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“"artificial intelligence" health: (Worldwide)

22/11/2013 10/06 /2014 27/12/2014 15/07/2015 31/01/2016 18/08/2016 6/03/2017 22/09/2017 10/04/2018 27/10/2018 15/05/2019 1/12/2019
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Recent AI/ML/KDD activities

Conference on Machine Learning for Healthcare (MLHC), 2019
ICML/IJCAI/AAAI (2019)

= Health Intelligence
= Workshop on Computational Biology
= Knowledge Discovery in Healthcare Ill: Towards Learning Healthcare Systems (KDH)

KDD/SDM/ICDM (2018-2019)
* Health Day at KDD’18

= epiDAMIK: Epidemiology meets Data Mining and Knowledge discovery

= 17th International Workshop on Data Mining in Bioinformatics
* Workshop on Data Mining in Bioinformatics (BIOKDD 2019)

= [DsHealth 2019] 2019 KDD workshop on Applied data science in Healthcare: bridging the gap
between data and knowledge

11/07/2019


http://www.kdd.org/kdd2018/health-day-at-kdd

Why now?

High-impact & data-intensive.
= Andrew Ng’s rule: impact on 100M+ people.
* Biomedicine is the only industry that will never shrink!

healthpages.org

Ripe for innovations fuelled by deep learning technigues.
* Major recent advances and low hanging fruits are being picked.

Great challenges:
= High volume and high dimensional,;

= Any modality: 2D-4D vision, time-series, 1D signals, sound, text, socia

network, graphs.

= Metric scale from nano-meter (atoms) to meters (human body and

brain).
= Time scale from mini-seconds (ion channels) to 100 years.
* Complexity unimaginable (e.g., brain, DNA, cell networks).
* Great privacy concerns;

It is the right time to join force with biomedical scientists!

11/07/2019

pharmacy.umaryland.edu

TCTTTAGT
GTAATACC!

GTTGATAACAC!

ey
s
_—
[
e
o

[eemart

CTAAAGATGATCTTTAGTCCCGGTTCGAA

GACTAAAGATCCCG

TTCAAAATTTCTTCAAAAAAGAGGGGAG
GTGATTACATACAAATCGGAGGTGCCTA
TTTGTCATACTACATTTGCACCTATGTTTT
GTAAGTTGATGAGAGAGAAAATGTGTGT

marketingland.com

Publmed

Big Rooms in Biomedicine



Human genome

3 billion base-pairs (characters), 20K genes, 98% non-
coding regions

Any two random persons share 99.9% genome

The 0.1% difference is thought to account for all variations
between us

= Appearance: Height (80% heritable), BMI, hair, skin colors
= 1Q, education levels

= Genetic disorders such as cancers, bipolar, schizophrenia, autism,
diabetes, etc.

Any two random persons share about 60% variations
(SNV/SNP)

As we age, there are small mutations within our cells

11/07/2019
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The cell, nuclear DNA & MtDNA

DNA double helix
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https://qph.ec.quoracdn.net/main-qimg-2c39fede406d71fb534bbae6cc9b8aad-c
https://en.wikipedia.org/wiki/Mitochondrial_DNA

Sequencing

The first step is to read (sequence) the DNA/MtDNA, and
represent the information as string of characters (A,C,G,T) in
computer.

The most popular technique these days read short sequences
(hundreds of characters), and align.

Each position is read typically at least 30 times to get enough
confidence = Huge storage!!!

String alignment is then the key to final sequence 2 Need super-
computer to do this fast.

A DNA sequence is compared against the reference genome. Only
the difference (0.1%) need to be stored.

= This does not usually apply for MtDNA, as each cell has as many as 500
MtDNAs, they are slightly different! More different as we age.

11/07/2019
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The state of Al for

This is not new. Since 1960s!

$500M - $2B

12-15 years

ff /
|
Target validation, Phase Ill:

Phase II:

|
| | Target assay
Target hits-to-leads
identification | :235:::25: medicinal e::“:tacy. :;icacy.
\ \ € | chemistry safety satety <ty
I Efficacy proof of concept
Target 1
screen 2 years 2
_— _— 3
Target screen Safety package 4
[ $1-4 million $12-15 million

Nature Reviews | Drug Discovery

#HREF: Roses, Allen D. "Pharmacogenetics in drug discovery and
development: a translational perspective." Nature reviews Drug

discovery 7.10 (2008): 807-817.
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rug design
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The three questions

Given a molecule, is this drug? Aka properties/targets/effects prediction.
Druglikeness
Targets it can modulate and how much
Its dynamics/kinetics/effects if administered orally or via injection

Given a target, what are molecules?

