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Abstract

We present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of

linear-chain conditional random fields to model deep nested Markov processes. It is parameterised in a

discriminative framework and has polynomial time algorithms for learning and inference. Importantly,

we consider partially-supervised learning and propose algorithms for generalised partially-supervised

learning and constrained inference. We develop numerical scaling procedures that handle the overflow

problem. We show that the HSCRF can be reduced to the semi-Markov conditional random fields. Fi-

nally, we demonstrate the HSCRF in two applications: (i) recognising human activities of daily living

(ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. The HSCRF is capable of

learning rich hierarchical models with reasonable accuracy in both fully and partially observed data

cases.

Keywords: Deep nested sequential processes, Hierarchical semi-Markov conditional random field,

Partial labelling, Constrained inference, Numerical scaling

1. Introduction

Modelling hierarchical depth in complex stochastic processes is important in many application

domains. In an deep hierarchy, each level is an abstraction of lower level details [1, 2, 3, 4]. This

paper studies recursively sequential processes, in that each level is a sequence and each node in a

sequence can be decomposed further into a sub-sequence of finer grain at the lower level [2].5

Consider, for example, a frequent activity performed by human like ‘eat-breakfast’ may include

a series of more specific activities like ‘enter-kitchen’, ‘go-to-cupboard’, ‘take-cereal’, ‘wash-dishes’

and ‘leave-kitchen’. Each specific activity can be decomposed into finer details. Similarly, in natural
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language processing (NLP) syntax trees are inherently hierarchical. In a partial parsing task known

as noun-phrase (NP) chunking [5], there are three semantic levels: the sentence, noun-phrases and10

part-of-speech (POS) tags. In this setting, the sentence is a sequence of NPs and non-NPs and each

phrase is a sub-sequence of POS tags.

A popular approach to deal with hierarchical data is to build a cascaded model where each level

is modelled separately, and the output of the lower level is used as the input of the level right above it

(e.g. see [6]). For instance, in NP chunking this approach first builds a POS tagger and then constructs15

a chunker that incorporates the output of the tagger. This approach is sub-optimal because the POS

tagger takes no information of the NPs and the chunker is not aware of the reasoning of the tagger.

In contrast, a noun-phrase is often very informative to infer the POS tags belonging to the phrase. As

a result, this layered approach often suffers from the so-called cascading error problem as the error

introduced from the lower layer will propagate to higher levels.20

A more holistic approach is to build a joint representation of all the levels. Formally, given a data

sequence z we need to model and infer about the deep, nested semantic x. The main problem is to

choose an appropriate representation of x so that inference can be efficient. An important class of rep-

resentation is hierarchical hidden Markov model (HHMM) [2]. An HHMM is a nested hidden Markov

network (HMM) in the sense that each state is a sub HMM by itself. Although HMMs represents only25

first-order Markov processes, HHMMs offers higher-order interaction. HHMMs are generative mod-

els with joint distribution Pr(x,z), where the data generating distribution P(z | x) must be simplified

for efficient inference about the semantic P(x | z). An alternative is to model the discriminative dis-

tribution P(x | z) directly without modeling the data P(z). This can be more effective since arbitrary

long-range and interdependent data features can be incorporated into the model.30

We construct a novel discriminative model called Hierarchical Semi-Markov Conditional Random

Field (HSCRF) [7]. The HSCRF offers a similar nested semantic as the HHMM but is parameterised as

an undirected log-linear model. The HSCRF generalised the linear-chain CRFs and the semi-Markov

CRFs [8].

To be more concrete let us return to the NP chunking example. The problem can be modelled as35

a three-level HSCRF, where the root represents the sentence, the second level the NP process, and

the bottom level the POS process. The root and the two processes are conditioned on the sequence of

words in the sentence. Under the discriminative modelling of the HSCRF, rich contextual information

such as starting and ending of the phrase, the phrase length, and the distribution of words falling inside
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the phrase can be effectively encoded. On the other hand, such encoding is much more difficult for40

HHMMs.

We then proceed to address important issues. First, we show how to represent HSCRFs using a

dynamic graphical model (e.g. see [9]) which effectively encodes hierarchical and temporal seman-

tics. For parameter learning, an efficient algorithm based on the Asymmetric Inside-Outside of [10]

is introduced. For inference, we generalise the Viterbi algorithm to decode the semantics from an45

observational sequence.

The common assumptions in discriminative learning and inference are that the training data in

learning is fully labelled, and the test data during inference is not labelled. We propose to relax

these assumptions in that training labels may only be partially available, and we term the learning

as partial-supervision. Likewise, when some labels are given during inference, the algorithm should50

automatically adjust to meet the new constraints.

We demonstrate the effectiveness of HSCRFs in two applications: (i) segmenting and labelling

activities of daily living (ADLs) in an indoor environment and (ii) jointly modeling noun-phrases and

part-of-speeches in shallow parsing. Our experimental results in the first application show that the

HSCRFs are capable of learning rich, hierarchical activities with good accuracy and exhibit better55

performance when compared to DCRFs and flat-CRFs. Results for the partially observable case also

demonstrate that significant reduction of training labels still results in models that perform reasonably

well. We also show that observing a small amount of labels can significantly increase the accuracy

during decoding. In shallow parsing, the HSCRFs can achieve higher accuracy than standard CRF-

based techniques and the recent DCRFs.60

To summarise, in this paper we claim the following contributions:

• Introducing a novel Hierarchical Semi-Markov Conditional Random Field (HSCRF) to model

complex hierarchical and nested Markovian processes in a discriminative framework,

• Developing an efficient generalised Asymmetric Inside-Outside (AIO) algorithm for full-supervised

learning.65

• Generalising the Viterbi algorithm for decoding the most probable semantic labels and structure

given an observational sequence.

• Addressing the problem of partially-supervised learning and constrained inference.
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• Constructing a numerical scaling algorithm to prevent numerical overflow.

• Demonstration of the applicability of the HSCRFs for modeling human activities in the domain70

of home video surveillance and shallow parsing of English.

The rest of the paper is organised as follows. Section 2 reviews Conditional Random Fields and

Hierarchical Hidden Markov Models. Section 3 continues with the HSCRFmodel definition. Sec-

tion 4 defines building blocks required for common inference tasks. Section 5 presents the generalised

Viterbi algorithm. Parameterisation and estimation follow in Section 6. Learning and inference with75

partially available labels are addressed in Section 7. Section 8 presents a method for numerical scaling

to prevent numerical overflow. Section 9 documents experimental results. Section 11 concludes the

paper.

