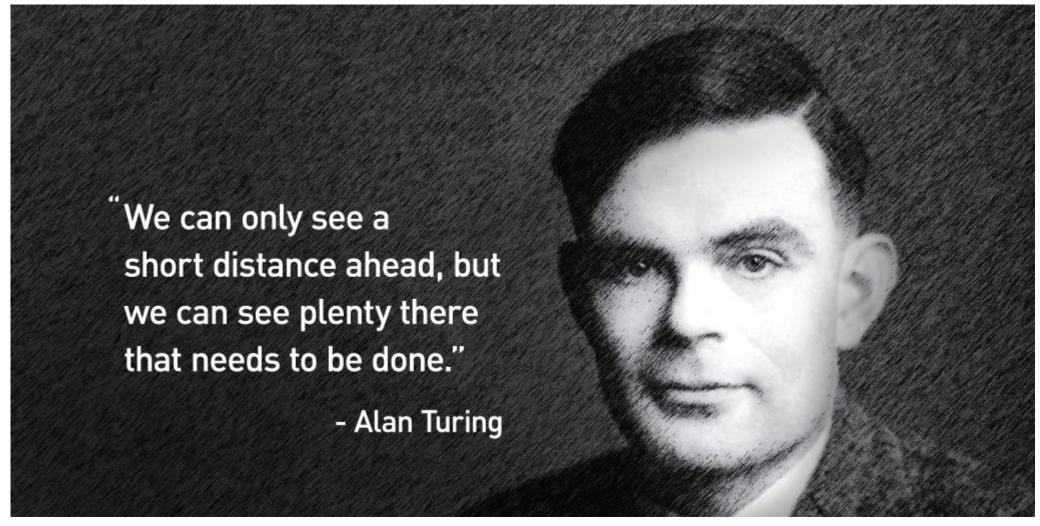
truyentran.github.io

@truyenoz

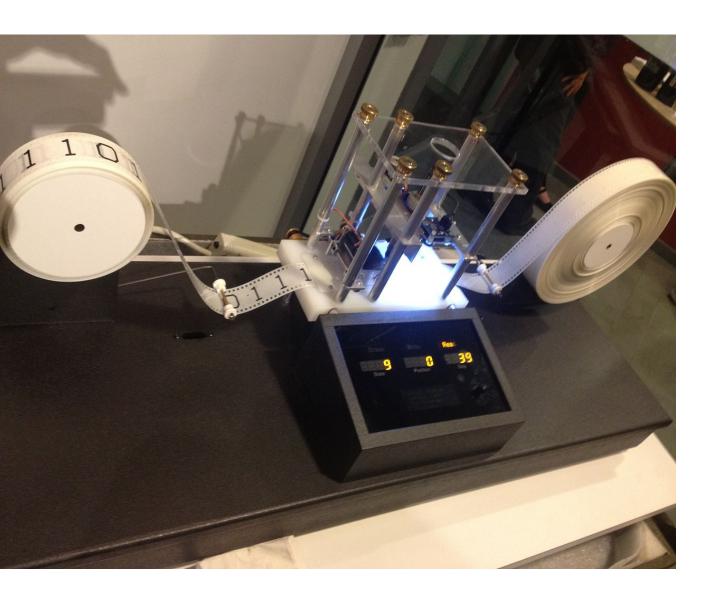
letdataspeak.blogspot.com

goo.gl/3jJ100





https://twitter.com/nvidia/status/1010545517405835264



(Real) Turing machine

It is possible to invent a *single* machine which can be used to compute any computable sequence. If this machine **U** is supplied with the tape on the beginning of which is written the string of quintuples separated by semicolons of some computing machine **M**, then **U** will compute the same sequence as **M**.

Wikipedia

Can we learn from data a model that is as powerful as a Turing machine?

Agenda

Neural Turing machine (NTM)

Dual-view in sequences (KDD'18)

Bringing variability in output sequences (NIPS'18)

Bringing relational structures into memory (ICPR'18+)

Looking ahead (ACL'19, KDD'19, CVPR'19, ICML'19, NIPS'19?)

Let's review current offerings

Feedforward nets (FFN)

Recurrent nets (RNN)

Convolutional nets (CNN)

Message-passing graph nets (MPGNN)

Universal transformer

....

Work surprisingly well on LOTS of important problems

Enter the age of differentiable programming

BUTS ...

No storage of intermediate results.

Little choices over what to compute and what to use

Little support for complex chained reasoning

Little support for rapid switching of tasks

Searching for better priors

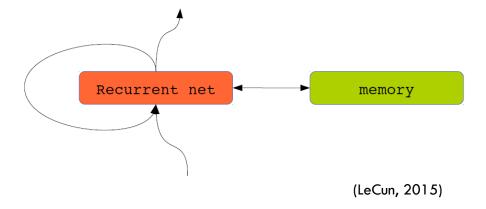
Translation invariance in CNN

Recurrence in RNN

Permutation invariance in attentions and graph neural networks

Memory for complex computation

→ Memory-augmented neural networks (MANN)



What is missing? A memory

Use multiple pieces of information

Store intermediate results (RAM like)

Episodic recall of previous tasks (Tape like)

Encode/compress & generate/decompress long sequences

Learn/store programs (e.g., fast weights)

Store and query external knowledge

Spatial memory for navigation

Rare but important events (e.g., snake bite)

Needed for complex control

Short-cuts for ease of gradient propagation = constant path length

Division of labour: program, execution and storage

Working-memory is an indicator of IQ in human

Example: Code language model

```
FileWriter writer = new FileWriter(file);
writer.write('This is an example');
int count = 0;
System.out.prinltln('Long gap');
.....
writer.flush();
writer.close();
```

$$P(s) = P(w_1) \prod_{t=2}^{k} P(w_t \mid \mathbf{w}_{1:t-1})$$

Still needs a better memory for:

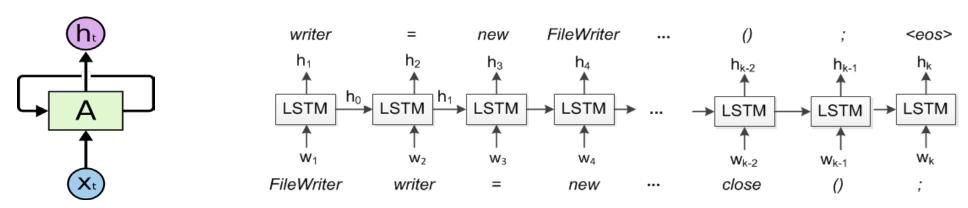
Repetitiveness

E.g. for (int i = 0; i < n; i++)

Localness

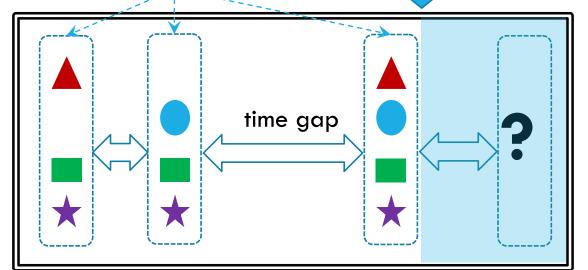
E.g. *for (int size* may appear more often that *for (int i* in some source files.