If the list of molecules is given, pick the good one. If evaluation is expensive, need to search,
e.g., using BO.

If no molecule is found, need to generate from scratch > generative models + BO, or RL.

Given a molecular graph, what are the steps to make the molecule?
Synthetic tractability
Reaction planning, or retrosynthesis

11/07/2019 1



Sensing technologies
and data

Raw signals are ideal
candidates for deep learning

Speech & vision techniques can
be applied with minimal
changes

#REF: Ravi, Daniele, et al. "Deep
learning for health informatics." IEEE
journal of biomedical and health
informatics 21.1 (2017): 4-21.

12

11/07/2019



Electronic medical records (EMR)

Need to model the healthcare processes,
which are interactions of:

* Disease progression
* Interventions & care processes

= Recording processes (Electronic Medical/Health
Records)

Irregular timing, event-based, sequence of
(interacting) sets

Multiple resolutions

Mixed modalities: biomarkers, code, text,
social, wearables

.If_lu rcr:l]g n-li(n -the-loop; negative/pOSitive _ . Sourc;r_nedicqlbillingcodings g
ee ac : .or
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Luke Oakden-Rayner

PhD Candidate / Radiologist

The End of Human Doctors - Radiology Archives
Escape Velocity

October 2017 (1)
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“They should stop training radiologists now.”
Geoff Hinton (as of April 2017)

11/07/2019 https://www.newyorker.com/magazine /2017 /04/03 /ai-versus-md



An art of modelling biomedicine: Analogy

Video as sequence of frame, but
also a complex 3D graph of
objects, actions and scenes

- 2 Protein, RNA

Question as sequence of words,
but also a complex dependency
graph of concepts

- = Protein, drug

Answer as facts (what and where)
and deduced knowledge.

- = Affinity, binding sites,
modulation effect

11/07/2019

Input Clips CNN Features  Clip Representation

> ‘
w
g Regression
g \
2 / 4Answer
B -g YClassification/
2,
(BILSTM-» biLSTM » BILSTM->  BILSTM-» biLSTM— f T
= | ﬁ, + ,ﬁl A
+ I + * words
How mdny times eyes ?

#Ref: Minh-Thao Le, Vuong Le, Truyen Tran, “Learning to Reason with Relational
Video Representation for Question Answering”, In preparation 2019.
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“Diet networks” for GWAS

H#REF: Romero, Adriana, et al. "Diet Networks:
Thin Parameters for Fat Genomic" ICLR (2017).

GWAS = Genome Wide Association Study

Diet Net uses a “hypernet” to generate the
main net.

Features are embedded (not data instance).
Unsupervised autoencoder as regularizer.

Works well on country prediction on the 1000
Genomes Project dataset.

= But this is a relatively easy problem. PCA, even
random subspace can do quite well!

11/07/2019
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DeepPatient: Representing medical records
with Stacked Denoising Autoencoder

B Decoder -~
\

— Encoder -

Feature detector Avuto-encoder Deep Auto-encoder

HRef: Miotto, Riccardo, et al. "Deep patient: An unsupervised representation to predict the
- future of patients from the electronic health records." Scientific reports 6 (2016): 26094.



Use of feedforward nets: Tissue-
regulated splicing code

#REF: Leung, Michael KK, et al.
"Deep learning of the tissue-
regulated splicing

code." Bioinformatics 30.12
(2014):i121-i129.
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O p e ra t | O n O n G e n Deep TRIAGE: Interpretable and Individualised

Biomarker Scores using Attention Mechanism for the
S et Classification of Breast Cancer Sub-types

Adham Beykikhoshk!:", Thomas P. Quinn", Samuel C. Lee!, Truyen Tran!, and Svetha
Venkatesh!