2. Preliminaries

This section presents foundations which the proposed HSCRF is built upon and inspired from:80

conditional random fields and hierarchical hidden Markov models. To begin with we define mathe-

matical notations in Tab. 1 for reference.

2.1. Conditional random fields

Denote by G = (V ,E ) the graph where V is the set of vertices, and E is the set of edges. Associ-

ated with each vertex i is a state variable xi Let x be joint state variable, i.e. x = (xi)i∈V . Conditional85

random fields (CRFs) [11] define a conditional distribution given the observation z as follows

Pr(x | z) =
1

Z(z) ∏
c

φc(xc,z) (1)

where c is the index of cliques in the graph, φc(xc,z) is a non-negative potential function defined over

the clique c, and Z(z) = ∑x ∏c φc(xc,z) is the partition function.

Let {x̃} be the set of observed state variables with the empirical distribution Q(x̃), and w be the

parameter vector. Learning in CRFs is typically by maximising the (log) likelihood90

w∗ = argmax
w

L (w) = argmax
w ∑

x̃
Q(x̃) logPr(x̃ | z;w) (2)

The gradient of the log-likelihood can be computed as

∇L (w) = ∑
x̃

Q(x̃)∑
c

(
∇ logφc(x̃c,z)−∑

xc

Pr(xc|z)∇ logφc(xc,z)

)
(3)
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Notation Description

xd:d′
i: j Subset of state variables from level d down to level d′ and starting from time i

and ending at time j, inclusive.

ed:d′
i: j Subset of ending indicators from level d down to level d′ and starting from time i

and ending at time j, inclusive.

ζ
d,s
i: j Set of state variables and ending indicators of a sub model rooted at sd , level d,

spanning a sub-string [i, j]

c Contextual clique

i, j, t Time indices

τd Set of all ending time indices, e.g. if i ∈ τd then ed
i = 1

r,s,u,v,w State

Rd,s,z
i: j State-persistence potential of state s, level d, spanning [i, j]

π
d,s
u,i Initialisation potential of state s at level d, time i initialising sub-state u

Ad,s,z
u,v,i Transition at level d, time i from state u to v under the same parent s

Ed,s,z
u,i Ending potential of state z at level d and time i, and receiving the return control

from the child u

Φ [ζ ,z] The global potential of a particular configuration ζ given observation sequence z

Sd The set of state symbols at level d

∆
d,s
i: j The symmetric inside mass for a state s at level d, spanning a substring [i, j]

∆̂
d,s
i: j The full symmetric inside mass for a state s at level d, spanning a substring [i, j]

Λ
d,s
i: j The symmetric outside mass for a state s at level d, spanning a substring [i, j]

Λ̂
d,s
i: j The full symmetric outside mass for a state s at level d, spanning a substring [i, j]

α
d,s
i: j (u) The asymmetric inside mass for a parent state s at level d, starting at i and having

a child-state u which returns control to parent or transits to new child-state at j

λ
d,s
i: j (u) The asymmetric outside mass, as a counterpart of asymmetric inside mass

α
d,s
i: j (u)

δ [·], I [·] Indicator functions

ψ(·),ϕ(·) Potential functions.

Table 1: Notations used in this paper.
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Thus, the inference needed in CRF parameter estimation is the computation of clique marginals

Pr(xc|z).

Typically, CRFs are parameterised using log-linear models (also known as exponential family,

Gibbs distribution or Maximum Entropy model), i.e. φc(xc,z) = exp(w>f(xc,z)), where f(.) is the95

feature vector and w is the vector of feature weights. The features are also known as sufficient statistics

in the exponential family setting. Let F(x,z) = ∑c f(xc,z) be the global feature. Eq. (3) can be written

as follows

∇L = ∑
x̃

Q(x̃)∑
c

(
f(x̃c,z)−∑

xc

Pr(xc | z)f(xc,z)

)
(4)

= EQ(x̃)[F]−EPr(x|z)[F] (5)

Thus gradient-based maximum likelihood learning in the log-linear setting boils down to estimating

the feature expectations, also known as expected sufficient statistics (ESS).100

2.1.1. Learning with Partial Labels

Let x̃ = (ϑ ,h), where ϑ is the set of visible variables, and h is the set of hidden variables. The

incomplete log-likelihood and its gradient are given as

L = ∑
x̃

Q(x̃) logPr(ϑ |z) = ∑
x̃

Q(x̃) log∑
h

Pr(ϑ ,h|z)

= ∑
x̃

Q(x̃)(logZ(ϑ ,z)− logZ(z)) (6)

where Z(ϑ ,z) = ∑h ∏c φc(ϑc,hc,z). The gradient reads

∇L = Eh|ϑ ,z[F(ϑ ,h,z)]−Ex|z[F(x,z)]

= ∑
x̃

Q(x̃)∑
c

(
∑
hc

Pr(hc | ϑ ,z)f(ϑc,hc,z)−∑
xc

Pr(xc | z)f(xc,z)

)
(7)

2.1.2. Sequential Models105

The most popular form of CRFs is linear-chain with typically first or second-orders. This al-

lows fast estimation of the clique marginals Pr(xc | z) using a forward-backward procedure with time

complexity of O
(
T Kn+1

)
for sequence length T and K states.

A generalisation of chain-CRF is semi-Markov CRF (SemiCRF) [8], which is first-order in seg-

ments. A forward-backward procedure is adapted accordingly with time complexity of O
(
T LK2

)
110

where L is the maximum segment length. In Appendix Appendix C we will show that the SemiCRF

is a special case of the proposed HSCRF.

6



e1 2

3

5

4

7

6

BA
e

e

Figure 1: The state transition diagram of an HHMM.

2.2. Hierarchical hidden Markov models

Hierarchical HMMs are generalisations of HMMs [12] in that a state in an HHMM may be a sub-

HHMM. Thus, an HHMM is a nested Markov chain. In the model temporal evolution, when a child115

Markov chain terminates, it returns the control to its parent. Nothing from the terminated child chain

is carried forward. Thus, the parent state abstracts out everything belonging to it. Upon receiving

the return control the parent then either transits to a new parent, (given that the grand parent has not

finished), or terminates.

Fig. 1 illustrates the state transition diagram of a two-level HHMM. At the top level there are120

two parent states {A,B}. The parent A has three children, i.e. ch(A) = {1,2,3} and B has four, i.e.

ch(B) = {4,5,6,7}. At the top level the transitions are between A and B, as in a normal directed

Markov chain. Under each parent there are also transitions between child states, which only depend

on the direct parent (either A or B). There are special ending states (represented as shaded nodes in

Fig. 1) to signify the termination of the Markov chains. At each time step of the child Markov chain,125

a child will emit an observational symbol (not shown here).

