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ABSTRACT
Suicide is a major concern in society. Despite of great attention
paid by the community with very substantive medico-legal impli-
cations, there has been no satisfying method that can reliably pre-
dict the future attempted or completed suicide. We present an in-
tegrated machine learning framework to tackle this challenge. Our
proposed framework consists of a novel feature extraction scheme,
an embedded feature selection process, a set of risk classifiers and
finally, a risk calibration procedure. For temporal feature extrac-
tion, we cast the patient’s clinical history into a temporal image
to which a bank of one-side filters are applied. The responses are
then partly transformed into mid-level features and then selected in
`1-norm framework under the extreme value theory. A set of prob-
abilistic ordinal risk classifiers are then applied to compute the risk
probabilities and further re-rank the features. Finally, the predicted
risks are calibrated. Together with our Australian partner, we per-
form comprehensive study on data collected for the mental health
cohort, and the experiments validate that our proposed framework
outperforms risk assessment instruments by medical practitioners.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health; I.6.5 [Simulation and
Modelling]: Model Development

Keywords
medical data analysis, suicide, risk modelling, risk prediction, one-
side convolutional kernels, filter bank, machine learning

1. INTRODUCTION
Suicide is widely considered as a major problem in mental and

public health, and is a main cause of death. WHO estimates that
worldwide, suicide accounts for nearly 2% of deaths by 2000 [2].
Although there is a decreasing trend in the number of suicide-
classified deaths in Australia, there is no decline in the suicidal
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ideation or attempts [11]. In a 2007 national survey, 2.9% of the
population had suicidal ideation, and 0.4% had attempted suicide
[8]. This poses grave challenges for mental health service providers,
and the open question is how to improve early detection of suicide
and prevention.

Mandatory practice in health services is to perform risk assess-
ments, serving as one of the gate-keeper indicators in triage to de-
termine nature of care. Such assessments have medico-legal con-
sequences. However, the reliability and validation of suicide risk
assessments is not well understood in terms of predictive power,
and remains a controversial issue in risk management (e.g., see [18,
10]).

Figure 1: Clinical events represented as a temporal image, which is
convoluted with one-sided filter bank.

We ask a bold question: Can we predict suicides automatically,
given mental history, risk assessments and clinical intervention data?
We aim to predict the probabilities within a given future period
of sentinel events: low-risk, moderate-risk and high-risk events.
Low-risk events implies no detected suicide risks, moderate-risk
events are self-injuries that do not lead to fatal consequences, and
high-risk events are those with fatal results. The convention is that
if several events occur within the same period, the highest sever-
ity is considered. The cohort under study is from Barwon Mental
Health, Drugs and Alcohol Services, the only provider in the re-
gion of 350,000 people in the central western region of Victoria in
South-eastern Australia.

We depart from the standard medical practice of considering a
small set of risk factors and limited risk levels based on expert
knowledge (e.g., see [4]). We exploit large medical datasets, gen-
erating thousands of potential signals from multiple sources. We
then employ machine learning to automatically select strong and re-
liable risk factors of future attempts or suicide. The goal is then to
develop an automated tool that: (i) provides objective measures of
risk factors quantifying uncertainties; (ii) detects risk patterns from
the patient history; and (iii) computes probabilities of outcomes.
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Key modelling considerations are transparency in modelling deci-
sions and interpretability in results.

The problem is highly challenging (e.g., see [16]). Documented
risk factors, such as those used in risk assessments may not cor-
relate well with future outcomes. High risk events are rare and
irregular. The data is aggregated from different sources, is incom-
plete (e.g., people reported dead without any noticeable history)
and contains a significant noise (e.g., service providers under pres-
sure might enter “junk” data to meet protocol requirements). The
data is severely imbalanced. Time scales for event evolution can be
very different, ranging from days to decades.

Our proposed framework implements three key concepts to tackle
these challenges: automated scale-invariant feature generation and
selection from big data, subsequent ordinal risk classification and
finally, risk calibration to account for data imbalance. For feature
extraction, we offer a novel conceptual view in which a patient’s
medical record is cast as a temporal image, features vs time, on
which an one-sided filter bank can be applied (see Fig. 1 for an
illustration and Sec. 3.1 for details). The extracted feature set is
temporally sensitive and takes into account time sensitive nature of
varied medical event evolutions. The feature pool is then pruned
by a supervised procedure that penalises features that are weakly
indicative of future attempts in a `1-norm framework, under the ex-
treme value theory [6] (Sec. 3.2). A set of ordinal classifiers are
designed to further re-rank and select surviving features, simulta-
neously computing probabilities of risk levels within a window of
time (Sec. 3.3). Finally, the predicted risks are calibrated to meet
operational requirements (Sec. 3.4).

To the best our knowledge, this is the first comprehensive data
mining type of work for this important domain: Our database con-
tains more than 10, 000 mental patients, with more than 25, 000
risk assessments. We consider up to 10, 000 extracted signals and
a series of ordinal classifiers. Significantly, we show that using
this data, our method’s prediction outperforms the risk assessment
instrument used by medical practitioners (Sec. 4).