1C-=r|.u: for Pattern Rscognition and Dato Anobytics, Deakin University, Geelong, Australin
* adham.bephiddackin edu.aw; contectlomquinndgmail. com

—_— B —_— Abstract
Motivation: Ereast cancer 15 & collection of multiple tlssue pathologles, each with a distinet
molecular signatore that correlates with patlent prognosls and responss to therapy, Aoccorately differ-

entiating hetween hreast cancer sub-types 1s an Important part of clinical declsion-making. Already,
this problem has been addressed using machine learning methods that separate tisspe samples nbo
distinet groups. However, thers remalns unexplamed heterogenelty within the established sub-types
that cannot be resolved by the commonly used classification algorithms. In this paper, we propose &
nowel deeq. learning architecturs, called DeepTRIAGE [ Deep learning for the THactahle Individualized
Analysts of Gene Expresgion), which not only classifies cancer sub-types with comparable accuracy,
bt slmultanesusly assipns each patlent thelr own set of Interpretable and individualised biomarker

seores, These personallsed scores deseribe how Important each feature 1s in the classificatlon of each

A ﬂ A patient, and can be analysed post-hoc to generate new hypothesss about Intra-class heterogensality.
Results: We apply the DespTRIAGE framework to classify the gene expression signatures of
luminal A and luminal B breast cancer sub-types, and illustrate its use for genes and gene set (La.,

G0 and KEGG) features. Using DeepTRIAGE, wa find that the GINE1 gene and the kinetochore
organlsatlon GO term are the most iImportant features for luminal sub-type classification. Through
classiflcation, DeepTRIAGE stmultaneously reveals heterogeneity within the luminal A blomarker
seores that signiflicantly associate with tumoor stage placing all luminal samples along & continuom

http://distill.pub /2016 /augmented-rnns/

of severity.
o [
Availability and implementation: Th oeed model & implemented in Pyth iing Py-
Atte nt I O n m e c h a n I s m Torch Era.mewurk.l'?'he ::ﬂ}'sui‘dznﬁ Pytigz'lrilafﬁd K. All I':le‘thurdns a:IEEdeEI:arE frgyu;;l;ﬁab:;ﬁ

from https: //githuboeom fadham /BliomarkerA thend.

11/07/2019 2
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Deep architectures for nanopore
sequencing sty i

Bases are identified by the way they affect ions flowing through the pore from one
side of the membrane to the other.

Aimed at real time recognition

g "‘253":“‘5" 1

:- i

‘& |

— DNA DOUBLE o P _
HELIX Sail [~

| | % | |

The setting is similar to speech

= Chiron (Teng et al., May 2018, UQ, Australia) protein reates

a pore in the
membrane

Other GRU/LSTM variants o adpio
Nanonet (Oxford Nanopore Technologies, 2016)
= BasecRAWIler (Stoiber & Brown, May 2017)

- DeepNano (Boza et al., June 2017, Comenius
University in Bratlslava Slovakia)

recognition! Bepre s acen
* = The early days used HMMs. Now LSTMs. S o pn < fowfo a dferent dogree
DNA helix into X b e Sl
. . . two strands. L vy YerTTs
We will briefly review the latest: e s e
secon "i!-

© The adapter molecule
keeps bases in place long
enough for them to be
identified electronically.

Source: technologyreview. com

11/07/2019 n



Chiron

Signal

Dataset Basecaller Identity Rate

[ ~AAGCATC- ] [ CTC choder ] Metrichor 0.8650 (-0.0246)
CTC D‘ecoder [ Fully Connected layer ] Albacore 0.8896

t Lambda BasecRAWIller | 0.8154 (-0.0742)

ASCTe ASCTD MOCTh AcCls) ASCTo [ Bidirecti;)nal LSTM Iayer] Chiron 0.8776 o012)

FUTHV Connlcted La\‘[er T [ Bidirecti:)nal LSTM layer ] Metrichor 0.8864 (-0.0193)

( Bidirectional LSTM layer | Albacore 0.901 (-0.0047)

[ Residzal — J L. coli BasecRAWIller | 0.8254 (-0.0803)
; Chiron 0.9057

[ Residuel Block Metrichor | 0.8802 0.0117)
[ Residual Block | Albacore 0.8919

[ Resiausl Block | M. tuberculosis | BasecRAWIler | 0.8241 (-0.0678)

K r Chiron 0.8851 (-0.0068)

- o i‘ﬁ N Metrichor 0.794 (-0.0446)
o Albacore 0.8386

e s Human BasecRAWIller | 0.8149 (0.0237)

e Chiron 0.8154 (-0.0232)