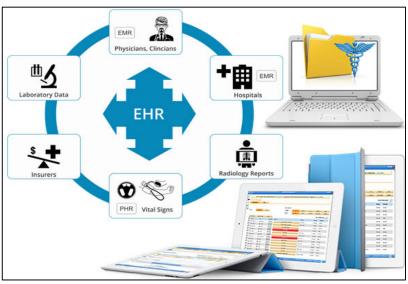
Very long sequence (big file, or char level)



Example: Electronic medical records

visits/admissions prediction point





Source: medicalbillingcodings.org

Three interwoven processes:

- Disease progression
- Interventions & care processes
- Recording rules

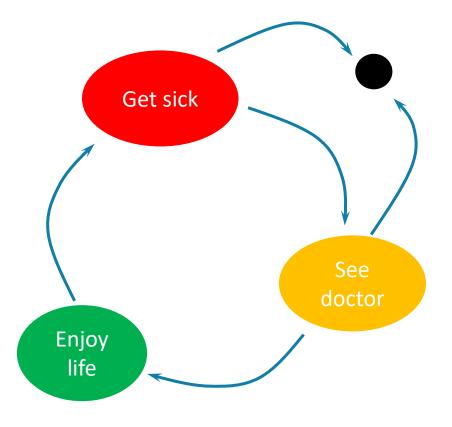
Need memory to handle thousands of events

Conjecture: Healthcare is Turing computational

Healthcare processes as executable computer program obeying hidden "grammars"

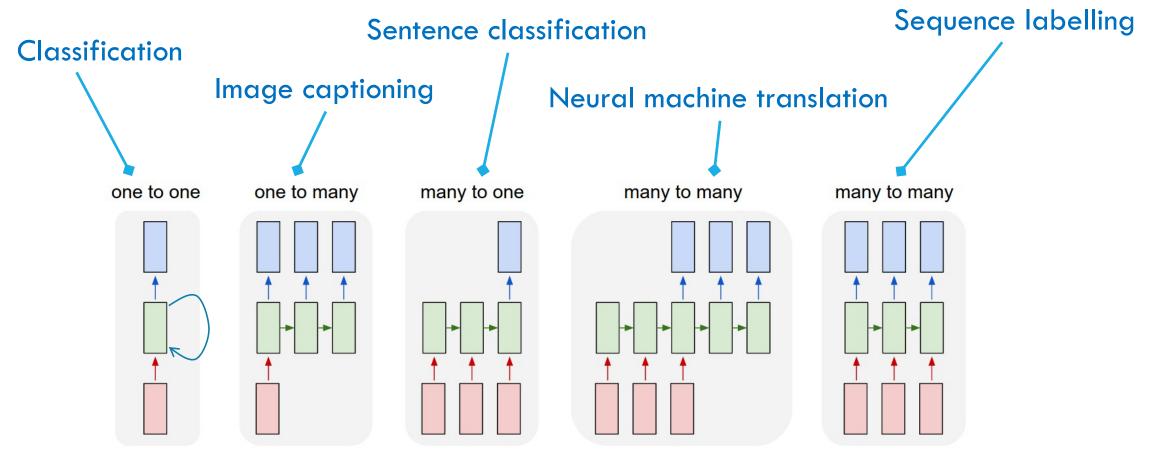
The "grammars" are learnable through observational data

With "generative grammars", entire health trajectory can be simulated.



Neural Turing machine (NTM)

RNN: theoretically powerful, practically limited



Source: http://karpathy.github.io/assets/rnn/diags.jpeg

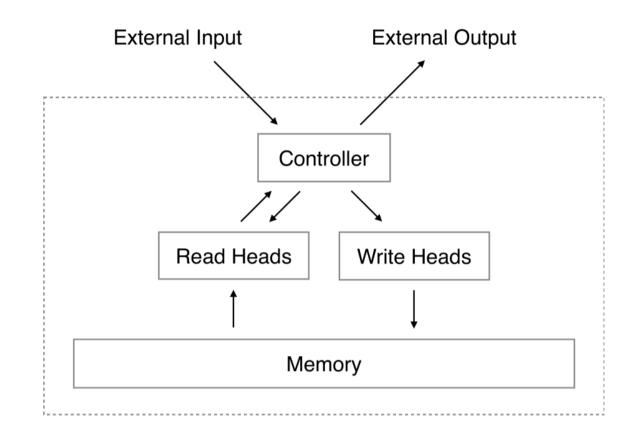
Neural Turing machine (NTM)

A controller that takes input/output and talks to an external memory module.

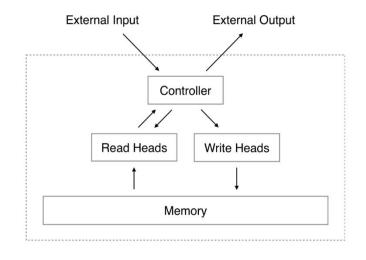
Memory has read/write operations.

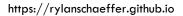
The main issue is where to write, and how to update the memory state.

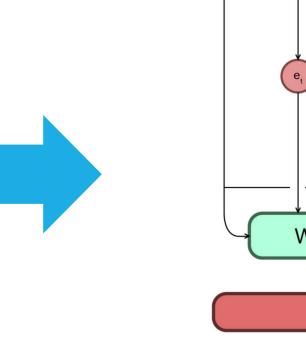
All operations are differentiable.