The significance of our framework is that it is agnostic to disease
type - given mixed type data comprising demography, clinical his-
tory (emergency attendances, admissions and diagnostic coding),
and risk assessment instruments - questions with ordinal ratings,
our framework automatically extracts the most relevant features
and builds risk prediction classifiers. This allows us to easily apply
the proposed framework across disease domains.

2. DESCRIPTIVE DATA ANALYSIS

2.1 Data Description
The Barwon Health hosts a data warehouse in which electronic

medical records are pooled. We are mainly interested in data on
emergency department presentations and admissions to the gen-
eral hospital. For emergency attendances (ED), there are 42K+
recorded mental cases for 8K+ patients in the period of 2005–
2012. For hospital admissions (HA), there are approximately 67K
recorded mental cases in the period of 1995–2012. The number of
recorded emergency attendances and admissions has been increas-
ing over the year, e.g., from 7,068 admissions in 2009 to 8,143 in
2010 and 8,956 in 2012.

The most important piece of information is the diagnostic coding
for any episodes. Each ED record contains only one main code, but
an admission is typically associated with multiple codes, some of
which reflects mental status. The diagnosis coding conforms with

0 20 40
0

1500

3000

4500

week

Figure 2: Some data distributions: (Top) codes suggesting at-
tempts; (Bottom left) words in assessment notes; and (Bottom
right) interval between risk assessments in weeks. Best viewed in
colour.

the latest classification scheme, the ICD-101. This is a hierarchy
of diseases covering almost all known conditions. The codes start
with a letter followed by several digits where the digits placed later
in the sequence indicate more specific conditions. For example, in-
juries to the head are classified into 10 groups, from S00 to S09.
The group S01 would mean “open wound of head”, the subgroup
S011 means the “wound in the eyelid and periocular area”. Some
ICD codes can be readily interpreted as suicide attempts, for exam-
ple, the code R4581 refers to suicide attempt or ideation. However,
other codes must require expert interpretation about severity of in-
cidents. Fig. 2 (top) depicts the distribution of codes which are
associated with suicide risks.

Another feature of mental health data held at Barwon Health is
that it contains suicide risk assessments for every mental patient un-
der its management. The local clinical protocol requires a suicide
risk assessment on admission, and then after every 91 days during
the care episode, and finally on discharge. The assessment instru-
ment used by Barwon Health was developed in-house in 1999. It
has ordinal assessments for 18 items covering all mental aspects
such as suicidal ideation, stressors, substance abuse, family sup-
port and psychiatric service history. See Fig. 2 (bottom left) for
examples of keywords noted by the assessment staff.

The system recorded approximately 25K assessments on 10K
patients in the period of 2009-2012. The majority of patients have
only one assessment (62%), followed by two assessments (17%),
but there are about 3% patients who have more than 10 assess-
ments. For those with more than one assessments, the time between
two successive assessments are: 30% within one week, 64% within
3 months (Fig. 2 (bottom right)).

Three other assessment tools are also required by the Australian
government: the HoNOS (Health of the Nation Outcome Scales),
the LSP (Life Skills Profile) and the BASIS-32 (Behaviour and
Symptom Identification Scale). These provide different perspec-
tives on the mental health of a patient. However, it appears that
they are incomplete and noisy and thus our early experiments on
these instruments did not result in positive findings.

We focus our study on those patients who have had a least one
event prior to a risk assessment. The dataset then has 7, 746 pa-
tients and 17, 771 assessments. For each patient, we collect age,
gender, spoken language, country of birth, religion, occupation,
marital status, indigenous status, and the postcodes over time. Among

1International Statistical Classification of Diseases and
Related Health Problems 10th Revision, available at:
http://apps.who.int/classifications/icd10/browse/2010/en
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Horizon (day) 14 30 60 90 180
C1 16,985 16,525 15,952 15,471 14,490
C2 536 836 1,174 1,440 19,29
C3 250 410 645 8,60 1,352
Suicide 7 24 32 41 63

Table 1: Outcome class distribution following risk assessments.

patients considered, 48.7% are male and 48.6% are under 35 of age
at the time of assessing.

The risk assessments are the evaluation points from which future
prediction is required. Future outcomes are broadly classified into
three levels of risk, based on expert at Barwon Health: class C1

refers to low-risk outcomes, class C2 refers to moderate-risk (non-
deadly attempts), and class C3 the high-risk (deadly outcomes).
The classes are assigned using a look-up table from the diagnosis
coded events. The convention is that among all events occurring
within the prediction period, the class of the highest risk is cho-
sen. For example, the ICD-10 coded event S51 (open wound of
forearm) is moderate-risk, while S11 (open wound of neck) would
be considered as high-risk. Typically the completed suicides are
rare, and the class distributions are imbalanced. For example, for
2-week period following the risk assessment, there are only 7 sui-
cides among 250 lethal attempts (1.4%), and 536 moderate-risk
attempts (3.0%). Further class distributions are summarised in Ta-
ble 1.

2.2 Medical Data Modelling
After data pooling, we obtain a temporal medical database where

each patient has multiple time-indexed records. Each record spec-
ifies a particular event such as risk assessment, moving home, ad-
mission, diagnosis, lab test, or medicine prescription. In general,
the data characteristics can be summarised as follows:

• Sparsity. Only limited number of events are recorded.

