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Abstract

Molecular activity prediction is critical in drug design. Machine learning techniques
such as kernel methods and random forests have been successful for this task. These
models require fixed-size feature vectors as input while the molecules are variable
in size and structure. As a result, fixed-sized fingerprint representation is poor
in handling substructures for large molecules. Here we approach the problem
through deep neural networks as they are flexible in modeling structured data such
as grids, sequences and graphs. We propose Graph Memory Network (GraphMem),
a memory-augmented neural network to model the graph structure in molecules.
GraphMem consists of a recurrent controller coupled with an external memory
whose cells dynamically interact and change through a multi-hop reasoning process.
The dynamic interactions enable an iterative refinement of the representation of
molecular graphs with multiple bond types. We demonstrate the effectiveness of
the proposed model on 10 BioAssay activity tests.

1 Introduction

Predicting biological activities of molecules in the target environments is a crucial step for virtual
screening in the drug discovery pipeline. Much research has focused on the analysis of quantitative
structure-activity relationships (QSAR), which results in a myriad of molecular descriptors [3]. For
the last 15 years, machine learning has played an important role in the prediction pipeline, that is,
mapping the molecular descriptors into its activity classes. Successful machine learning methods are
well-established, including kernel methods [2, 8], random forests [16] and gradient boosting [17].
These models take as input a fixed-size feature vector that represents molecular properties, as known
as fingerprints. The fingerprint encodes the presence of substructures in a molecule, which are then
hashed into a fixed-size feature vector. However, the number of substructures in large molecules
might be huge, leading to many hash collisions and information loss.
More recently, deep learning [10] has started to impact in drug discovery [1], following their
record-breaking successes in vision and languages. The new power comes from a mixture of
better architectures (e.g., with hundreds of layers), better training algorithms (e.g., dropout, batch
normalization and adaptive gradient descents), and faster tensor–native processors (e.g., graphic
processing units). One of the initial successes was the winning of the Merck molecular activity
challenge1 in 2012 by deep neural nets [4]. Another crucial property of deep learning is that it is
very flexible in modeling data structures such as images, sequences and graphs. Recently, molecular
structures have been successfully modeled using graph convolutional networks [6, 9].
In this paper, we propose Graph Memory Network (GraphMem), a neural architecture that generalizes
a powerful recent model known as End-to-End Memory Network [15] and apply it for modeling the
graph structure of molecules. The original Memory Network consists of a controller coupled with

1https://www.kaggle.com/c/MerckActivity
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an unstructured and static external memory, organized as an unordered set of cells. The controller
reads from the memory in an attentive scheme through multiple reasoning steps before predicting an
output. GraphMem, on the other hand, is equipped with a structured dynamic memory organized as
a graph of cells. The memory cells interact during the reasoning process, and the memory content
is refined along the way. The GraphMem is then applied for modeling molecules and predicting its
bioactivities as follows. First, raw atom descriptors (or atom embedding) are loaded into memory
cells, one atom per cell, and chemical bonds dictate cell connections. A memory cell can recurrently
evolve by receiving signals from the controller and the neighbor cells. We validate GraphMem on 10
BioAssay activity tests from the PubChem database2.

2 Graph Memory Networks
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Figure 1: Graph Memory Network that reads a
molecule and a query, and generates the query-
specific output.

In this section, we briefly present Graph Mem-
ory Networks (GraphMem) and show how it
can be applied for modeling molecules and pre-
dicting bioactivities. An illustration is given in
Fig. 1.
GraphMem consists of a controller and an exter-
nal memory, both of which are recurrent neural
networks (RNNs) interacting with each other.
Different from the standard RNNs, the memory
is a matrix RNN [5], where the hidden states
are matrices with a graph imposed on columns.
The controller first takes the query as the input
and repeatedly reads from the memory using an
attention mechanism, processes and sends the
signals back to the memory cells. Each memory
cell is updated by the signals from the controller
and its neighbor memory cells in the previous
step. Through multiple steps of reasoning, the memory cells are evolved from the original input to a
refined stage, preparing the controller for generating the output.
The query setting is flexible as it has been demonstrated in question-answering tasks [15]. The query
can be any question about different types of activities or properties of a molecule. The question can
be embedded by a one-hot vector or an embedding matrix. In the present work, since the task is
limited to molecular activity prediction, the query is fixed to a constant vector.