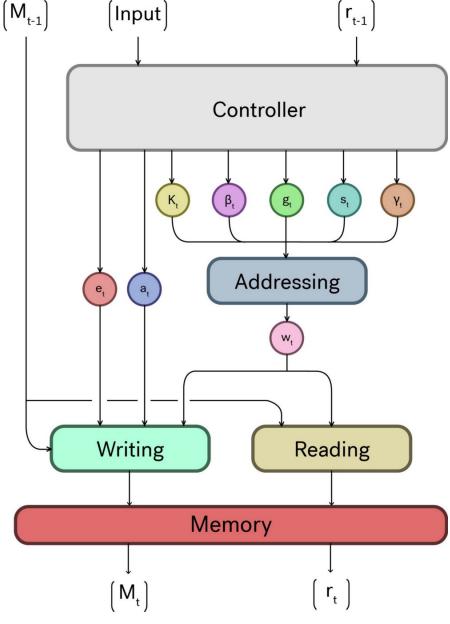


NTM operations

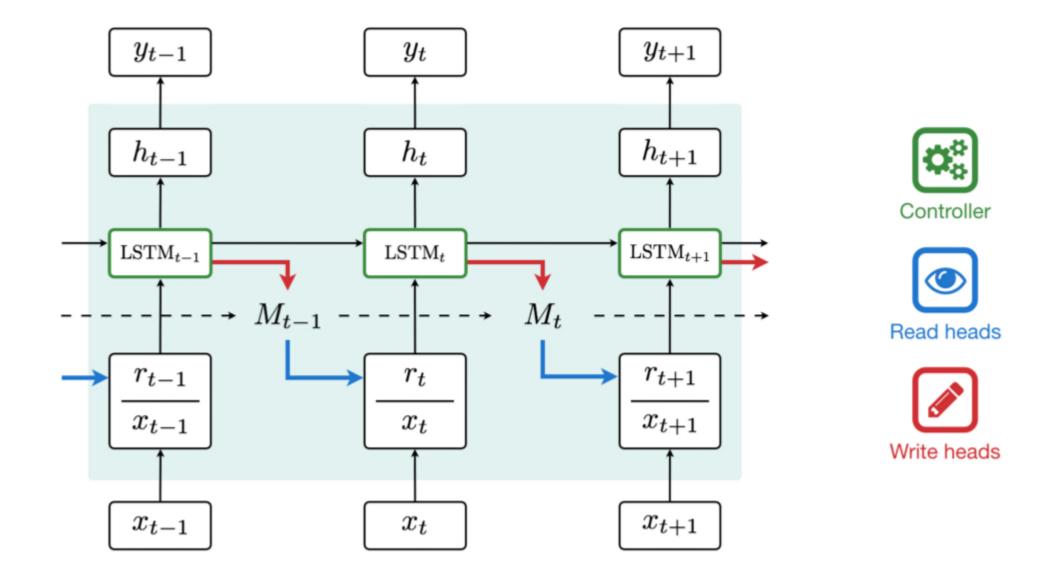








https://medium.com/@aidangomez/the-neural-turing-machine-79f6e806c0a1



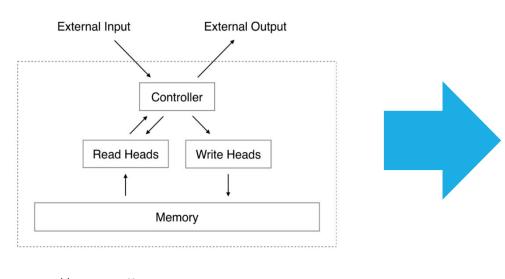
NTM unrolled in time with LSTM as controller

Differentiable neural computer (DNC)

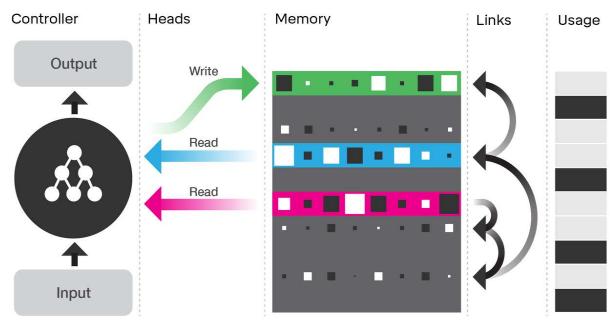
2014

2016

Illustration of the DNC architecture



https://rylanschaeffer.github.io



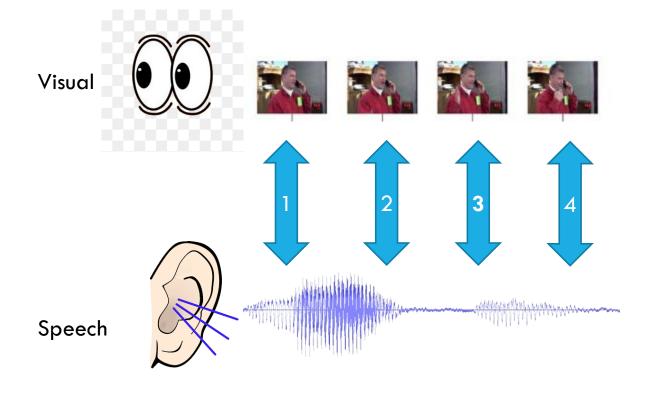
Source: deepmind.com

#REF: Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." *Nature* 538.7626 (2016): 471-476.

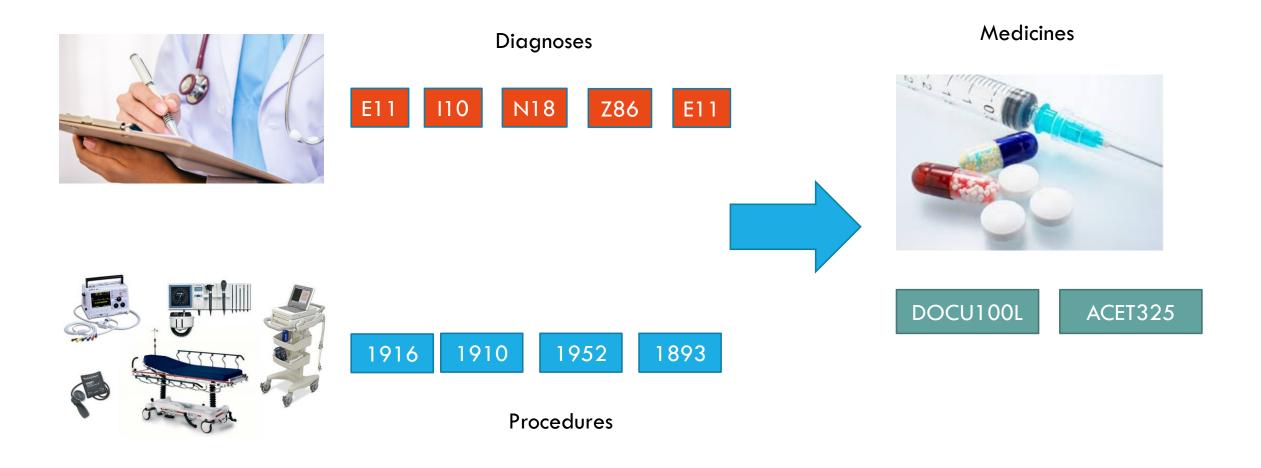
Dual-view sequential problems

Hung Le, Truyen Tran & Svetha Venkatesh *KDD'18*

Synchronous two-view sequential learning



Asynchronous two-view sequential learning Healthcare: medicine prescription



Asynchronous two-view sequential learning Healthcare: disease progression

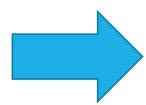
Previous diagnoses

Future diagnoses ???