• Irregularity of episodes: Events are recorded at irregular in-
tervals. An episode of events (such as diagnoses and inter-
ventions) may follow a doctor visit or an emergency atten-
dance, but the trigger time is randomly distributed.

• Variable length: Patient records vary greatly in length. Some
chronic patients will have long longitudinal data.

• Shift-invariance: It is of clinical importance to account the
progression from a major event point, e.g., diagnosis. The
absolute time point is not too relevant.

• Heterogeneity: Patient records contain information of differ-
ent types, some are continuous, such as blood pressure, but
many are discrete. Some events are recorded only once (e.g.,
birth), but many others may be recorded in short-intervals
(e.g., heart beats). Some event types change slowly, such as
aging, but some others move fast.

• Distribution drifts: New recording procedures, policies, find-
ings and treatments are introduced at increasing pace, and
thus creating drifts in event distributions.

• Contextual information: Backgrounds (e.g., gender, educa-
tion, religion, age) and primary care (GPs, insurances) play
critical roles in clinical settings.

We note that similar observations have also been partly stated in
[21], and these characteristics are common for other medical ser-
vices as well.

The suicide risk analysis has been mostly carried out in the tra-
ditional medical research (e.g., see [4]), and it is well recognised

that it is very hard to predict the actual suicidal outcomes (e.g., see
[16]). The common feature in these studies is that the risk fac-
tors are manually designed based on expert knowledge, and thus
each study can only handle a handful of such factors. The risk
assessment instrument developed and practiced at Barwon Health,
for example, is composed of 18 items. In data mining and machine
learning, the problem of suicide risk prediction has largely been
overlooked. Recent work of [17] proposes a Bayesian nonpara-
metric approach to suicide attempt modelling. The main idea is to
represent each patient by a set of binary features discovered from
the data. However, the study has limited value in practice since it
mainly involves interviews and does not contain real outcomes but
ideation, which is known to be weakly associated with real attempts
and suicide.

3. PREDICTIVE FRAMEWORK
Our ultimate goal is to predict attempts and associated lethality

in the future, often at the point of risk assessments. We describe
an integrated predictive framework which has the following com-
ponents:

1. Temporal feature extraction: Most of the features are tem-
poral, except for demographic variables like gender or coun-
try of birth. Some mental problems are long-term but sui-
cidal episodes are often short (from few days to less than 6
months), thus it is necessary to take multiple time scales into
account;

2. Feature selection using a surrogate task of detecting attempts
embedded with `1-norm regularisers. The attempts are as-
sumed to be triggered when the extremal hidden suicidal risk
goes beyond a certain threshold;

3. Risk classification given the observed history. This is the
main part of the model where the future risk is regressed
again history (which is captured by the temporal feature ex-
tractors); and

4. Risk calibration for translating the probability of risk in to
tunable prediction of outcomes to deal with the imbalanced
data.

The second and third components are placed within the bootstrap-
ping framework [5, 3, 15][3] for better stability and predictive per-
formance.

3.1 Temporal Feature Extraction
Our problem is to construct a set of sensible features at a partic-

ular time in the patient history. It is desirable that the feature pool
has a good coverage and is highly informative for the risk predic-
tion tasks at multiple time-scales. In other words, the feature set
should be insensitive to scales. The main conceptual insight is that
much of the clinical records can be represented as a sparse tempo-
ral image, where at any given point of time, we can only look back
to the recorded history. The key concept we introduce here is the
one-sided filter bank2 for detecting temporal features.

3.1.1 Representation of Patient History
Data includes demography, detailed clinical history and risk as-

sessments. Clinical history includes a series of admissions and
emergency visits. Each admission typically contains a subset of
ICD diagnosis codes, procedure codes, diagnosis-related groups
and discharge medications. To deal with the plethora of ICD codes,
we preprocess to separate the rare codes, which we consider as one
observation type.
2This is somewhat analogous to the concept of filter-bank in signal
processing and computer vision.
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Let t be the time point of interest, H be the maximum history
length. Let vi(t) be the observation of the event of type i at time
t and let there be D event types. If the event is not observed in
the data, then vi(t) = 0, otherwise, it is a real value if it is some
measure, or 1 if it is an occurrence3. An event for an ICD code is
the presence or absence of code. For demography, some events are
fixed over time (like gender); for postcodes, we consider an event if
a change of postcode has occurred; and for age, we discretise into
bands, that is an event is recorded when the age reaches a particular
band at the assessment time. For continuing events such as treat-
ment episodes, vi(t) is the duration given that the entire episodes
are in the history. Then a representation of the patient history is as
depicted in Fig. 1.

3.1.2 One-Sided Filter Bank
Different events have different resolutions in time - an attempted

suicide is time critical, whereas a Type I diabetic ICD code is not.
To accommodate events having different time scales of evolution,
we consider a multiscale temporal filter bank. For each event type
i, we have a set of K filters over varying timescale. Each filter
essentially evaluates the strength of the event type at that scale. Let
Kk ∈ RH+1 be the k-th one-sided filter (or kernel), the k-th feature
evaluated at t for event i is

fki (t) =

H∑
h=0

Kk(h)vi(t− h) (1)

where Kk(h) is the convolution kernel evaluated at h. One useful
kernel is the truncated Gaussian

Kk(h) =

√
2

πσ2
k

exp

(
− h2

2σ2
k

)
(2)

whereKk(h) > 0 for h ≥ 0 and 0 otherwise. The hyper-parameter
σk defines the effective width of the kernel, i.e., the response drops
drastically as h goes beyond σk. The behaviour is similar to the
uniform kernel with specified width σk

Kk(h) = 1

σk
1 [h ∈ [0, σk]] (3)

This kernel counts the normalised number of events falling within
a given period of time.