The temporal evolution of the HHMM can be represented as a dynamic Bayesian network, which

was first done in [13]. Fig. 2 depicts a DBN structure of 3 levels. The bottom level is often referred

to as production level. Associated with each state is an ending indicator to signify the termination of

the state. Denote by xd
t and ed

t the state and ending indicator at level d and time t, respectively. When130

ed
t = 0, the state xd

t continues, i.e. xd
t = xd

t+1. And when ed
t = 1, the state xd

t transits to a new state,

or transits to itself. There are hierarchical consistency rules that must be ensured. Whenever a state

persists (i.e. ed
t = 0), all of the states above it must also persist (i.e. ed′

t = 0 for all d′ < d). Similarly,
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Figure 2: Dynamic Bayesian network representation of HHMMs.

whenever a state ends (i.e ed
t = 1), all of the states below it must also end (i.e. ed′

t = 1 for all d′ > d).

Inference and learning in HHMMs follow the Inside-Outside algorithm of the probabilistic context-135

free grammars. Overall, the algorithm has O(K3DT 3) time complexity where K is the maximum size

of the state space at each level, D is the depth of the model and T is the model length.

When representing as a DBN, the whole stack of states x1:D
t can be collapsed into a ‘mega-state’

of a big HMM, and therefore inference can be carried out in O(K2DT ) time. This is efficient for a

shallow model (i.e. D is small), but problematic for a deep model (i.e. D is large).140

3. Model definition

In this section we define the general HSCRF as a hierarchically nested Markov process. Specific

log-linear parameterisation will be presented in Sec. 6.1. In an HSCRF, like its generative counterpart

(HHMM, Sec. 2.2), each parent state embeds a child Markov chain whose states may in turn contain

child Markov chains. The family relation is defined in a topology, which is a state hierarchy of depth145

D > 1. The model has a set of states Sd at each level d ∈ [1,D], i.e. Sd = {1...Kd}, where Kd is the

number of states at level d. For each state sd ∈ Sd where 1 ≤ d < D, the topological structure also

defines a set of children ch(sd)⊂ Sd+1. Conversely, each child sd+1 has a set of parents pa(sd+1)⊂ Sd .

Unlike the original HHMMs where the child states belong exclusively to the parent, the HSCRFs allow

arbitrary sharing of children between parents. For example, in Fig. 3, ch(s1 = 1) = {1,2,3}, and150

pa(s3 = 1) = {1,2,4}. This helps avoid an explosive number of sub-states when D is large, leading to

fewer parameters and possibly less training data and time. The shared topology has been investigated
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Figure 4: The multi-level temporal model.

in the context of HHMMs in [10].

The temporal evolution in the nested Markov processes with sequence length of T operates as

follows:155

• As soon as a state is created at level d < D, it initialises a child state at level d + 1. The

initialisation continues downward until reaching the bottom level.

• As soon as a child process at level d + 1 ends, it returns control to its parent at level d, and in

the case of d > 1, the parent either transits to a new parent state or returns to the grand-parent

at level d−1.160

In hierarchical nesting, the life-span of a child process belongs exclusively to the life-span of its parent.

For example, a parent process at level d starts a new state sd
i: j at time i and persists until time j. At

time i the parent initialises a child state sd+1
i which continues until it ends at time k < j, at which the

child state transits to a new child state sd+1
k+1 . The child process exits at time j, returning the control to

the parent sd
i: j. Upon receiving the control the parent state sd

i: j may transit to a new parent state sd
j+1:l ,165

or end at j, returning the control to the grand-parent at level d−1.

We now formally specify the nested Markov processes. Let us introduce a multi-level temporal

graphical model of length T with D levels, starting from the top as 1 and the bottom as D (Fig. 4). At

each level d ∈ [1,D] and time index i ∈ [1,T ], there is a node representing a state variable xd
i ∈ Sd =

9



• The top state persists during the course of evolution, i.e. e1
1:T−1 = 0.

•When a state finishes, all of its descendants must also finish,

i.e. ed
i = 1 implies ed+1:D

i = 1.

•When a state persists, all of its ancestors must also persist,

i.e. ed
i = 0 implies e1:d−1

i = 0.

•When a state transits, its parent must remain unchanged, i.e. ed
i = 1, ed−1

i = 0.

• The bottom states do not persists, i.e. eD
i = 1 for all i ∈ [1,T ].

• All states end at T , i.e. e1:D
T = 1.

Table 2: Hierarchical constraints.

x jxi−1

e j−1 = 0

xi
x j−1

e j = 1ei = 0ei−1 = 1

Figure 5: An example of a state-persistence sub-graph.

{1,2, ...,Kd}. Associated with each xd
i is an ending indicator ed

i signifying whether the state xd
i ends170

or persists at i. The nesting nature of the HSCRFs is now realised by imposing the specific constraints

on the value assignment of ending indicators as summarised in Tab. 2.

Thus, specific value assignments of ending indicators provide contexts that realise the evolution of

the model states in both hierarchical (vertical) and temporal (horizontal) directions. Each context at

a level and associated state variables form a contextual clique, and we identify four contextual clique175

types:

• State-persistence: This corresponds to the life time of a state at a given level (see Fig. 5).

Specifically, given a context c =
[
ed

i−1: j = (1,0, ..,0,1)
]
, then σ

persist,d
i: j =

(
xd

i: j,c
)

, is a contex-

ed
i = 1

xd
i

xd−1
i+1

xd
i+1

ed−1
i = 0

xd+1
i

xd
i

ed
i−1 = 1

xd+1
i

xd
i

ed
i = 1

(a) (b) (c)

Figure 6: Sub-graphs for state transition (a), initialisation (b) and ending (c).
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• Rd,s,z
i: j = ψ

(
σ

persist,d
i: j ,z

)
where s = xd

i: j.

• Ad,s,z
u,v,i = ψ

(
σ

transit,d
i ,z

)
where s = xd−1

i+1 and u = xd
i ,v = xd

i+1.

• π
d,s,z
u,i = ψ

(
σ

init,d
i ,z

)
where s = xd

i ,u = xd+1
i .

• Ed,s,z
u,i = ψ

(
σ

end,d
i ,z

)
where s = xd

i ,u = xd+1
i .

Table 3: Shorthands for contextual clique potentials.

tual clique that specifies the life-span [i, j] of any state s = xd
i: j.