N18

Z86

E11



1916

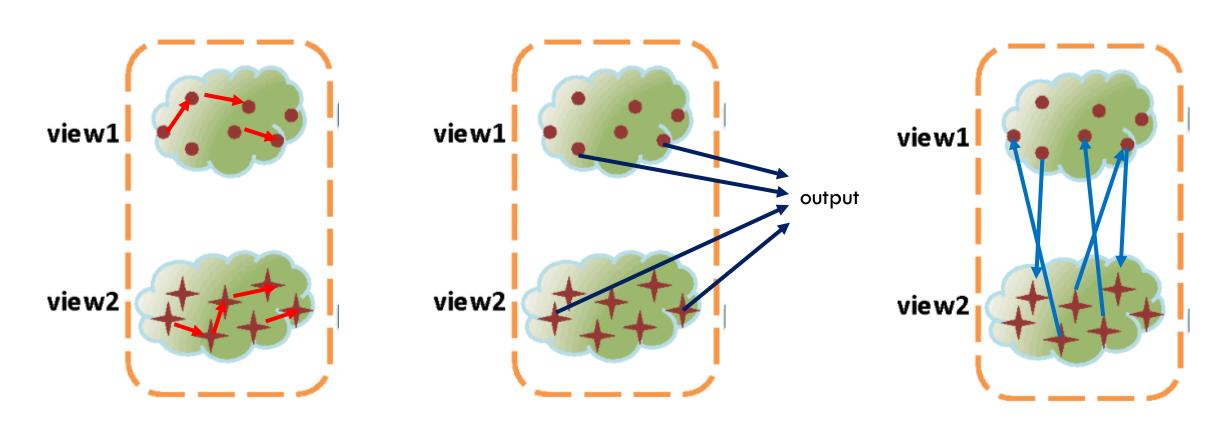
1910

ACET325

DOCU100L

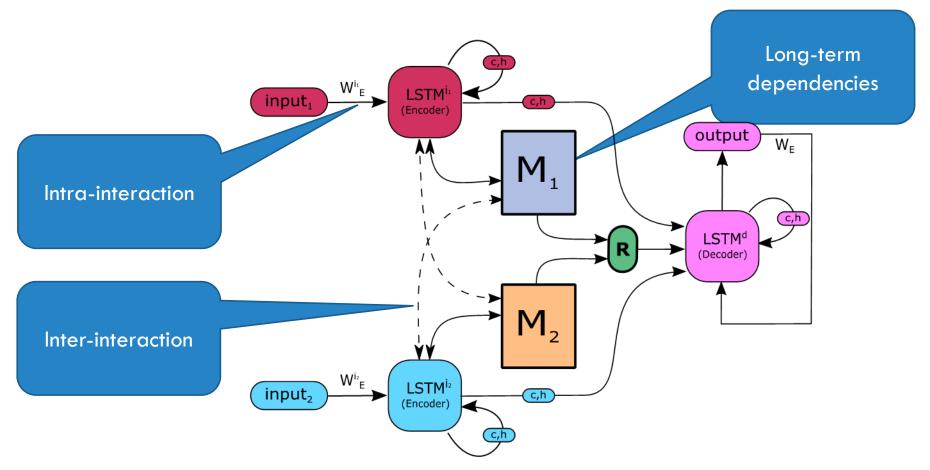
Previous interventions

Intra-view & inter-view interactions



#Ref: Le, Hung, Truyen Tran, and Svetha Venkatesh. "Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning." *KDD18*.

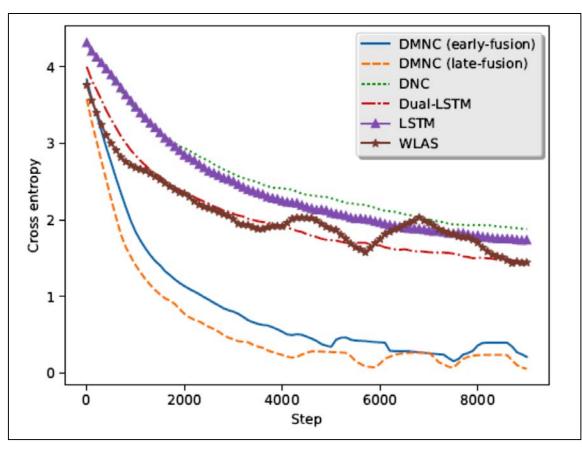
Dual architecture



Dual Memory Neural Computer (DMNC). There are two encoders and one decoder implemented as LSTMs. The dash arrows represent cross-memory accessing in early-fusion mode

Simple sum, but distant, asynchronous

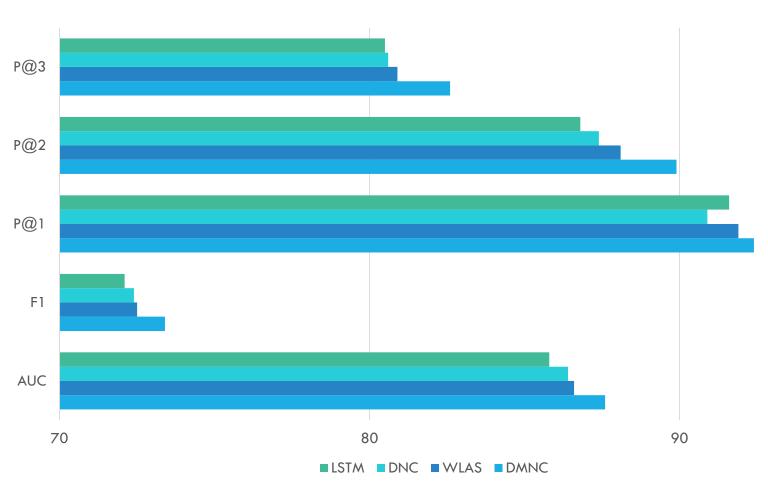
$$\{y_i = x_i^1 + x_{L+1-i}^2\}_{i=1}^L$$



Learning curve

Accuracy

Medicine prescription performance (data: MIMIC-III)



Disease progression performance (data: MIMIC-III)

Bringing variability in output sequences

Hung Le, Truyen Tran & Svetha Venkatesh NIPS'18

Motivation: Dialog system

A dialog system needs to maintain the history of chat (e.g., could be hours)

■ → Memory is needed

The generation of response needs to be flexible, adapting to variation of moods, styles

 Current techniques are mostly based on LSTM, leading to "stiff" default responses (e.g., "I see").

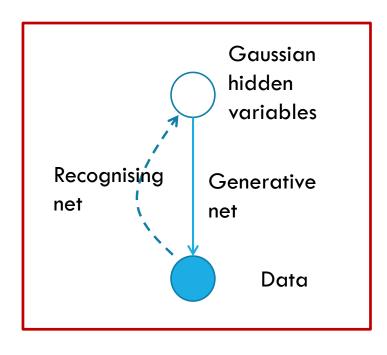
There are many ways to express the same thought

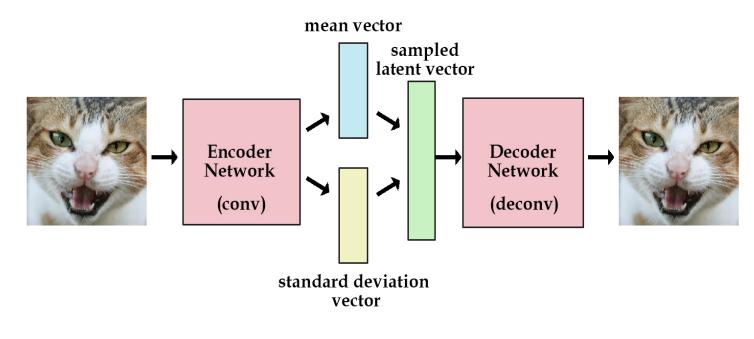
■ → Variational generative methods are needed.