Capturing temporal structure. A filter bank of multiple scales
partly captures the temporal structure in the patient history. How-
ever, the nature of event aggregation using the kernels does not re-
veal temporal changes within the “medical image”, for example the
rise and fall of stress over time. We propose a simple way to do this
by dividing the image into temporal fragments. Each fragment is
then evaluated through filter responses and all fragment responses
are concatenated. Indeed this can be captured using the same ker-
nels as above but with a shifting operation, i.e., the convolution in
Eq. (1) is modified as follows

fki (t) =

H∑
h=0

Kk(h− sk)vi(t− h) (4)

where sk denotes the delay from which the kernel operation has
effect.

Finally, the design of filter bank is characterised by a set of pairs
(σk, sk). In this particular suicide application, we choose the pairs

3If an event is missing, it may due to the fact that nothing happens,
or it is not recorded, or the time t is in the future.

to be (σk, sk) ∈ {(0.5, 0); (1, 0); (3, 0); (3, 3); (6, 6); (12, 12)}
(in months). That is, the history H = 24 months is considered.
At the current evaluation point, three kernel widths are 0.5, 1 and
3 months reflecting the short-term scales of the mental risks. The
delays of 3, 6 and 12 months are designed to capture the medium-
term progression of the mental state and comorbidities.

3.2 Feature Selection
Given several risk factors, we need to find a compact subset that

best explains suicide outcomes. Since suicides are rare, we look at
the suicide attempts as the first approximation. Thus we are con-
cerned with the setting where there are binary outcome of a suicide
attempt) y ∈ {0, 1}, given the features. We choose the Gener-
alised Linear Model (GLM) framework [13] with the complemen-
tary log-log link function, which is essentially the application of
the Extreme Value Distribution (the Gumbel distribution) [6]. This
link function is motivated by the fact that suicide attempts are at the
extreme end of the risk spectrum.

Let µ(f) = u0 +
∑
i uifi be the mean risk, where u0, u1, ...un

are feature weights. The probability of an suicide attempt is given
as

P (y = 1 | f) = 1− exp
(
−eµ(f)

)
The model estimation and the feature selection can be carried out
simultaneously by maximising the `1-regularised log-likelihood on
training data D

L(u) = 1

|D|
∑
d∈D

logP (yd | u,fd)− λ1

∑
i

|ui| (5)

where λ1 > 0 are regularisation parameters. In general, larger λ1

would lead to sparser models (e.g., many features are not selected).
This setting is essentially a variant of the lasso (the original prob-
lem was linear regression [19]). The output of this step is the list of
features with non-zeros weights.

3.3 Risk Classifiers
Here we describe a set of models to deal with the ordinal na-

ture of the suicide outcomes. Our goal is not only to come up with
high performing classifiers but also to offer a reasonable interpre-
tation of modelling choices. In particular, we assume that the ob-
served outcomes are the discretised version of underlying random
risks x ∈ Rm. The probabilistic models are natural to estimate
the probability of a particular risk class being observed. Let L be
the number of discrete levels of lethality, in which level 1 refers to
the normal state where no risk can be observed, and level L refers
to the most fatal state or even death. The outcomes are regressed
against the feature vector f evaluated at the time t.

3.3.1 k-Nearest Neighbours (k-NN)
k-NN makes no assumption about the underlying random risk,

but it is based on the foundation that patients with similar recent
history would assume similar risk in the near future. To this end, for
each patient at any evaluation point t, we choose k similar history
fragments from other patients with known outcomes and compute
class probabilities of the outcomes in that neighbourhood. That is
P (rd = l | fd) = 1

k

∑
p∈N(d) 1[r

p = l], where N(d) is the
k-nearest neighbourhood of data d.

3.3.2 Linear Classifiers of Gaussian Risk
We assume that the underlying random risk is normally distributed,

and resembles the lethality level l−1, i.e., we treat the discrete lev-
els as real values and x = r ∼ N (µ(f), σ). The distribution mean
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is modelled as a linear function of features:µ(f) = w0+
∑
i wifi.

However, since we are mainly interested in the probabilities of the
discrete outcomes, we need a way to convert from the continuous
distributions N (µ(f), σ). We employ the following transforms

P (r = l | f) = 1
Z(f)

exp
(
− (l−µ(f))2

2σ2

)
, where Z(f) is the

normalising constant. The standard deviation σ can be estimated
from the set

{
ed = rd − µ(fd)

}
d∈D on the training data D.