• State-transition: This corresponds to a state at level d ∈ [2,D] at time i transiting to a new state180

(see Fig. 6a). Specifically, given a context c=
[
ed−1

i = 0,ed
i = 1

]
then σ

transit,d
i =

(
xd−1

i+1 ,x
d
i:i+1,c

)
is a contextual clique that specifies the transition of xd

i to xd
i+1 at time i under the same parent

xd−1
i+1 .

• State-initialisation: This corresponds to a state at level d ∈ [1,D− 1] initialising a new child

state at level d + 1 at time i (see Fig. 6b). Specifically, given a context c =
[
ed

i−1 = 1
]
, then185

σ
init,d
i =

(
xd

i ,x
d+1
i ,c

)
is a contextual clique that specifies the initialisation at time i from the

parent xd
i to the child xd+1

i .

• State-ending: This corresponds to a state at level d ∈ [1,D− 1] ending at time i (see Fig. 6c).

Specifically, given a context c =
[
ed

i = 1
]
, then σ

end,d
i =

(
xd

i ,x
d+1
i ,c

)
is a contextual clique that

specifies the ending of xd
i at time i with the last child xd+1

i .190

In the HSCRF we are interested in the conditional setting in which the entire state variables and

ending indicators
(
x1:D

1:T ,e
1:D
1:T

)
are conditioned on observational sequences z. For example, in NLP the

observation is a sequence of words and the state variables might be the part-of-speech tags and the

phrases.

To capture the correlation between variables and such conditioning, we define a positive potential195

function ψ(σ ,z) over each contextual clique σ . Tab. 3 shows the notations for potentials that corre-

spond to the four contextual clique types we have identified above. Details of potential specification

are described in the Sec. 6.1.

Let ζ =
(
x1:D

1:T ,e
1:D
1:T

)
denote the set of all variables that satisfies the set of hierarchical constraints

in Tab. 2. Let τd denote ordered set of all ending time indices at level d, i.e. if i ∈ τd then ed
i = 1. The200

joint potential defined for each configuration is the product of all contextual clique potentials over all
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ending time indices i ∈ [1,T ] and all semantic levels d ∈ [1,D]:

Φ[ζ ,z] =

[
∏

d∈[1,D]
∏

ik,ik+1∈τd

Rd,s,z
ik+1:ik+1

]
×

× ∏
d∈[1,D−1]


[

∏
ik∈τd+1,ik /∈τd

Ad+1,s,z
u,v,ik

][
∏

ik∈τd+1

π
d,s,z
u,ik+1

][
∏

ik∈τd+1

Ed,s,z
u,ik

] (8)

The conditional distribution is given as

Pr(ζ |z) =
1

Z(z)
Φ[ζ ,z] (9)

where Z(z) = ∑ζ Φ[ζ ,z] is the partition function for normalisation.

In what follows we omit z for clarity, and implicitly use it as part of the partition function Z and205

the potential Φ[.]. It should be noted that in the unconditional formulation, there is only a single Z for

all data instances. In conditional setting there is a Z(z) for each data instance z.

Remarks: The temporal model of HSCRFs presented here is not a standard graphical model [9]

since the connectivity (and therefore the clique structures) is not fixed. The potentials are defined210

on-the-fly depending on the context of assignments of ending indicators. Although the model topol-

ogy is identical to that of shared structure HHMMs [10], the unrolled temporal representation is an

undirected graph and the model distribution is formulated in a discriminative way. Furthermore, the

state persistence potentials capture duration information that is not available in the dynamic DBN

representation of the HHMMs in [13].215

In the way the potentials are introduced it may first appear to resemble the clique templates in

the discriminative relational Markov networks [14]. It is, however, different because cliques in the

HSCRFs are dynamic and context-dependent.

4. Asymmetric inside-outside algorithm

This section describes a core inference engine called Asymmetric Inside-Outside (AIO) algorithm.220

The AIO algorithm computes building blocks that are needed in inference and learning tasks, including

the partition function, time-specific marginals and feature expectations.
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Figure 7: (a) Symmetric Markov blanket, and (b) Asymmetric Markov blanket.

4.1. Building blocks and conditional independence

4.1.1. Contextual Markov blankets

In this subsection we define elements that are building blocks for inference and learning. These225

building blocks are identified given the corresponding boundaries. Let us introduce two types of

boundaries: the contextual symmetric and asymmetric Markov blankets.

Definition 1. An symmetric Markov blanket at level d for a state s starting at i and ending at j is the

following set

Π
d,s
i: j =

(
xd

i: j = s,ed:D
i−1 = 1,ed:D

j = 1,ed
i: j−1 = 0

)
(10)

Definition 2. Let Π
d,s
i: j be a symmetric Markov blanket, we define ζ

d,s
i: j and ζ

d,s
i: j

as follows230

ζ
d,s
i: j =

(
xd+1:D

i: j ,ed+1:D
i: j−1

)
(11)

ζ
d,s
i: j

= ζ\
(

ζ
d,s
i: j ,Π

d,s
i: j

)
(12)

subject to xd
i: j = s. Further, we define

ζ̂
d,s
i: j =

(
ζ

d,s
i: j ,Π

d,s
i: j

)
and ζ̂

d,s

i: j
=
(

ζ
d,s
i: j
,Πd,s

i: j

)
Fig. 7a shows an example of a symmetric Markov blanket (represented by a double-arrowed line).

Definition 3. A asymmetric Markov blanket at level d for a parent state s starting at i and a child

state u ending at j is the following set

Γ
d,s
i: j (u) =

[
xd

i: j = s,xd+1
j = u,ed:D

i−1 = 1,ed+1:D
j = 1,ed

i: j−1 = 0
]

(13)
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Definition 4. Let Γ
d,s
i: j (u) be an asymmetric Markov blanket, we define ζ

d,s
i: j (u) and ζ

d,s
i: j
(u) as follows235

ζ
d,s
i: j (u) =

(
xd+1:D

i: j−1 ,xd+2:D
j ,ed+1:D

i: j−1

)
(14)

ζ
d,s
i: j
(u) = ζ\

(
ζ

d,s
i: j (u),Γ

d,s
i: j (u)

)
(15)

subject to xd
i: j = s and xd+1

j = u. Further, we define

ζ̂
d,s
i: j (u) =

(
ζ

d,s
i: j (u),Γ

d,s
i: j (u)

)
(16)

ζ̂
d,s

i: j
(u) =

(
ζ

d,s
i: j
(u),Γd,s

i: j (u)
)

(17)

Fig. 7b shows an example of asymmetric Markov blanket (represented by an arrowed line).