Variational Auto-Encoder (VAE)

(Kingma & Welling, 2014)

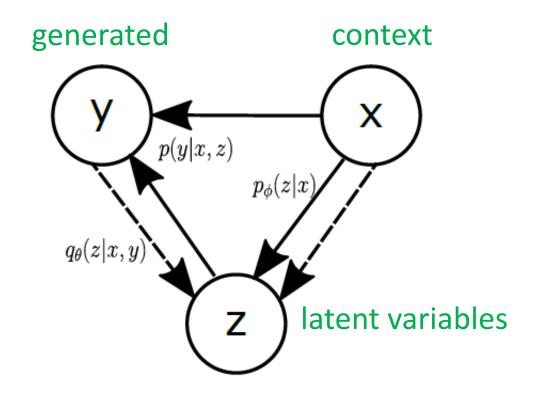
Two separate processes: generative (hidden \rightarrow visible) versus recognition (visible \rightarrow hidden)



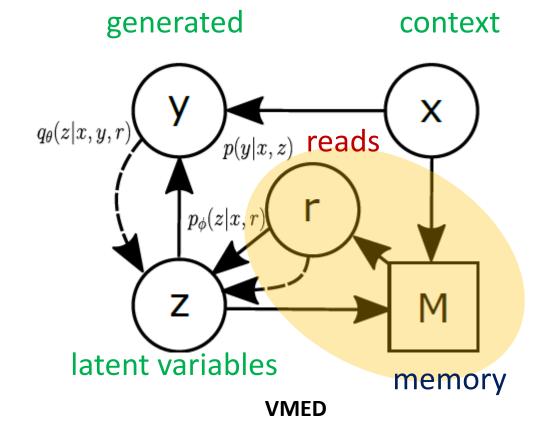


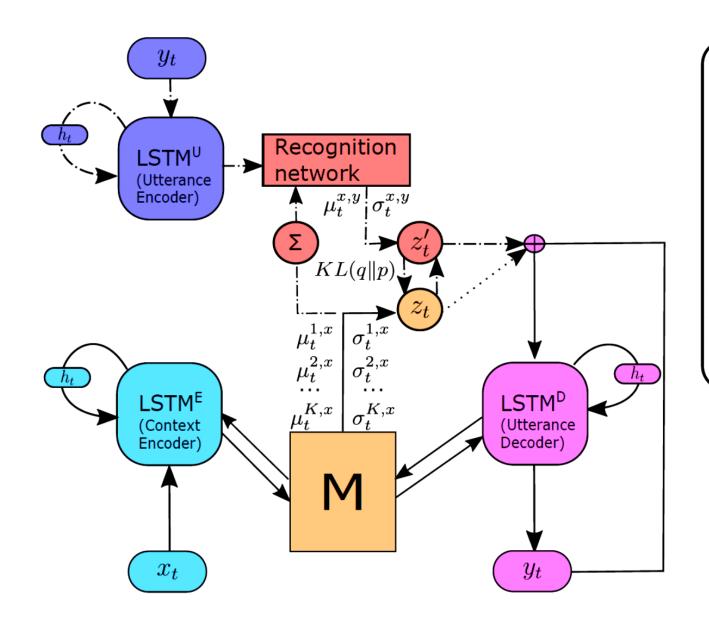
http://kvfrans.com/variational-autoencoders-explained/

Variational memory encoderdecoder (VMED)



Conditional Variational Auto-Encoder





+ : concat operator
∑ : sum operator

The posterior

The pior

Context Encoder

Utterance Encoder

Utterance Decoder

Only in training

Both in training
and testing

Sample response

Input context	Response
Reddit comment:	Seq2Seq: The scene in
What is your favorite	Seq2Seq-att: The final
scene in film history?	DNC: The scene in
Mine is the restaurant	CVAE: Inception god! Not by a shark /*/ Amour great /*/ Pro thing you know 3
scene in the Godfather.	dead
	VMED (K=3): The opening scene from history movie /*/ The scene in a shot
	nights! Robin movie /*/ The psycho scene in fight from
Reddit comment: What actor will win an Oscar in the next 10 years?	Seq2Seq: Colin
	Seq2Seq-att: Liam Neeson
	DNC: Tom Gyllenhaal
	CVAE: Daryl and Aaron /*/ Carefully count Alfred Deniro /*/ Ponyo Joker posible
	VMED (K=3): Edward or Leo Dicaprio goes on /*/ Dicaprio will /*/ Dicaprio Tom
	has actually in jack on road

Sample response (2)

LJ user: Your very pretty and your is very cute. May i add ya to my friends list?	Seq2Seq: I! Add and too you back
	Seq2Seq-att: I did may! Away back
	DNC: Sure you added
	CVAE: Sure! I can add you /*/ Thank cool of surely /*/ Thank hi of sure!
	VMED (K=3): Thank cool for sure /*/ Add definitely! Sure surely friends /*/
	Thank girl go ahead
Cornell movies:	Seq2Seq: Yes you are
Nobody can murder	Seq2Seq-att: Really not is it
someone with their	DNC: Managing the truth
feelings . I mean that is	CVAE: Sure not to be in here /*/ Oh yes but i know! /*/ That to doing with here and
crazy?	VMED (K=4): You are right! /*/ That is crazy /*/ You can't know Jimmy
OpenSubtitle: I'm	Seq2Seq: That is have got coming about these
obliged for your	Seq2Seq-att: May you not what nothing nobody
hospitality. I appreciate	DNC: Yes i am taking this
it and your husband	CVAE: No . that for good! And okay /*/ All in the of two thing /*/ Sure. Is this!
too.	VMED (K=3): I know. I can afford /*/ I know nothing to store for you pass /*/ I
	know. Doing anymore you father

Bringing relational structures into memory

Trang Pham, Truyen Tran & Svetha Venkatesh ICPR'18+

NTM as matrix machine

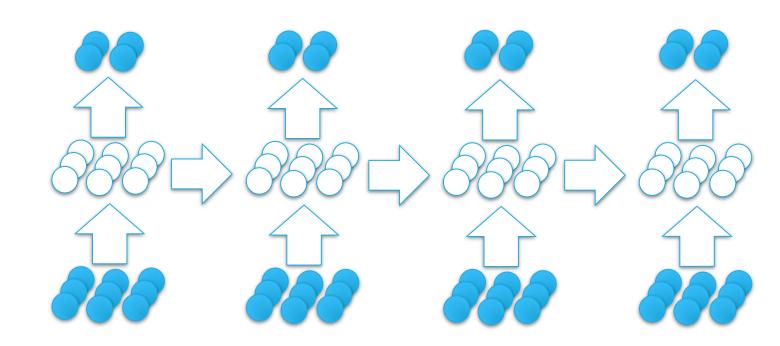
Controller and memory operations can be conceptualized as matrix operations

- Controller is a vector changing over time
- Memory is a matrix changing over time

#REF: Kien Do, Truyen Tran,
Svetha Venkatesh, "Learning
Deep Matrix Representations",
arXiv preprint arXiv:1703.01454