Memory Representation Let M be the number of atoms in the molecule. Each atom i has a
feature vector (either pre-computed, or through embedding) xi ∈ RKx . The memory consists of
M memory cells, each cellmi

t ∈ RKm stores the information of the atom i. The memory cells are
initialized by a transformation of the feature vectors: mi

1 = g
(
xi
)
. The memory cells connects

to each other based on the graph structure of the molecules. If two atoms bond in the molecule,
their corresponding memory cells have a connection. This enables the memory cells to embed the
substructures of the molecule by updating its content by the information from its neighbors.

Attentive Reading To read from the memory, a content-based addressing scheme, also known
as soft attention, is employed. Let ht be the state of the controller at time t. At each time step t
(t = 1, ..., T ), the controller reads a summation vectormt from the memory, which is a sum of all
memory cells, weighted by the probability pi

t, for i = 1, ...M :

ai
t = tanh

(
Wam

i
t−1 + Uaht−1

)
pi

t = softmax
(
v>ai

t

)
mt =

∑
i

pi
tm

i
t−1

where ai
t integrates information stored in the memory cellmi

t−1 and the controller state ht−1, and v
is a parameter vector used to measure the contribution of memory cells to the summation vector. All

2https://pubchem.ncbi.nlm.nih.gov/

2



biases are omitted. With this attention mechanism, the controller can selectively choose important
atoms toward the predictive output, rather than consider them equally.

Memory updating During the multi-hop reasoning process to answer the query, the controller
reads the summation vectormt from the memory and updates its state as follows:

ht = g (Whht−1 + Uhmt) (1)

Each memory cell is updated by the signals from the controller and from the neighbor memory cells
in the previous step

mi
t = g

(
Wmm

i
t−1 + Umht +

∑
r

Vrc
i
tr

)
(2)

ci
tr = 1

|Nr(i)|
∑

j∈Nr(i)

mj
t (3)

where Nr(i) is the neighbor atoms of atom i with the bond type r and ci
tr denotes the neighboring

context of bond type r. This update allows each memory cell to embed the neighbor information in
its representation, thus, capture the graph structure information.
The controller predicts an output after the process of reasoning and updating. The output can be
of any type corresponding to the query. In our experiments with molecular activity prediction, the
output is either “active” or “inactive”.

Recurrent skip-connections Both the controller and the memory updates are implemented using
skip-connections [11, 14]

zt = α ∗ z̃t + (1−α) ∗ zt−1

where α is a sigmoid gate moderating the amount of information flowing from the previous step,
zt−1 is the state from the previous step and z̃t is a proposal of the new state which is typically
implemented as a nonlinear function of zt−1.

The controller ht and the memory cell mi
t are updated in a fashion similar to that of zt while h̃t

and m̃i
t are computed as in Eq. (1 and 2). This makes the memory cell update similar to the one in

Differential Neural Computer [7], where the memory cells are partially erased and updated with new
information.

3 Experiments and Results

Datasets We conducted experiments on 10 BioAssay activity tests collected from the PubChem
website 3. Each BioAssay test contains records of activities for chemical compounds. We chose the
2 most common activities for classification: “active” and “inactive”. The numbers of molecules in
the 10 tests range from 38K to 160K and the numbers of active molecules are from 3K to 60K. Each
molecule is represented as a graph, where nodes are atoms and edges are bonds between them.

Baselines The first set of baselines are three common classifiers: SVM, Random Forest (RF) and
Gradient Boosting Machine (GMB) on Circular Fingerprint features [12]. Another baseline is Neural
Fingerprint (NeuralFP) [6].