Remark: The concepts of contextual Markov blankets (or Markov blankets for short) are differ-

ent from those in traditional Markov random fields and Bayesian networks because they are specific

assignments of a subset of variables, rather than a collection of variables.240

4.1.2. Conditional independence

Given these two definitions we have the following propositions of conditional independence.

Proposition 1. ζ
d,s
i: j and ζ

d,s
i: j

are conditionally independent given Π
d,s
i: j

Pr
(

ζ
d,s
i: j ,ζ

d,s
i: j
|Πd,s

i: j

)
= Pr

(
ζ

d,s
i: j |Π

d,s
i: j

)
Pr
(

ζ
d,s
i: j
|Πd,s

i: j

)
(18)

This proposition gives rise to the following factorisation

Pr(ζ ) = Pr
(

Π
d,s
i: j

)
Pr
(

ζ
d,s
i: j ,ζ

d,s
i: j
|Πd,s

i: j

)
= Pr

(
Π

d,s
i: j

)
Pr
(

ζ
d,s
i: j |Π

d,s
i: j

)
Pr
(

ζ
d,s
i: j
|Πd,s

i: j

)
(19)

Proposition 2. ζ
d,s
i: j (u) and ζ

d,s
i: j
(u) are conditionally independent given Γ

d,s
i: j (u)245

Pr
(

ζ
d,s
i: j (u),ζ

d,s
i: j
(u) | Γd,s

i: j (u)
)

= Pr
(

ζ
d,s
i: j (u) | Γ

d,s
i: j (u)

)
Pr
(

ζ
d,s
i: j
(u) | Γd,s

i: j (u)
)

(20)

The following factorisation is a consequence of Proposition 2

Pr(ζ ) = Pr
(

Γ
d,s
i: j (u)

)
Pr
(

ζ
d,s
i: j (u),ζ

d,s
i: j
(u) | Γd,s

i: j (u)
)

= Pr
(

Γ
d,s
i: j (u)

)
Pr
(

ζ
d,s
i: j (u) | Γ

d,s
i: j (u)

)
Pr
(

ζ
d,s
i: j
(u) | Γd,s

i: j (u)
)

(21)

The proof of Propositions 1 and 2 is given in Appendix Appendix A.1.
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4.1.3. Symmetric inside/outside masses

From Eq. (12) we have ζ =
(

ζ
d,s
i: j ,Π

d,s
i: j ,ζ

d,s
i: j

)
. Since Π

d,s
i: j separates ζ

d,s
i: j from ζ

d,s
i: j

, we can group

local potentials in Eq. (8) into three parts: Φ

[
ζ̂

d,s
i: j

]
, Φ

[
ζ̂

d,s

i: j

]
, and Φ

[
Π

d,s
i: j

]
. By ‘grouping’ we mean250

to multiply all the local potentials belonging to a certain part, in the same way that we group all the

local potentials belonging to the model in Eq. (8). Note that although ζ̂
d,s
i: j contains Π

d,s
i: j we do not

group Φ

[
Π

d,s
i: j

]
into Φ

[
ζ̂

d,s
i: j

]
. The same holds for Φ

[
ζ̂

d,s

i: j

]
.

By definition of the state-persistence clique potential (Fig. 3), we have Φ

[
Π

d,s
i: j

]
= Rd,s

i: j . Thus

Eq. (8) can be replaced by255

Φ[ζ ] = Φ

[
ζ̂

d,s
i: j

]
Rd,s

i: j Φ

[
ζ̂

d,s

i: j

]
(22)

There are two special cases: (1) when d = 1, Φ

[
ζ̂

1,s

1:T

]
= 1 for s∈ S1, and (2) when d =D, Φ

[
ζ̂

D,s
i:i

]
= 1

for s ∈ SD and i ∈ [1,T ]. This factorisation plays an important role in efficient inference.

We know define a quantity called symmetric inside mass ∆
d,s
i: j , and another called symmetric outside

mass Λ
d,s
i: j .

Definition 5. Given a symmetric Markov blanket Π
d,s
i: j , the symmetric inside mass ∆

d,s
i: j and the sym-260

metric outside mass Λ
d,s
i: j are defined as

∆
d,s
i: j = ∑

ζ
d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
(23)

Λ
d,s
i: j = ∑

ζ
d,s
i: j

Φ

[
ζ̂

d,s

i: j

]
(24)

As special cases we have Λ
1,s
1:T = 1 and s ∈ S1, and ∆

D,s
i:i = 1 for i ∈ [1,T ], s ∈ SD. For later use let us

introduce the ‘full’ symmetric inside mass ∆̂
d,s
i: j and the ‘full’ symmetric outside mass Λ̂

d,s
i: j as

∆̂
d,s
i: j = Rd,s

i: j ∆
d,s
i: j and Λ̂

d,s
i: j = Rd,s

i: j Λ
d,s
i: j

In the rest of the thesis, when it is clear in the context, we will use inside mass as a shorthand for

symmetric inside mass, outside mass for symmetric outside mass, full-inside mass for full-symmetric265

inside mass, and full-outside mass for full-symmetric outside mass.

Thus, from Eq. (22) the partition function can be computed from the full-inside mass at the top

15



• Z = ∑s∈S1 ∆̂
1,s
1:T

• Z = ∑s∈SD Λ̂
D,s
i:i for any i ∈ [1,T ]

• Z = ∑s∈Sd ∑i∈[1,t] ∑ j∈[t,T ] ∆
d,s
i: j Λ

d,s
i: j Rd,s

i: j for any t ∈ [1,T ] and d ∈ [2,D−1]

Table 4: Computing the partition function from the full-inside mass and full-outside mass.

level (d = 1)

Z = ∑
ζ

Φ[ζ ] = ∑
ζ

1,s
1:T

∑
s∈S1

Φ

[
ζ̂

1,s
1:T

]
R1,s

1:T = ∑
s∈S1

∆
d,s
1:T Rd,s

1:T

= ∑
s∈S1

∆̂
1,s
1:T (25)

With the similar derivation the partition function can also be computed from the full-outside mass at

the bottom level (d = D)270

Z = ∑
s∈SD

Λ̂
D,s
i:i , for any i ∈ [1,T ] (26)

In fact, we will prove a more general way to compute Z in Appendix Appendix B

Z = ∑
s∈Sd

∑
i∈[1,t]

∑
j∈[t,T ]

∆
d,s
i: j Λ

d,s
i: j Rd,s

i: j (27)

for any t ∈ [1,T ] and d ∈ [2,D−1]. These relations are summarised in Tab. 4.