Recurrent dynamics

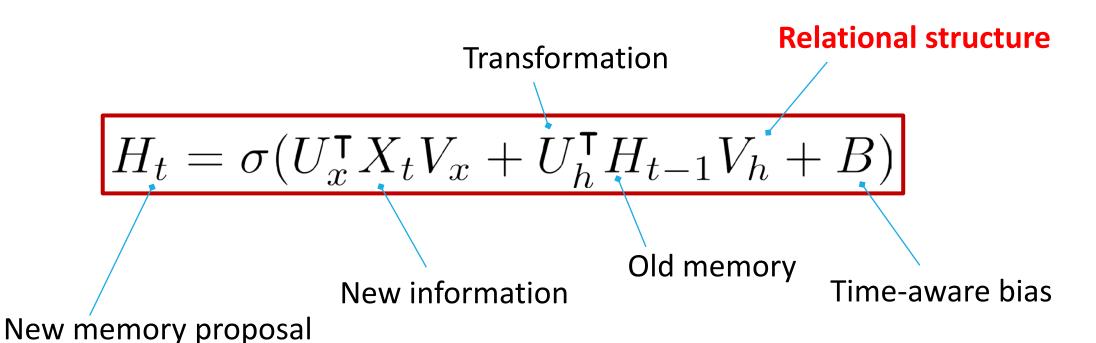
$$H_t = \sigma(U_x^\intercal X_t V_x + U_h^\intercal H_{t-1} V_h + B)$$



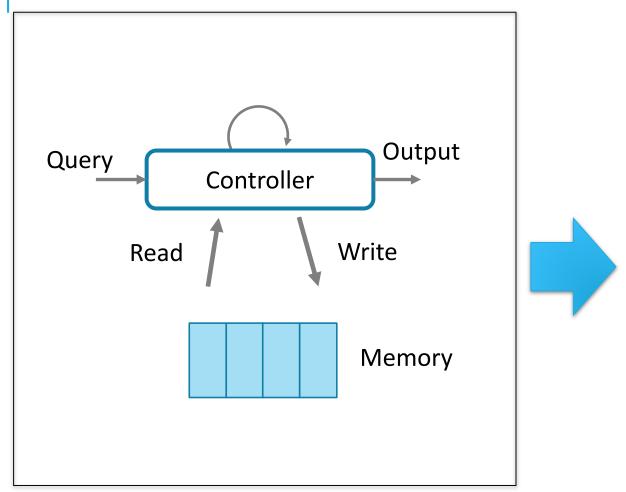
Idea: Relational memory

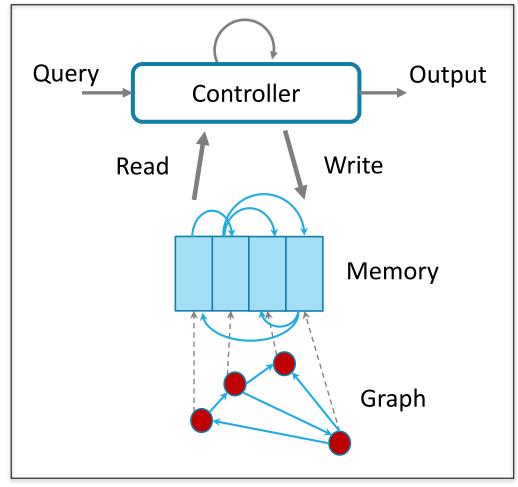
Independent memory slots not suitable for relational reasoning

Human working memory sub-processes seem inter-dependent



Relational Dynamic Memory Network (DMNN)

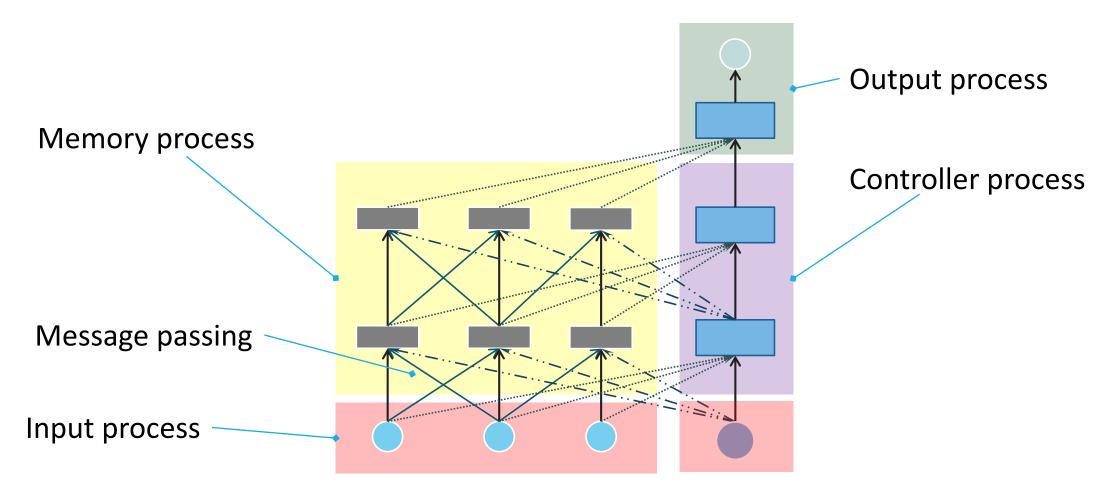




Relational Dynamic Memory Network

NTM

RDMN unrolled

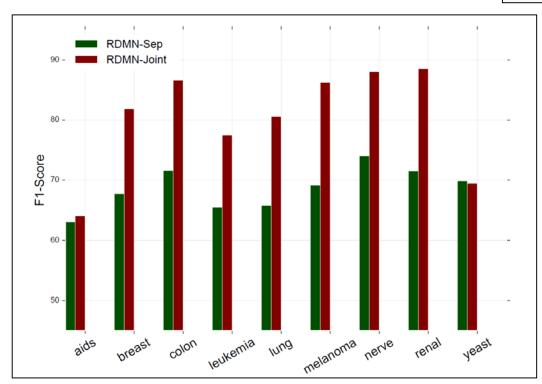


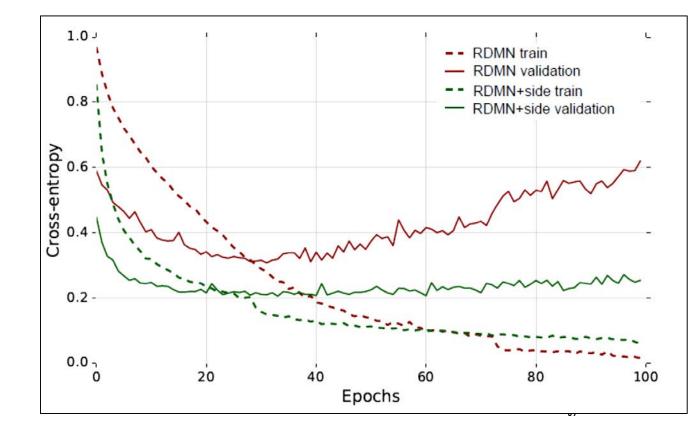
10/09/2018

Drug-disease response

Molecule → Bioactivity

Model	MicroF1	MacroF1	Average AUC
SVM	66.4	67.9	85.1
\mathbf{RF}	65.6	66.4	84.7
GB	65.8	66.9	83.7
NeuralFP [19]	68.2	67.6	85.9
MT-NN [51]	75.5	78.6	90.4
RDMN	77.8	80.3	92.1





