

Prognosis

Care

Deep learning for episodic interventional data

Melbourne, Aug 2018

truyentran.github.io

@truyenoz

letdataspeak.blogspot.com

goo.gl/3jJ1O0

Setting: Three interacting processes in EMR

Disease progression

Interventions & care processes

Recording rules

Source: medicalbillingcodings.org

Challenge: Complexity

Long-term dependencies

Irregular timing

Mixture of discrete codes and continuous measures

Complex interaction of diseases and care processes

Rich domain knowledge & ontologies

Data are not created equally important

Models must be accurate AND explainable

Hypothesis: Healthcare is Turing computational

Healthcare processes as executable computer program obeying hidden "grammars"

The "grammars" are learnable through observational data

http://workingmodeloftheworld.com/Turing-Machine

Model: Trainable algebraic system

Health dynamics as a system of transitions of forgettable illness states

Treatments "shift" illness state from one point to another

Medical entities (e.g., disease, treatment, doctor) as algebraic objects (e.g., vector, matrix and function)

Importance of historical events are personspecific

Training by minimizing prediction loss

Realisation: Deep learning

Recurrent neural networks

Source: http://karpathy.github.io/assets/rnn/diags.jpeg

Attention mechanism

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu, J.

Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio

28/08/2018

#REF: Phuoc Nguyen, Truyen Tran, and Svetha Venkatesh. "Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records." *IJCNN* (2018).

Health = Recurrence(Set(Illness) – Set(Intervention))

health non-linearity intervention $g(\boldsymbol{d}_t, \boldsymbol{p}_t) = \rho(\Delta)$ where $\Delta = \boldsymbol{d}_t - \boldsymbol{p}_t$

$$f(S) \leftarrow \frac{\bar{\boldsymbol{e}}_S}{\epsilon + \|\bar{\boldsymbol{e}}_S\|} \quad \text{where} \quad \bar{\boldsymbol{e}}_S = \max\left(\boldsymbol{0}, \sum_{i \in S} \boldsymbol{e}_i\right)$$

set function ~ permutation invariant

Data: Barwon Health, Geelong Australia (2002-2013)

Statistics	Diabetes	Mental health
# patients	7,191	6,109
# visits	53,208	52,049
% male	55.5	49.4
median age	73	37
# diseases	243	247
# treatments	1,118	1,071

Results: Treatment recommendation

Mathad	Diabetes			Mental health			
Methou	P@1	P@2	P@3	P@1	P@2	P@3	
BOW+LR	0.608	0.481	0.419	0.516	0.4382	0.395	
Deepr	0.634	0.463	0.395	0.615	0.532	0.466	
LSTM	0.694	0.535	0.446	0.614	0.507	0.427	
Resset							
 Implicit interaction 	0.738	0.564	0.492	0.692	0.582	0.498	
 Additive interaction 	0.74	0.567	0.486	0.708	0.588	0.496	
 Subtractive interaction 	0.704	0.553	0.48	0.7	0.591	0.51	
 Multiplicative interaction 	0.65	0.484	0.401	0.553	0.511	0.428	
– Add. interaction with exp smoothing	0.726	0.564	0.465	0.654	0.537	0.458	
– Sub. interaction with exp smoothing	0.730	0.561	0.465	0.641	0.528	0.452	

Results: Disease progression

Method	Diabetes			Mental health		
	P@1	P@2	P@3	P@1	P@2	P@3
BOW+LR	0.508	0.441	0.393	0.396	0.350	0.323
Deepr	0.496	0.42	0.397	0.424	0.392	0.346
LSTM	0.541	0.476	0.417	0.466	0.430	0.372
Resset						
 Implicit interaction 	0.530	0.478	0.438	0.504	0.471	0.406
 Additive interaction 	0.528	0.496	0.449	0.488	0.448	0.392
 Subtractive interaction 	0.533	0.491	0.444	0.494	0.469	0.41
 Multiplicative interaction 	0.496	0.44	0.401	0.453	0.406	0.362
– Add. interaction with exponential smoothing	0.563	0.513	0.459	0.468	0.429	0.373
– Sub. interaction with exponential smoothing	0.567	0.516	0.46	0.47	0.43	0.376

Towards a differentiable Turing machine for health

#REF: Hung Le, Truyen Tran, and Svetha Venkatesh. "Dual Control Memory Augmented Neural Networks for Treatment Recommendations", PAKDD18.

Results: MIMIC-III data

Model	Procedure Output		Drug Output		
	Precision	Jaccard	Precision	Jaccard	
Logistic Regression	0.256	0.185	0.412	0.311	
Random Forest	0.276	0.199	0.491	0.405	
Seq2Seq	0.263	0.196	0.220	0.138	
Seq2Seq with attention	0.272	0.204	0.224	0.142	
DNC	0.285	0.214	0.577	0.529	
DCw-MANN	0.292	0.221	0.598	0.556	

Wrapping up

Healthcare can be viewed as an algebraic system, which can be realized as a learnable Turing program

Dynamic diseases-treatments interaction demands new models

Deep learning is a viable solution

Question: where is the likelihood function?

2012

The Team @ Deakin