Given the fact that ζ
d,s
i: j is separated from the rest of variables by the symmetric Markov blanket

Π
d,s
i: j , we have Proposition 3.

Proposition 3. The following relations hold275

Pr
(

ζ
d,s
i: j |Π

d,s
i: j

)
=

1

∆
d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
(28)

Pr
(

ζ
d,s
i: j
|Πd,s

i: j

)
=

1

Λ
d,s
i: j

Φ

[
ζ̂

d,s

i: j

]
(29)

Pr
(

Π
d,s
i: j

)
=

1
Z

∆
d,s
i: j Rd,s

i: j Λ
d,s
i: j (30)

The proof of this proposition is given in Appendix Appendix A.2.

4.1.4. Asymmetric inside/outside masses

Recall that we have introduced the concept of asymmetric Markov blanket Γ
d,s
i: j (u) which sep-

arates ζ
d,s
i: j (u) and ζ

d,s
i: j
(u). Let us group all the local contextual clique potentials associated with

16



d

d+1

Figure 8: Decomposition with respect to symmetric/asymmetric Markov blankets.

ζ
d,s
i: j (u) and Γ

d,s
i: j (u) into a joint potential Φ

[
ζ̂

d,s
i: j (u)

]
. Similarly, we group all local potentials associ-280

ated with ζ
d,s
i: j
(u) and Γ

d,s
i: j (u) into a joint potential Φ

[
ζ̂

d,s

i: j
(u)
]
. Note that Φ

[
ζ̂

d,s

i: j
(u)
]
) includes the

state-persistence potential Rd,s
i: j .

Definition 6. Given the asymmetric Markov blanket Γ
d,s
i: j (u), the asymmetric inside mass α

d,s
i: j (u) and

the asymmetric outside mass λ
d,s
i: j (u) are defined as follows

α
d,s
i: j (u) = ∑

ζ
d,s
i: j (u)

Φ

[
ζ̂

d,s
i: j (u)

]
(31)

λ
d,s
i: j (u) = ∑

ζ
d,s
i: j
(u)

Φ

[
ζ̂

d,s

i: j
(u)
]

(32)

The relationship between the asymmetric outside mass and asymmetric inside mass is analogous285

to that between the outside and inside masses. However, there is a small difference, that is, the

asymmetric outside mass ‘owns’ the segment xd
i: j = s and the associated state-persistence potential

Rd,s
i: j , whilst the outside mass Λd

i: j(s) does not.

4.2. Computing inside masses

In this subsection we show how to recursively compute the pair: inside mass and asymmetric290

inside mass. The key idea here is to exploit the decomposition within the asymmetric Markov blanket.

As shown in Fig. 8, an outer asymmetric Markov blanket can be decomposed into a sub-asymmetric

Markov blanket and a symmetric blanket.

17



4.2.1. Computing asymmetric inside mass from inside mass

Assume that within the asymmetric Markov blanket Γ
d,s
i: j (u), the child u starts somewhere at t ∈295

[i, j] and ends at j, i.e. xd+1
t: j = u, ed+1

t: j−1 = 0 and ed+1:D−1
t−1 = 1. Let us consider two cases: t > i and

t = i.

Case 1. For t > i, denote by v= xd+1
t−1 . We have two smaller blankets within Γ

d,s
i: j (u): the symmetric

blanket Π
d+1,u
t: j associated with the child u = xd+1

t: j , and the asymmetric blanket Γ
d,s
i:t−1(v) associated

with the child v ending at t− 1 under the parent s. Fig. 8 illustrates the blanket decomposition. The300

assignment ζ
d,s
i: j (u) can be decomposed as

ζ
d,s
i: j (u) =

(
ζ

d,s
i:t−1(v),ζ

d+1,u
t: j ,u = xd+1

t: j ,ed
t−1: j−1 = 0,ed+1:D

t−1 = 1
)

(33)

Thus, the joint potential Φ

[
ζ̂

d,s
i: j (u)

]
can be factorised as follows

Φ

[
ζ̂

d,s
i: j (u)

]
= Φ

[
ζ̂

d,s
i:t−1(v)

]
Φ

[
ζ̂

d+1,u
t: j

]
Ad+1,s

v,u,t−1Rd+1,u
t: j (34)

The transition potential Ad+1,s
v,u,t−1 is enabled in the context c=

[
ed

t−1 = 0,ed+1
t−1 = 1,xd

t = s,xd+1
t−1 = v,xd+1

t = u
]
,

and the state-persistence potential Rd+1,u
t: j in the context c=

[
ed+1

t: j−1 = 0,ed+1:D
t−1 = 1,ed+1:D

j = 1,xd+1
t: j = u

]
.

Case 2. For t = i, the asymmetric blanket Γ
d,s
i:t−1(v) does not exist since i > t − 1. We have305

the following decompositions of assignment ζ̂
d,s
i: j (u) =

(
ζ̂

d+1,u
i: j ,ed

i−1 = 1,ed
i: j−1 = 0

)
. In the context

c =
[
ed

i−1 = 1
]
, the state-initialisation potential π

d,s
u,i is activated. Thus we have

Φ

[
ζ̂

d,s
i: j (u)

]
= π

d,s
u,i Φ

[
ζ̂

d+1,u
i: j

]
Rd+1,u

i: j (35)

Substituting Eqs. (34,35) into Eq. (31), and together with the fact that t can take any value in the

interval [i, j], and v can take any value in Sd+1, we have the following relation

α
d,s
i: j (u) = ∑

t∈[i+1, j]
∑

v∈Sd+1
∑

ζ
d,s
i:t−1(v)

∑
ζ

d+1,u
t: j

Φ

[
ζ̂

d,s
i:t−1(v)

]
Φ

[
ζ̂

d+1,u
t: j

]
Ad+1,s

v,u,t−1Rd+1,u
t: j +

+ ∑
ζ

d+1,u
i: j

π
d,s
u,i Φ

[
ζ̂

d+1,u
i: j

]
Rd+1,u

i: j

= ∑
t∈[i+1, j]

∑
v∈Sd+1

α
d,s
i:t−1(v)∆̂

d+1,u
t: j Ad+1,s

v,u,t−1 + ∆̂
d+1,u
i: j π

d,s
u,i (36)

As we can see, the asymmetric inside mass α plays the role of a forward message starting from the310

starting time i to the ending time j. There is a recursion where the asymmetric inside mass ending at

time j is computed from all the asymmetric inside masses ending at time t−1, for t ∈ [i+1, j.
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There are special cases for the asymmetric inside mass: (1) when i = j, we only have