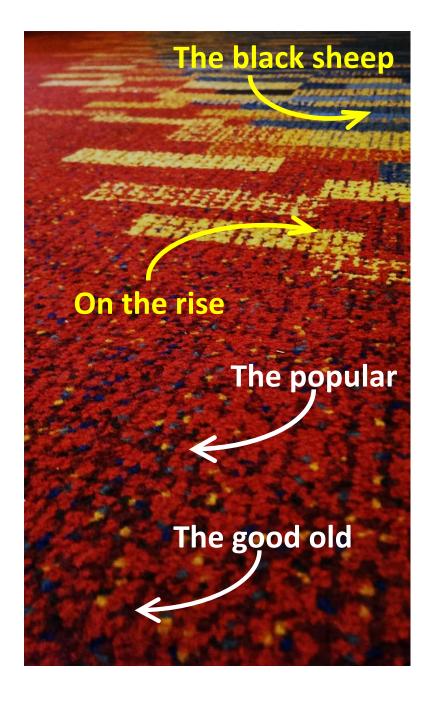
Chemical reaction

Molecules → Reaction

	CCI900		CCI800	
	AUC	F1-score	AUC	F1-score
Random Forests	94.3	86.4	98.2	94.1
Highway Networks	94.7	88.4	98.5	94.7
DeepCCI [38]	96.5	92.2	99.1	97.3
RDMN	96.6	92.6	99.1	97.4
RDMN+multiAtt	97.3	93.4	99.1	97.8
RDMN+FP	97.8	93.3	99.4	98.0
RDMN+multiAtt+FP	98.0	94.1	99.5	98.1
RDMN+SMILES	98.1	94.3	99.7	97.8
RDMN+multiAtt+SMILES	98.1	94.6	99.8	98.3

10/09/2018

Looking ahead



- Cognitive architecture | Unified Theory of Cognition
- Quantum ML/AI
- Theory of consciousness (e.g., Penrose's microtubes)
- Value-aligned ML
- Reinforcement learning, imagination & planning
- Deep generative models + Bayesian methods
- Memory & reasoning
- Lifelong/meta/continual/few-shot/zero-shot learning
- Universal transformer
- Attention
- Batch-norm
- ReLU & skip-connections
- Highway nets, LSTM/GRU & CNN
- Representation learning (RBM, DBN, DBM, DDAE)
- Ensemble
- Back-propagation
- Adaptive stochastic gradient

Better memory theory

Sparse writing

Explaining memory operations

Dynamic memory structure (other than a fixed-size matrix)

E.g., Differentiable pooling (NIPS'18)

Loading long-term/episodic mem into working mem

walk(man, dog; day1); walk(woman, dog; day2) → couple(man, woman)

A grand unified theory of memory?

May be Free-Energy Principle by Karl Friston

Intelligence as emergence?

We are just little bit better than apes in each intelligence dimension, but far more intelligent overall.

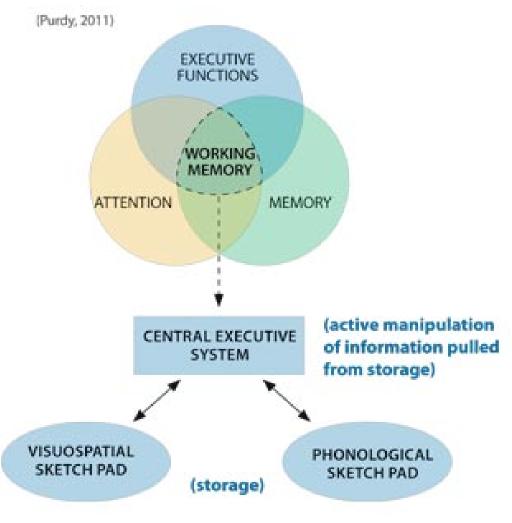
Memory types

Short-term/working (temporary storage)

Episodic (events happened at specific time)

Long-term/semantic (facts, objects, relations)

Procedural (sequence of actions)



http://www.rainbowrehab.com/executive-functioning/

Applications of memory

Rare events

Video captioning

QA, VQA

Machine translation

Machine reading (stories, books, DNA)

Business process continuation

Software execution

Code generation

Graph as sequence of edges

Event sequences

Graph traversal

Algorithm learning (e.g., sort)

Dialog systems (e.g., chat bots)

Reinforcement learning agents

Multi-agents with shared memory

Learning to optimize

Memory-supported intelligence

Reasoning with working memory (NTM style)

Meta-learning with episodic memory

Meta-remembering of memory operations

Learning to plan with procedural memory

Learning world knowledge with semantic memory

Learning to navigate with spatial memory

Learning to socialize with collective memory and memory of others (???)