3.3.3 Cumulative Models of Risk Grouping
This model assumes that the discrete outcomes r are generated

from the one-dimensional underlying random risk x ∈ R as follows
[12]

r =


1 if x ≤ τ1
l if τl−1 < x ≤ τl
L otherwise

where τ1 ≤ τ2 ≤ ...τL−1 are thresholds. This essentially says
that the discrete outcome is a coarse version of the real-valued risk.
Here the risk spectrum is the real line divided into intervals, each
of which determines the corresponding outcome. In the form of
probability distribution we have

P (r = l | f) = P (τl−1 ≤ x ≤ τl | f)
= F (τl | f)− F (τl−1 | f)

where F (τl | f) is the cumulative distribution evaluated at τl.
Choosing the form of F (τl | f) is usually the matter of practi-
cal convenience since x is unobserved and we do not know the
true underlying distribution. For example, assume that the mean
risk functional is linear in features, i.e., µ(f) = w′f , the logis-
tic distribution F (τl | f) = [1 + exp (−(τl − µ(f)))]−1has an
interesting interpretation:

log

(
P (r ≤ l | f)
P (r > l | f)

)
= τl −w′f

i.e., the log odds at the split level l is proportional to the risk factors.
Another distribution is the Gumbel family studied in Sec. 3.2, and
this can provide an interpretable model in terms of extremal risks.

This leaves a question of how to estimate F (τ | f) and the
thresholds {τl}L−1

l=1 . Since τ1, τ2, ..., τL−1 is a monotonically in-
creasing sequence, we enforce this monotonicity by using

τl = τl−1 + eγl

for l = 2, 3, ..., L − 1, where γl ∈ R , which is unconstrained.
More details are left until Sec. 3.3.6.

3.3.4 Stagewise Models of Risk Progression
Cumulative models assume a single risk variable that can explain

the ordinal outcomes. This assumption is quite limited and does not
address the nature of the risk progression - for some patients, the
risk may not reach a certain level immediately. It may, alternatively,
start from a normal condition, and then progress upward. This sug-
gests a stagewise model of outcomes: The next outcome level may
be attained only if the lower levels have not been attained [1, 20].

Since there are several stages, we need not assume that there is
only one underlying risk variable. Instead, the risks can be multi-
dimensional, i.e., x ∈ RL−1 and each stage l ∈ {1, 2, .., L − 1}
assumes their own underlying risk variable xl ∈ R. The stagewise
process can be formalised as follows

r =


1 if x1 ≤ τ1
l if {xm ≥ τm}l−1

m=1 , xl ≤ τl
L otherwise

Here, the transition from level l to level l + 1 is signified by the
event that the risk value passes through the level-specific threshold
τl. The probability that the outcome is the lowest is then

P (r = 1) = P (x1 ≤ τ1) = F1(τ1)

whereF1(τ1) is the level-1 cumulative distribution. If the condition
x1 ≤ τ1 does not hold, then we consider level 2

P (r = 2 | r ≥ 2) = P (x2 ≤ τ2) = F2(τ2)

This process continues until some level has been accepted, or we
must accept the last level L. Thus the probability of having the
highest level of risk, given all the lower levels have not been ac-
cepted, is

P (r = L | r > L− 1) = 1− FL−1(τL−1)

Note that the probabilities above are conditional. The marginal
probability of selecting a particular discrete outcome is

P (r = l) =


F1(τ1) if l = 1

Fl(τl)
∏l−1
m=1 (1− Fm(τm)) if l ∈ {2, .., L− 1}∏L−1

m=1 (1− Fm(τm)) otherwise

With the choice Fl(τl) as a logistic distribution and the linear risk
functional µ(f) = w′f we have a nice interpretation

log

(
P (r = l | f)
P (r ≥ l | f)

)
= τl −w′f

i.e., the log odds of the probability of choosing the next level, given
the fact that all previous levels have failed, is proportional to the
risk factors f .

At this point, we are left with two choices: (i) using the same dis-
tribution across all levels, i.e., Fl(x) = F1(x) for all l ∈ {2, 3, .., L−
1}, or (ii) using level-specific distributions. The later choice has
more parameters, and thus more flexible.

3.3.5 Multinomial Models of Independent Choices
While the stagewise models greatly relax the assumption of the

underlying random risks, the stagewise risk progression process is
at best an approximation to the true process. Here we relax the as-
sumption even further: (i) Outcomes are individual choices that are
independent of other choices, (ii) An outcome is observed because
it is the most likely choice among all choices given the situation.

Like the stagewise models, we assume that the underlying risk
are multidimensional, i.e., x ∈ RL, one dimension for a pos-
sible outcome. An outcome is observed if its underlying risk is
the largest among all other underlying risks, i.e., r = l if xl ≥
maxm6=l {xm}. It has been proved that under the Gumbel distri-
bution, this decision rule leads to the standard multinomial model
P (r = l | f)∝ exp (µl(f)) [14]. Let µ∗l (f) = µl(f) − µ1(f),
this simplifies to

P (r = 1 | f) =
1

1 +
∑L
m=2 exp (µ

∗
m(f))

P (r = l | f) =
exp (µ∗l (f))

1 +
∑L
m=2 exp (µ

∗
m(f))
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3.3.6 Model Estimation
The probabilistic models, except for the k-NNs, are estimated by

maximising penalised likelihood over the training data D

L(w, τ ) = 1

|D|
∑
d∈D

logP (rd | fd;w, τ )− λ2

∑
i

|wi| (6)

where τ are thresholds in the cumulative and stagewise models.
The role of the `1-penalty is to further select strongest features
for the predictive task. For the cumulative and stagewise models,
we fix the first threshold τ1 = 0 and learn the others. For ease
of interpretation, we employ the simple linear functional µ(f) =
w0 + w′f if parameters are shared among all levels or µl(f) =
w0l + w

′
lf otherwise. For the multinomial model, we simply fix

µ1(f) = 0.