α
d,s
i:i (u) = ∆̂

d+1,s
i:i π

d,s
u,i (37)

and (2) when d = D− 1, the sum over the index t as in Eq. (36) is not allowed since at level D the

inside mass only spans a single index. We have the following instead315

α
D−1,s
i: j (u) = ∑

v∈Sd+1

α
D−1,s
i: j−1 (v)∆̂D,u

j: j AD,s
v,u, j−1

= ∑
v∈Sd+1

α
D−1,s
i: j−1 (v)RD,u

j: j AD,s
v,u, j−1 (38)

4.2.2. Computing inside mass from asymmetric inside mass

Notice the relationship between the asymmetric Markov blanket Γ
d,s
i: j (u) and the symmetric blan-

ket Π
d,s
i: j , where d < D. When ed

j = 1, i.e. the parent s ends at j, and Γ
d,s
i: j (u) will become Π

d,s
i: j with u =

xd+1
j . Then we have decompositions ζ

d,s
i: j =

(
ζ

d,s
i: j (u),u = xd+1

j

)
and ζ̂

d,s
i: j =

(
ζ̂

d,s
i: j (u),e

d
j = 1,u = xd+1

j

)
.

These lead to the factorisation320

Φ

[
ζ̂

d,s
i: j

]
= Φ

[
ζ̂

d,s
i: j (u)

]
Ed,s

u, j (39)

where the state-ending potential Ed,s
u, j is activated in the context c =

[
ed

j = 1
]
. Thus, the inside mass in

Eq. (23) can be rewritten as

∆
d,s
i: j = ∑

u∈Sd+1
∑

ζ
d,s
i: j (u)

Φ[ζ̂ d,s
i: j (u)]E

d,s
u, j

= ∑
u∈Sd+1

Ed,s
u, j ∑

ζ
d,s
i: j (u)

Φ[ζ̂ d,s
i: j (u)]

= ∑
u∈Sd+1

Ed,s
u, j α

d,s
i: j (u) (40)

This equation holds for d < D. When d = D, we set ∆
D,s
i:i = 1 for all s ∈ SD and i ∈ [1,T ], and when

d = 1, we must ensure that i = 1 and j = T .

Remark: Eqs. (36, 37, 38 and 40) specify a left-right and bottom-up algorithm to compute both the325

inside and asymmetric inside masses. Initially, at the bottom level ∆
D,s
i:i = 1 for i ∈ [1,T ] and s ∈ SD. A

pseudo-code of the dynamic programming algorithm to compute all the inside and asymmetric inside

masses and the partition function is given in Alg. 1.
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Algorithm 1 Computing the set of inside/asymmetric inside masses and the partition function.

Input: D,T , all the potential function values.

Output: partition function Z; ∆
1,s
1:T , for s ∈ S1;∆D,s

i:i for s ∈ SD and i ∈ [1,T ];

∆
d,s
i: j , for d ∈ [2,D−1], s ∈ Sd and 1≤ i≤ j ≤ T ;

α
d,s
i: j (u) for d ∈ [1,D−1], u ∈ Sd+1 and 1≤ i≤ j ≤ T

Initialise: ∆
D,s
i:i = 1 for all i ∈ [1,T ] and s ∈ SD

/* At the level d=D-1 */

For i = 1,2, ...,T ; j = i, i+1, ...,T

Compute α
D−1,s
i: j (u) using Eq. (38)

Compute ∆
D−1,s
i: j using Eq. (40)

EndFor

/* The main recursion loops: bottom-up and forward */

For d = D−2,D−3, ...,1

For i = 1,2, ...,T ; j = i, i+1, ...,T

Compute α
d,s
i:i (u) using Eq. (37) If j = i

Compute α
d,s
i: j (u) using Eq. (36) If j > i

Compute ∆
d,s
i: j using Eq. (40) If d > 1

EndFor

EndFor

Compute Z using Eq. (25).
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4.3. Computing outside masses

In this subsection we show how to recursively compute the symmetric outside mass and the asym-330

metric outside mass. We use the same blanket decomposition as in Section 4.2. However, this time

the view is reversed as we are interested in quantities outside the blankets. For example, outside

the inner symmetric Markov blanket in Fig. 8, there exists an outer asymmetric blanket and another

sub-asymmetric blanket on the left.

4.3.1. Computing asymmetric outside mass from outside mass335

Let us examine the variables ζ
d,s
i: j
(u) associated with the asymmetric Markov blanket Γ

d,s
i: j (u), for

d ∈ [1,D− 1] and 1 ≤ i ≤ j ≤ T (see Definition 4). For j < T , assume that there exists an outer

asymmetric Markov blanket Γ
d,s
i:t (v) for some v ∈ Sd+1 and t ∈ [ j + 1,T ], and a symmetric Markov

blanket Π
d+1,v
j+1:t right next to Γ

d,s
i: j (u). Given these blankets we have the decomposition ζ̂

d,s

i: j
(u) =(

ζ̂
d,s

i:t
(v), ζ̂ d+1,v

j+1:t ,x
d+1
j = u

)
, which leads to the following factorisation340

Φ

[
ζ̂

d,s

i: j
(u)
]

= Φ

[
ζ̂

d,s

i:t
(v)
]

Φ

[
ζ̂

d+1,v
j+1:t

]
Rd+1,v

j+1:t Ad+1,s
u,v, j (41)

The state transition potential Ad+1,s
u,v, j is enabled in the context c =

[
ed

j = 0,ed+1
j = 1

]
, and the state

persistence potential Rd+1,v
j+1:t in the context c =

[
ed+1

j = 1,ed+1
j+1:t−1 = 0,ed+1

t = 1
]
.