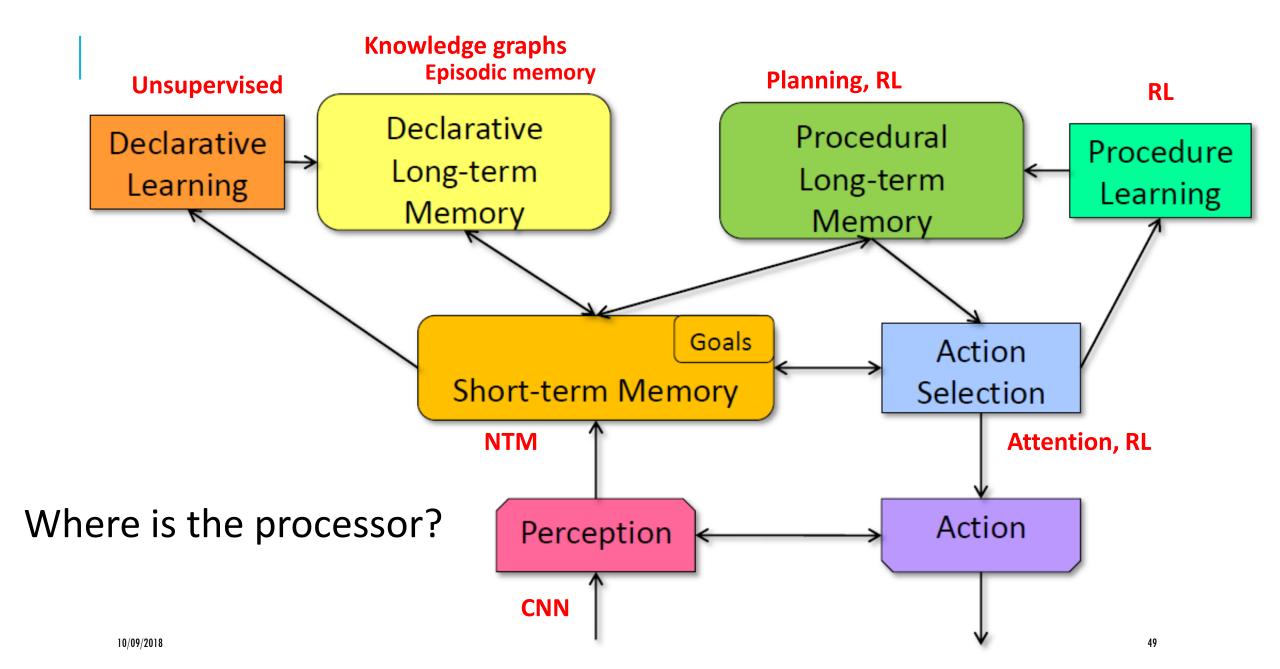
Toward a full cognitive architecture

Cognitive Architecture

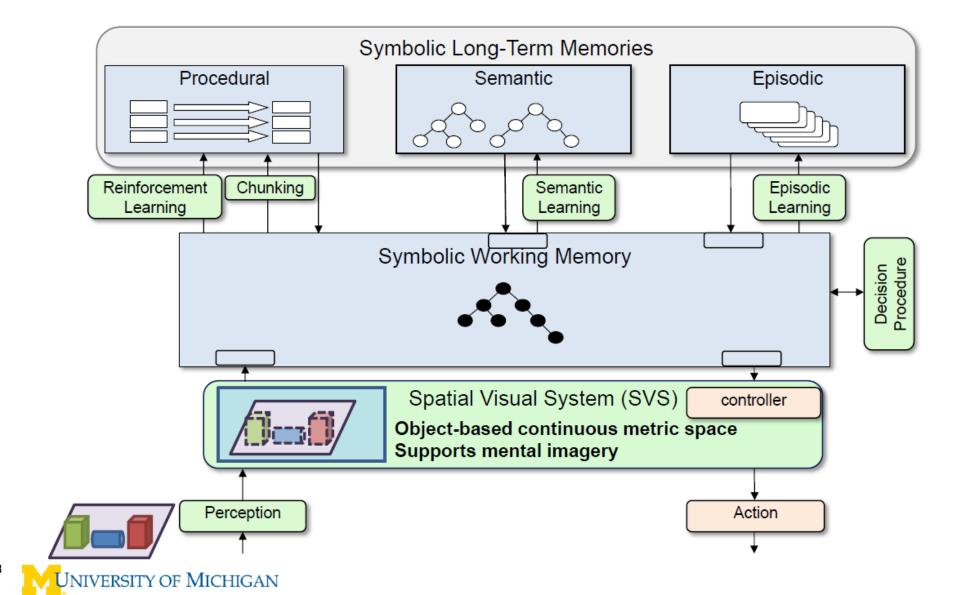
- Fixed computational structures underlying intelligent behavior
 - Representations of knowledge
 - Memories that hold knowledge
 - Processors that manipulate knowledge
- Supports end-to-end behavior
 - Includes integration with perception and action
- General across tasks
 - Architectural mechanisms are reused across every task and subtask
 - Task-specific knowledge guides task behavior
- Complete
 - No "escape" to additional specialized programming

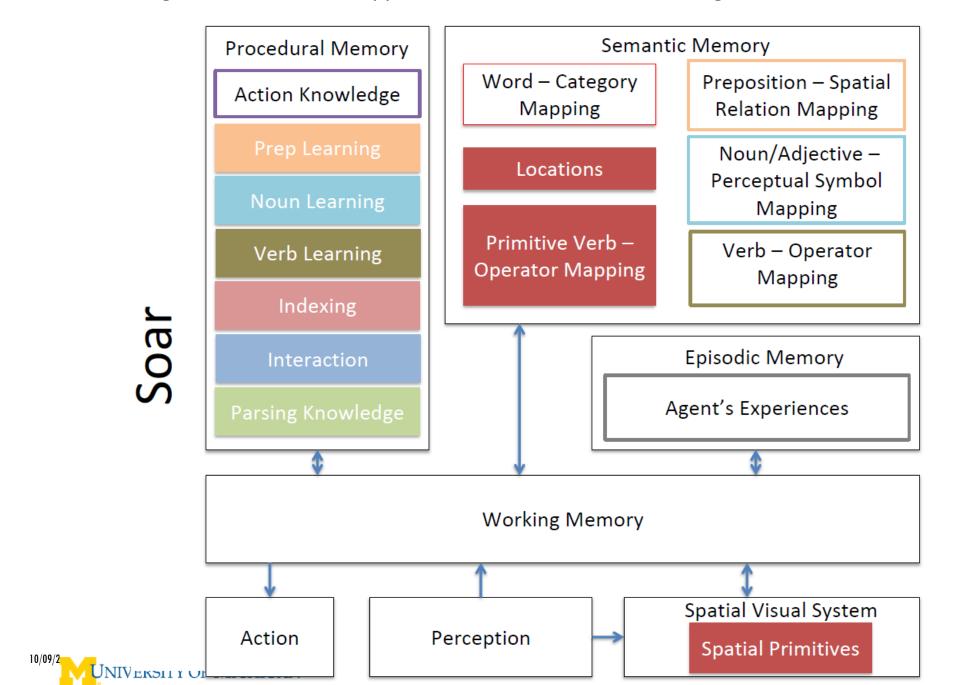
Newell's Time Scale of Human Action

<u>Scale (sec)</u> 10 ⁷	Time Units months	<u>System</u>	<u>Band</u>	
10 ⁶	weeks		Social	
10 ⁵	days			
10 ⁴	hours	Task		
10 ³	10 min	Task	Rational	
10 ²	minutes	Task		So
10 ¹	10 sec	Unit task		ar ACT-
10°	1 sec	Operations	Cognitive	Sigm
10 ⁻¹	100 ms	Deliberate act		PAU LEAB
10 ⁻²	10 ms	Neural Circuit		RA
10 ⁻³	1 ms	Neuron	Biological	
10 ⁻⁴	100 μs	Organelle		



Soar Structure





Team @ Deakin (A2I2)

Thanks to many people who have created beautiful graphics & open-source programming frameworks.

References

Memory-Augmented Neural Networks for Predictive Process Analytics, A Khan, H Le, K Do, T Tran, A Ghose, H Dam, R Sindhgatta, arXiv preprint arXiv:1802.00938

Learning deep matrix representations, K Do, T Tran, S Venkatesh, arXiv preprint arXiv:1703.01454

Variational memory encoder-decoder, H Le, T Tran, T Nguyen, S Venkatesh, arXiv preprint arXiv:1807.09950

Relational dynamic memory networks, Trang Pham, Truyen Tran, Svetha Venkatesh preprint arXiv:1808.04247

Dual Memory Neural Computer for Asynchronous Twoview Sequential Learning, H Le, T Tran, S Venkatesh, KDD'18

Dual control memory augmented neural networks for treatment recommendations, H Le, T Tran, S Venkatesh, PAKDD'18.