3.4 Risk Calibration
Let us now consider a specific situation at Barwon Health, where

the outcomes are broadly classified into three levels of risk: class
C1 refers to low-risk outcomes, class C2 refers to non-deadly at-
tempts, and class C3 the most deadly outcomes. Once trained, the
classifiers described above produce the probabilities of future risk
classes P (r | f). However, there are two major problems with
this setting. First, for everyday practice, it may create significant
cognitive load for physicians to reason in terms of numerical prob-
abilities. Second, the data collected here is highly imbalanced: For
three-month horizon, only 8.1% data points belong to the class C2

and 4.8% belong to C3 (Sec. 2.1, Table 1). This leads unavoidable
bias in estimation which is unfavourable towards the most impor-
tant class, the C3.

To mitigate the problems, we employ a simple calibration that
first translates the risk class probabilities into a single, interpretable
risk index, and derives a rule to assign the risk classes, in a manner
similar to the cumulative model (Sec. 3.3.3). This translates into
the following procedure:

1. Estimate the risk index, which is the expected risk, on each
data point 〈ri〉 =

∑3
m=1(m − 1)P (r = Cm | f i;θ) for

all training/test points i; This ensures that the risk index is a
positive number bounded within [0, 2].

2. For each test point j, predict the test classes by using the
following decision rules: output C1 if 〈rj〉 ≤ τlow; C2 if
τlow < 〈rj〉 ≤ τhigh; and C3 otherwise. The thresholds
τlow and τhigh are controlling parameters which determine
the recall/precision trade-off. In practice, they are estimated
from the percentiles of the training risk indices.

3.5 Bootstrapping
One potential problem with the pipeline we have just described is

the instability of the model, especially the selected features, due to
the data sampling. That is, a different data collection scheme may
produce an entirely different model, leading to the interpretation
problem and high variance in the classifiers. To achieve stability
and potentially boost the prediction performance, we draw from
the existing literature of bootstrapping [5], including bagging [3]
and stability selection [15]. The overall training loop is as follows:

1. For each bootstrap b = 1, 2, ..., B

(a) Draw a training sample of original size |D| with re-
placement.

(b) Subsample the class C1 so that its data size is at most
twice the size of C2 + C3

(c) Select features (Sec. 3.2)

(d) Train a classifier (Sec. 3.3)

2. For every training data point, compute the averaged class
probabilities over all bootstraps P (r | f) = 1

B

∑
b Pb(r |

f).

3. Estimate the decision thresholds τlow and τhigh (Sec. 3.4).

4. Collect statistics for every feature: (i) the mean feature weights,
(ii) the probability of a feature being selected in the similar
spirit to what introduced in, (iii) the stability score, which
is the ratio of the absolute mean of the feature weight and
its standard deviation, and (iv) the importance, which is the
product of the mean feature weight and the standard devia-
tion of the feature values across the training data.

The Step 1(a) is essentially the well-known procedure called “sam-
pling the majority class” for handing the class imbalance problem,
but we are not aware of the use within the context of bootstrapping.
Thus at the end of the training phase, we have collection of B clas-
sifiers and a list of stable and predictive features, as well as the fully
specified class-assignment rule.

At test time, the class probability is estimated as in Step 2, and
the class assignment is carried out using procedure in Sec. 3.4.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation
For robustness we consider items (e.g., codes) with more than

100 occurrences and are in the top 2, 000 most popular items of
a given type. Other items that do not satisfy these conditions are
considered rare events. Such rare events, though statistically less
important individually, are critical in identifying risks if combined.
We empirically find that using diagnostic features at level 3 in the
ICD-10 hierarchy gave the best result as they appears to balance
generality and specificity. Whenever appropriate, we also map di-
agnostic codes into the mental health grouping scheme known as
MHDG4.

We implement several kernel types and report here the results for
Gaussian kernel filters, as they seem to work better than others (but
similar to uniform kernels). Filter responses are then normalised
into the range [0, 1] before transformed by the sqrt(f) operators.
We then apply feature selection described in Sec. 3.2 with control
parameter: λ1 = 3 × 10−4 unless specified otherwise. For cumu-
lative and stagewise classifiers (Sec. 3.3.3 and Sec. 3.3.4), logistic
distributions for the underlying random risks are used. The number
of bootstrap is set as B = 100. The decision thresholds used in the
class assignment rule in Sec. 3.4 are set at the 78th percentile and
the 93th percentile, respectively.

We use 10-fold cross-validation in the patient space, that is, the
set of unique patients is divided in to subsets of equal size. Models
are trained on data for 9 subsets and tested on the other. The results
are reported for all validation subsets combined. Note that this can
be a stronger test than the cross-validation in the data space because
it removes any potential patient-specific correlation (also known as
random-effects).