#REF: Teng, Haotien, et al. "Chiron: Translating nanopore raw signal directly into nucleotide
1/07/2019 sequence using deep learning”, GigaScience, Volume 7, Issue 5, 1 May 2018, giy037. 2



DeepBind (Alipanahi et al, Nature Biotech 2015)

a Current batch Motif scans Features %u *’"
s

ldentifying curent movel — _
binding Puamer il pp—

S i t e S b 1. Calibrate 2. Train candidates 3. Test final model
i e
fi2h

Test
AL

0.93

L

LUse best @)
calibration 5

(3 attempts) | g2

Evaluate
random .

calibrations .
1300

;. «~ ¢ Useall training data . 5 Use parameters
. 3-fold cross validation éﬁ‘;?ﬂ“ﬂ P ( = e EL;S Z - of best candidate
i TP = i £ ram 5 ; E
- [[Train Validatel. Auc = ) :

i Test dala never seen _
. during calibration or training

Trainin
data :

1/07/2019 http://www.nature.com/nbt /journal /v33/n8 /full /nbt.3300.html 2



User of CNN+RNNs: DanQ

One hot coding Convolution Max pooling Recurrent Dense Multi-task output

iy

[

#REF: Quang, Daniel, and Xiaohui Xie.
"DanQ: a hybrid convolutional and

recurrent deep neural network for

quantifying the function of DNA

sequences.” Nucleic acids research 44.11

(2016): e107-e107.

iz

LU LIV LLILIVOLIYILOENOY
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|I\/Iu|tip|e
modalities

H#REF: Eser, Umut, and L. Stirling
Churchman. "FIDDLE: An integrative
deep learning framework for

functional genomic data
inference." bioRxiv (2016):
081380.

11/07/2019
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THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence)
to simulatenously predict multiple outputs

H3KSme TF Binding
H2AZ Chromatin Multi-task
H3K36me3 State learning
Class Probabilities
| Y S FE: Layer |
I 1= FC Layer |
| | | I
[ 2ndcombined Fclaer | [ 2nd combined Fiayer | | 2nd Combined FC Layer | I - B
| Hmnbi:ledﬂz:upr | mcmﬁnladﬂ:l.wu- | | mmﬂinladmlam | il |} 'L g
| 3rd Smoathing | 3rd smoothing | | 3rd smoothing | fHEES |
2Znd set of convolutional 2nd set of Convolutional 2nd set of Convolutional nin s i
eps e s " rm
L edsmothne | [ ondsmootive | [ __2ndsmpodine ] 'EI_I_UDI'"]'E"IZIZI'E"ZIII]III"IZI"
| :Istsetufcnmihmalhlqls | | msunrmniﬂmwps | | :stsetufmwi:l-iuul Maps | E::T_:ﬂl]iﬁ!:EiIEfZﬁIlIDfE!i
_ : + OC00C000 e 0CCODNORCO0C0CoNRCO0
| miaismoothing | | i smontig | [ st smooeuns | ; CINCCCCDONN0CN MRNCONIDT

-‘—-.‘-A-‘. L LLak  BlL L

s A

Source: https://simons.berkeley.edu/sites /default /files/docs /4575 /201 6-kundaje-simonsinstitute-

deeplearning.pdf

Chromatins

DNA double helix

NI *'ﬂ"ii\.u}lm"

;_"J_, Core histone dimers:
" O — 2xH2A/H2B

‘Beads on a string’
form of chromatin

Chromatin fiber of
packed nucleosomes

1,400nm

Chromosome

https://gph.ec.quoracdn.net



https://simons.berkeley.edu/sites/default/files/docs/4575/2016-kundaje-simonsinstitute-deeplearning.pdf
https://qph.ec.quoracdn.net/

More models/frameworks

DragoNN
DeepChrome
DeepSEA
Basset

DeepBound

density localization sisulation parameters = {

SequencaDNN_learning

knownd

curve(ona_filter dragonn) interpret data with SequesceDfi{mlti filter dragoes, simlation data

SIim | e
?Cf:ﬁ:;ﬁ v 0.4} h‘\\\E&-‘:::::::::::::::;::: ﬁ?f*gﬁfﬁ?£E¥i

one_filter dragonn parameters {
seg length': 1000,
num filters': [1],
conv_width': [10],
pool width': 35}