Feature extraction For baselines, we use the RDKit toolkit to extraction circular fingerprints4.
The dimension of the fingerprint features is set by 1024. For our model, RDKit is used to extract
the structure of molecules and the atom features. An atom feature vector is the concatenation of the
one-hot vector of the atom and other features such as atom degree and number of Hydrogen atoms
attached. We also make use of bond features such as bond type and a binary value indicating if it is a
bond in a ring.

3https://pubchem.ncbi.nlm.nih.gov/
4http://www.rdkit.org/
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Experiment settings The training minimizes the cross-entropy loss in an end-to-end fashion. We
use ReLU units for all steps and Dropout [13] is applied at the first and the last steps of the controller
and the memory cells. We set the number of hops by T = 10 and other hyper-parameters are tuned
on the validation dataset.

Results Table 1 reports results, measured in AUC, on the BioAssay datasets. The proposed
GraphMem is competitive against best feature engineering techniques (circular fingerprint and
high-performing classifiers). The datasets are listed by the ascending order of dataset sizes.

Dataset FP+SVM FP+RF FP+GBM NeuralFP GraphMem
Lung 85.1 85.2 81.5 85.5 85.3
Leukemia 82.1 82.1 82.3 84.5 84.2
Yeast 77.3 76.5 77.0 79.5 81.7
A504333 90.3 90.5 90.6 90.8 90.3
A504339 87.4 87.9 87.5 87.9 87.6
A1814 90.0 89.8 89.6 89.4 90.1
A504332 85.0 85.3 85.5 84.3 85.9
A2314 88.4 87.9 88.2 86.6 89.2
A686979 88.5 87.0 87.9 86.4 89.3
A686978 90.1 87.8 89.5 89.3 90.4
Average 86.4 86.0 86.0 86.4 87.4

Table 1: Area under the ROC curve (AUC) (%) for BioAssay datasets. FP = Fingerprint; RF =
Random Forests; GBM = Gradient Boosting Machine

Fig. 2 reports the F1-score on the 10 datasets. On average, GraphMem beats all the baselines.
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Figure 2: F1-score (%) for NCI datasets. FP = Fingerprint; RF = Random Forests; GBM = Gradient
Boosting Machine. Best view in color.

4 Discussion

We have proposed Graph Memory Network (GraphMem), a neural network augmented with a
dynamic and graph-structured memory and applied it for modeling molecules. Experiments on
10 BioAssay activity tests demonstrated that GraphMem is effective in answering queries about
bioactivities of large molecules given only the molecular graphs.
There is room for further investigations. First, BioAssay activity ground truths used in training for
each target (e.g., a disease) are expensive to establish. We can leverage the strength of statistics from
the existing large datasets to improve over the smaller datasets. For example, each BioAssay test can
be considered as a task and the model can jointly learn all tasks. The task ID and other information
of the molecule can be embedded in the query. Second, the memory structure in GraphMem, once
constructed from data graphs, is then fixed even though the content of the memory changes during the
reasoning process. A future work would be deriving dynamic memory graphs that evolve with time.

4



References
[1] Igor I Baskin, David Winkler, and Igor V Tetko. A renaissance of neural networks in drug

discovery. Expert opinion on drug discovery, 11(8):785–795, 2016.

[2] Robert Burbidge, Matthew Trotter, B Buxton, and Sl Holden. Drug design by machine learning:
support vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1):5–14,
2001.

[3] Artem Cherkasov, Eugene N Muratov, Denis Fourches, Alexandre Varnek, Igor I Baskin, Mark
Cronin, John Dearden, Paola Gramatica, Yvonne C Martin, Roberto Todeschini, et al. QSAR
modeling: where have you been? Where are you going to? Journal of medicinal chemistry,
57(12):4977–5010, 2014.

[4] George E Dahl, Navdeep Jaitly, and Ruslan Salakhutdinov. Multi-task neural networks for qsar
predictions. arXiv preprint arXiv:1406.1231, 2014.

[5] Kien Do, Truyen Tran, and Svetha Venkatesh. Learning recurrent matrix representation. Third
Representation Learning for Graphs Workshop (ReLiG 2017), 2017.

[6] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

[7] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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