We employ several performance measures: For general model
fitting, the likelihood evaluated on validation sets provide a mea-
sure of how the model generalises to unseen data. For each out-
come class, we use recall R – the portion of groundtruth class that
is correctly identified; the precision P – the portion of identified
4MHDG stands for Mental Health Diagnosis Group. The mapping
is available at http://www.health.gov.au
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Suicide C2 C3 Resource FN
(out of 41) Cases R(%) P (%) F1(%) Cases R(%) P (%) F1(%) cost (↑ %) (↓ %)

Clinician rating 14 338 23.5 11.7 15.6 70 8.1 12.9 10.0 3,445 (0) 1,535 (0)
k-NN (k = 100) 29 423 29.4 15.6 20.4 262 30.5 23.3 26.4 3,827 (11) 1,227 (20)
Linear classifier 30 421 29.2 15.8 20.5 297 34.5 24.3 28.5 3,893 (13) 1,133 (26)
Cumulative 31 449 31.2 16.4 21.5 297 34.5 25.5 29.3 3,907 (13) 1,110 (28)
Linear→Cumul 31 433 30.1 16.1 21.0 314 36.5 26.1 30.5 3,889 (13) 1,129 (26)
Stagewise (Shared) 32 432 30.0 15.9 20.8 318 37.0 27.0 31.2 3,890 (13) 1,148 (25)
Stagewise (Multi) 31 438 30.4 16.0 21.0 290 33.7 25.6 29.1 3,869 (12) 1,129 (26)
Multinomial 31 473 32.8 17.2 22.6 289 33.6 23.9 27.9 3,960 (15) 1,077 (30)

Table 2: Performance of calibrated classifiers for predicting 3-month risks. R = Recall, P = Precision, in percentages. FN = false nega-
tives, which are the risky cases wrongly classified as low-risk. Resource cost is the total number of cases assigned as moderate/high-risk.
Linear→Cumul means the outcome of the linear classifier is fed into a cumulative ordinal regression model to compute the correct class
probabilities. The symbols ↑ and ↓ denote the amount increase or decrease relative to the reference figures by clinicians.

class that is actually correct; and the F-score – their harmonic mean
F1 = 2RP/(R+ P ).

4.2 Results

4.2.1 Outcome Prediction
We first evaluate the predictive power of the mandatory risk as-

sessments being performed by Barwon Health. Using the over-
all assessment (risk ratings of 3 and 4 are high-risk, 2 moderate-
risk, and ratings of 1 and 0 are low-risk), the performance on the
high-risk class for 3 month horizons is quite poor: R = 8.1%,
P = 12.9%, F1 = 10.0%. There are 14 suicide cases (34%)
detected from the C2 and C3 assignments. Tab. 2 lists more de-
tails. Machine learning algorithms significantly outperform the
mental health professionals to a large margin. For moderate-risk
prediction, the F1-score by machines ranges from 20.4% to 22.6%,
which are 31% − 45% improvement over the score by clinicians.
The differentials are even better for the high-risk class: the im-
provement are between 164% to 212%. In terms of suicide detec-
tion, the machine detects 29− 32 cases, which are more than twice
the number detected by human (14 cases).

The practical significance of the difference is remarkable. As-
suming for simplicity that the management cost, on average, is
similar for both the moderate and high risk cases, then the total
cost when predicting by human is 3, 445 resource units. There
are 1, 535 cases are misclassified as low-risk (they are false nega-
tive, and thus left untreated). The machine algorithms typically cost
slightly higher than human but with less false negatives. For exam-
ple, the stagewise model with shared parameters (Sec. 3.3.4) leads
to 3, 890 resource units (13% higher than those by clinicians), but
with 1, 148 false negatives (25% lower than those by clinicians).
The significance may be amplified when considering that the so-
cial cost for false negatives is much more serious than hospital re-
sources.

4.2.2 Risk Factors
Excepts for the k-NN classifiers which do not have built-in selec-

tion mechanism, all other classifiers are capable of fine-tuning the
features selected from the previous step (Sec. 3.2).Under the `1-
norm regularisation schemes within the bootstrap framework, only
few percents of strong and stable features are kept.

Class-independent features. Linear, cumulative and stage-
wise models (with shared parameters) do not distinguish the pa-
rameters between classes, and thus we have a single list of features
at the end of the training phase. Tab. 3 presents top 20 features
ordered by their importance (see Sec. 3.5), as produced by the cu-
mulative model (Sec. 3.3.3). Predictive features include: Recent

emergency visits, recent high-risk attempts (C3), moderate-risk at-
tempts (C2 & self-poisoning) within 12 months, recent history of
mental problems and of drug abuse, socioeconomic problems (pen-
sioner, frequent home moving). Although these risk factors are
known [7, 4], our discovered factors are more precise in timing.

Class-specific features. Class-specific models such as the stage-
wise model with class-specific parameters and the multinomial model
can offer re-ranking of features for C2 and C3 separately. Tabs. 4
list top-ranked class-specific features for C2 and C3, respectively,
under the stagewise models. A noticeable aspect is the strong asso-
ciation between prior C3 attempts with future C3 outcomes.