IPython Notebook Command Line
Tutorials Interface

DragoNN

| TensorFlow || Theano |

| CPU | | GPU |
Locally or on the cloud

Filter &
jont, Simalation data ‘

|~ usage: dragonn [-h] {train,test,predict,interpret}
main script for DragoNN modeling of sequence data.
positional arguments:

{train,test,predict,interpret}
dragonn command help

train model training help

test model testing help
predict model prediction help
interpret model interpretation help

http: / /kundajelab.github.io /dragonn



http://kundajelab.github.io/dragonn
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DIAGNOSTIC APPROACHES

CURRENT

IMAGING qj_’@

TISSUE —O
CELLULAR
COMPOSITION

BIOCHEMSTRY of
BODY FLUIDS

GENOTYPING

NOVEL
GENOMICS
TRANSCRIPTOMICS
PROTEOMICS
LIPIDOMICS

| METABOLOMICS

System
medicine

11/07/2019 https: //www.frontiersin.org /articles /10.3389 /fphys.2015.00225 /full 2



https://www.frontiersin.org/articles/10.3389/fphys.2015.00225/full

Biology & pharmacy

Traditional techniques:
= Graph kernels (ML)

= Molecular fingerprints
(Chemistry)

O — Leu(LeuT)

~-

r 4,
P~ s
= o \ M=
e W sb e
U =< F253(Leu)
7 Nortriptyline F319
2] e\

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant

mechanism." Nature 503.7474 (2013): 85-90.

11/07/2019 3l

Modern techniques

= Molecule as graph: atoms as
nodes, chemical bonds as edges




Targets

~

Chemistry DFT

~ 10% seconds [E,w0, .-

DFT = Density Functional Theory

Message Passing Neural Net
Gilmer, Justin, et al. "Neural message passing for qt S e A
chemistry." arXiv preprint arXiv:1704.01212 (2017) \:@} .ol ;}'Cf
. —2 cnp .

* Molecular properties ~ 1077 seconds
* Chemical-chemical = o= <

. ] :& > S =6 N =PI j:: %:6

interaction o -y TR

NP | NS

 Chemical reaction

Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to
products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...)
° 1 1 in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are
Sy nt h SNIN p I annin g highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and
C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.

11/07/2019 3



From vector to graph with
PAN: Personalized Annotation Networks

Nguyen, Thin, Samuel C. Lee,
Thomas P. Quinn, Buu Truong,
Xiaomei Li, Truyen Tran, Svetha
Venkatesh, and Thuc Duy Le.
"Personalized Annotation-based
Networks (PAN) for the Prediction
of Breast Cancer

Relapse." bioRxiv (2019):
534628.
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Predicting molecular bioactivities as
qguerying a graph
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lecul #REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
molecule

ray structure of dopamine transporter elucidates antidepressant
mechanism." Nature 503.7474 (2013): 85-90.

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
mme - Networks for Molecular Activity Prediction." ICPR’18. #



| Multi-target binding for drug
repurposing as graph multi-labeling
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nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing
11/07/2019 approach.” Machine Learning, 2019. 3



Dataset Metrics Fingerprint SMILES Molecular Graph

SVM | HWN GRU WL+SVM | CLN | GAML

m-AUC | 81.94 | 85.95 83.29 86.06 88.35 88.78

Oeancers M-AUC | 81.37 | 85.85 82.74 85.74 88.23 88.50
m-F1 50.63 | 57.44 55.97 54.55 59.48 | 62.03%*

M-F1 50.71 | 57.29 55.99 54.54 59.50 | 62.14%*

m-AUC | 79.85 | 77.46 79.11 81.62 82.08 82.82

50proteins M-AUC | 74.77 | 73.78 75.25 77.60 78.36 | 79.35%*
m-F1 17.21 16.37 16.08 17.04 18.37 | 20.47*

M-F1 18.40 | 15.87 14.96 18.66 17.72 | 19.83%*

Table 4: The performance in the multi-label classification with graph-structured
input (m-X: micro average of X; M-X: macro average). SVM and HWN work
on fingerprint representation; GRU works on string representation of molecule
known as SMILES; WL+BR and CLN work directly on graph representation.

Bold indicates better values. (*) p < 0.05.

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing

approach.” arXiv preprint arXiv:1804.00293(2018).