5. DISCUSSION
We have proposed an integrated computational framework for

suicide risk prediction. The framework has three components: tem-
poral feature extraction, an ensemble loop for feature selection and
ordinal classifiers, and risk calibration. The key innovative aspect
of the paper lies in its representation of the patient clinical his-
tory as a temporal event image, from which time-dependent fea-
tures are generated by applying a bank of multiscale one-sided
convolutional filters. Risk-bearing features are then selected by
training an extreme-value classifier equipped with `1-norm regu-
larisations. Using the proposed framework, we have presented a
thorough study on a cohort of mental health patients from a large
regional hospital. The results demonstrate that the framework out-
performs risk assessment instruments by medical practitioners in
terms of predictive power.

This project started with the goal of predicting suicide. How-
ever, we soon realised that this was an impossible task due to the
rarity of suicide while there are many possible risk factors, none of
which are really strong. This difficulty actually resembles the long-
standing conjecture in the mental health literature [11, 9]. While
the existing literature focuses instead in predicting suicide attempts,
for practitioners the high-risk attempts are those we should pay ex-
tra attention to. And thus one of the contributions of this study is
the separation of the attempts into those moderate-risk (C2) and
high-risk (C3).

As the time of this writing, the deployment is on-going. Since the
data is readily available through Barwon Health’s warehousing, a
real-time clinician support system can be readily implemented with
very minimal cost. There is no need for special hardware/software.
As the cohort is relatively small by current machine learning stan-
dards, the feature extraction and model training are relatively fast.
Our prototype implementation on a standard PC using SQL Sever
and Perl typically takes a couple of minutes to extract features for
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Feature (σk; sk) Importance Stability Sel.Pr.
Number of EDs (0.5; 0) 99.1 3.0 1.00
Number of EDs (3; 0) 93.3 3.2 1.00
High-lethality attempts (C3) (3; 0) 85.3 2.5 0.94
ICD code: Z29 (Need for other prophylactic measures) (3; 0) 72.7 3.2 1.00
Number of EDs (6; 6) 62.4 2.1 0.96
Number of postcode changes & Male (6; 0) 60.0 1.9 1.00
Moderate-lethality attempts (C2) (6; 6) 56.9 2.9 0.96
Number of EDs (1; 0) 52.4 3.6 1.00
Moderate-lethality attempts (C2) (12; 12) 48.4 2.3 0.96
ICD code: F19 (Mental disorders due to drug abuse) (6; 6) 46.6 2.2 0.96
Marital status: single/never married & Male NA 42.1 1.2 0.82
ICD code: F33 (Recurrent depressive disorder) (0.5; 0) 41.6 1.6 0.80
ICD code: F60 (Specific personality disorders) (3; 3) 39.3 1.6 0.76
ICD code: T43 (Poisoning by psychotropic drugs) (3, 0) 38.5 1.3 0.82
ICD code: U73 (Other activity) (3, 0) 35.5 1.5 0.92
Occupation: pensioner & Male NA 33.2 1.2 0.86
Number of postcode changes & Female (12, 12) 27.9 1.5 0.92
ICD Code: T50 (Poisoning) (3, 0) 25.8 1.7 0.90
Marital status: single/never married & Female NA 25.5 0.9 0.74
Number of EDs (12, 12) 25.1 1.4 0.90

Table 3: Predictive and stable features associated with risky outcomes in the next 3 months, ranked by importance, as produced by cumulative
models (Sec. 3.3.3). The Gaussian kernel width σk and the delay sk are measured in months; Sel. Pr. = selection probability.

about 10 thousands patients. The same amount of time is needed
for model building in Matlab, while prediction is unnoticeable by
users. The model needs to be retrained periodically as new data
flowing in, e.g., every month. The front-end that interacts with
clinicians is being developed – this will offer easy browsing of risk
history (through the predictive and stable risk factors which have
been discovered by our models), alerting risk and predicting future
outcomes.

The main challenge faced in deploying the solution would be
earning trust from clinicians in their daily work-flow. We anticipate
that the initial resistance will be significant as the implication of
taking the advice from the machine is profound for professionals.
The next phase of this research is consulting with physicians and
psychologists on how to best present the results and explain the
reasoning behind the prediction. Another issue is the interaction
between the physicians and the system: If the physicians modify
their treatment strategy based on the machine prediction, then the
outcome will be altered, leading to the poorer match between the
actual outcome and the predicted.

The framework introduced in this paper is generalisable as the
information extracted from the data warehousing is standardised,
e.g., using the ICD-10 coding system and Mental Health Diagno-
sis Group mapping, and the models make no use of local expertise
(such as risk assessments). The main limitation is that the research
is based on the cohort at Barwon Health alone, and thus local char-
acteristics of the population and the practice may bias the predic-
tion. Finally, the pipeline of feature extraction, selection and clas-
sifier is in fact general and thus can readily be applicable for many
types of risks with very minimal effort. This has been validated
on a series of other predictive problems: The risk of hospitalisa-
tion in diabetes, COPD, mental health, heart failure, heart attack
and pneumonia, and of mortality in cancers, all at Barwon Health
demonstrating the versatility.
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