Drug-target binding as graph reasoning

»Reasoning is to deduce knowledge from previously
acquired knowledge in response to a query (or a cues)

Can be formulated as Question-Answering or Graph-
Graph interaction:

*Knowledge base: Binding targets (e.g., RNA/protein sequence, or
3D structures), as a graph

“Query: Drug (e.g., SMILES string, or molecular graph)
*Answer: Affinity, binding sites, modulating effects
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Drug-drug, drug-target & protein-
protein as graph-graph interaction
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HREF: Penmatsa, Aravind, Kevin H. Wang, and Eric
Gouaux. "X-ray structure of dopamine transporter

elucidates antidepressant )
mechanism." Nature 503.7474 (2013): 85-90. arXiv:1808.04247(2018).

Pham, Trang, Truyen Tran, and Svetha Venkatesh.
"Relational dynamic memory networks." arXiv preprint
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Inferring (bio) relations as knowledge

graph completion
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https:/ /www.zdnet.com/article /salesforce-research-knowledge-graphs-and-machine-
learning-to-power-einstein/
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Do, Kien, Truyen Tran, and Svetha Venkatesh. "Knowledge

graph embedding with multiple relation projections." 2018

24th International Conference on Pattern Recognition (ICPR).

IEEE, 2018.
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Drug design as structured machine
translation, aka conditional generation

Can be formulated as structured machine translation:

"Inverse mapping of (knowledge base + binding properties) to
(query) = One to many relationship.

Representing graph as string Sequences

(e.g., SMILES), and use “Iterative methods

sequence VAEs or GANS. Reinforcement learning
Graph VAE & GAN “Discrete objectives

“Model nodes & interactions Any combination of these +

*Model cliques memory.

11/07/2019
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Drug design as reinforcement learning
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You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018).
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Why bother?

Vectors & Sets

11/07/2019




‘ What can DL do to genomics?

Deep learning offerings
Function approximation

Program approximation

Program synthesis

Deep density estimation
Disentangling factors of variation
Capturing data structures
Generating realistic data (sequences)
Question-answering

Information extraction

Knowledge graph construction and
completion

11/07/2019

Inspire

Solve

Genomic problems
GWAS, gene-disease mapping
Binding site identification
Function prediction
Drug-target binding

Drug design

Structure prediction
Sequence generation
Functional genomics
Optimizing sequences

Organizing the (knowledge about)
Oomics universe
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D I 1 Bertolero, M. A,, Blevins, A. S., Baum, G. L., Gur, R.
e e p e a r n I n g Ve rS u S C., Gur, R. E., Roalf, D. R., ... & Bassett, D. S.

e n O m i C S (2019). The network architecture of the human
g brain is modularly encoded in the genome. arXiv
preprint arXiv:1905.07606.

Neuron €= Nucleotide, amino acid (building bricks)

Neural networks €2 Chemical/biological networks (the house)
Message passing €<= Signalling (the communication)

Neural programs ¢ Proteins/RNAs (the operating machines)
Neural Turing machine > DNA (data + instruction + control)
Neural universe €2 Omics universe (the computational universe)
Learning over time €< Co-evolution (adaptation)

Super Neural Turing machine ¢> DNA + Evolution (data + program + adaption)
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Living bodies as multiple programs
Interacting

“We need new (neural)
capabilities:

* Truly Turing machine: programs
can be stored and called when
needed.

= Can solve BIG problem with
many sub-modules.

= = Composionality

Neural Stored-program Memory

= Can reason given existing

structures and knowledge baseS Le, Hung,"Truy.en Trcm,. and S.ve’rhq Venkatesh. "Neural Stored-program
Memory." arXiv preprint arXiv:1906.08862(2019).
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Living in the future: Al for health care

We tend to overestimate the short-term and
underestimate the long-term.

Bear in mind that anything beyond 5 years are
nearly impossible to predict!

Let’s map Kai-Fu Lee’s vision:

- Wave 1: Internet data (= PubMed, social media)
= Wave 2: Business data (= EMR)

- Wave 3: Digitalize the physical world (= Drugs)

= Wave 4: Full automation (= Robot surgeons, GPs)

Some speculations (by me):

* https://letdataspeak.blogspot.com.au/2017/02/living-in-
future-deep-learning-for.html
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’ (] (]
We’re hiring
PhD & Postdocs
truyen.tran@deakin.edu.au

https: / /truyentran.github.io /scholarship.html

http://ahsanqawl.com/2015/10/qa/
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