In addition, there exists a special case where the state s ends at j. We have the decomposition

ζ̂
d,s

i: j
(u) =

(
ζ̂

d,s

i: j
,u = xd+1

j

)
and the following factorisation

Φ

[
ζ̂

d,s

i: j
(u)
]

= Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j Ed,s
u, j (42)

The ending potential Ed,s
u, j appears here because of the context c =

[
ed

j = 1
]
, i.e. s ends at j.345

Now we relax the assumption of t,v and allow them to receive all possible values, i.e. t ∈ [ j,T ]

and v ∈ Sd+1. Thus we can replace Eq. (32) by

λ
d,s
i: j (u) = ∑

v∈Sd+1
∑

t∈[ j+1,T ]
∑

ζ
d,s
i:t
(v)

∑
ζ

d+1,v
j+1:t

Φ

[
ζ̂

d,s

i:t
(v)
]

Φ

[
ζ̂

d+1,v
j+1:t

]
Rd+1,v

j+1:t Ad+1,s
u,v, j

+ ∑
ζ

d,s
i: j
(u)

Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j Ed,s
u, j

= ∑
v∈Sd+1

∑
t∈[ j+1,T ]

λ
d,s
i:t (v)∆̂

d+1,v
j+1:t Ad+1,s

u,v, j + Λ̂
d,s
i: j Ed,s

u, j (43)

for d ∈ [2,D−2], and 1≤ i≤ j ≤ T . Thus, the λ
d,s
i: j (u) can be thought as a message passed backward

from j = T to j = i. Here, the asymmetric outside mass ending at j is computed by using all the

asymmetric outside masses ending at t for t ∈ [ j+1,T ].350
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There are two special cases. At the top level, i.e. d = 1, then λ
d,s
i: j (u) is only defined at i = 1, and

the second term of the RHS of Eq. (43) is included only if i = 1, j = T . At the second lowest level,

i.e. d = D−1, we cannot sum over t as in Eq. (43) since ∆̂
D,v
j+1:t is only defined for t = j+1. We have

the following relation instead

λ
D−1,s
i: j (u) = ∑

v∈SD

λ
D−1,s
i: j+1 (v)∆̂D,v

j+1: j+1AD,s
u,v, j + Λ̂

D−1,s
i: j ED−1,s

u, j (44)

4.3.2. Computing outside mass from asymmetric outside mass355

Given a symmetric Markov blanket Π
d+1,u
i: j for d ∈ [1,D−1], assume that there exists an asymmet-

ric Markov blanket Γ
d,s
t: j (u) at the parent level d, where t ∈ [1, i]. Clearly, for t ∈ [1, i−1] there exists

some sub-asymmetric Markov blanket Γ
d,s
t:i−1(v). See Fig. 8 for an illustration.

Let us consider two cases: t < i and t = i.

Case 1. For t < i, this enables the decomposition ζ̂
d+1,u

i: j
=
(

ζ̂
d,s

t: j
(u), ζ̂ d,s

t:i−1(v),u = xd+1
i: j

)
, which360

leads to the following factorisation

Φ

[
ζ̂

d+1,u

i: j

]
= Φ

[
ζ̂

d,s

t: j
(u)
]

Φ

[
ζ̂

d,s
t:i−1(v)

]
Ad,s

v,u,i−1 (45)

The state transition potential Ad,s
v,u,i−1 is activated in the context c =

[
ed

i−1 = 0,ed+1
i−1 = 1

]
.

Case 2. For t = i, the decomposition reduces to ζ̂
d+1,u

i: j
=
(

ζ̂
d,s

i: j
(u),u = xd+1

i: j

)
, which leads to the

following factorisation

Φ

[
ζ̂

d+1,u

i: j

]
= Φ

[
ζ̂

d,s

i: j
(u)
]

π
d,s
u,i (46)

The state-initialisation potential π
d,s
u,i plays the role in the context c =

[
ed

i−1 = 1
]

365

However, these decompositions and factorisations only hold given the assumption of specific val-

ues of s ∈ Sd , v ∈ Sd+1, and t ∈ [1, i]. Without further information we have to take all possibilities into

account. Substituting these relations into Eq. (24), we have

Λ
d+1,u
i: j = ∑

s∈Sd
∑

v∈Sd+1
∑

t∈[1,i−1]
∑

ζ
d,s
t: j
(u)

∑
ζ

d,s
t:i−1(v)

Φ

[
ζ̂

d,s

t: j
(u)
]

Φ

[
ζ̂

d,s
t:i−1(v)

]
Ad+1,s

v,u,i−1 +

+ ∑
s∈Sd

∑
ζ

d,s
i: j
(u)

Φ

[
ζ̂

d,s

i: j
(u)
]

π
d,s
u,i

= ∑
s∈Sd

∑
t∈[1,i−1]

λ
d,s
t: j (u) ∑

v∈Sd+1

α
d,s
t:i−1(v)A

d+1,s
v,u,i−1 + ∑

s∈Sd

λ
d,s
i: j (u)π

d,s
u,i (47)

for d ∈ [2,D−2].
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Algorithm 2 Computing the set of outside/asymmetric outside masses.

Input: D,T , all the potential function values, all inside/asymmetric inside masses.

Output: all outside/asymmetric outside masses

Initialise: Λ
1,s
1:T = 1; λ

1,s
1:T (u) = E1,s

u,T for s ∈ S1,u ∈ S2

/* the main recursive loops: top-down and inside-out */

For d = 1,2, ...,D−1

For i = 1,2, ...,T ; j = T,T −1, ..., i

Compute the asymmetric outside mass λ
d,s
i: j (u) using Eqs. (43,44)

Compute the outside mass Λ
d,s
i: j using Eq. (47)

EndFor

EndFor

• ∆
1,s
1:T ,Λ

1,s
1:T for s ∈ S1

• ∆
d,s
i: j ,Λ

d,s
i: j for d ∈ [2,D−1],s ∈ Sd ,1≤ i≤ j ≤ T

• ∆
D,s
i:i ,Λ

D,s
i:i for i ∈ [1,T ],s ∈ SD

• α
d,s
1: j (u),λ

d,s
1: j (u) for d = 1,s ∈ S1,u ∈ S2, j ∈ [1,T ]

• α
d,s
i: j (u),λ

d,s
i: j (u) for d ∈ [2,D−1],s ∈ Sd ,u ∈ Sd+1,1≤ i≤ j ≤ T

Table 5: Summary of basic building blocks computed in Section 4.2 and 4.3.

There are three special cases. The first is the base case where d = 0 and Λ
1,s
1:T = 1 for all s ∈ S1. In370

the second case, for d = 1, we must fix the index t = 1 since the asymmetric inside mass α
d,s
t:i−1 is only

defined at t = 1. Also the second term in the RHS is included only if i = 1 for the asymmetric outside

mass λ
d,s
i: j (u) to make sense. In the second case, for d +1 = D, we only have i = j.

Remark: Eqs. (43, 44 and 47) show a recursive top-down and outside-in approach to compute

the symmetric/asymmetric outside masses. We start from the top with d = 1 and Λ
1,s
1:T = 1 for all375

s ∈ S1 and proceed downward until d = D. The pseudo-code is given in Alg. 2. Tab. 5 summarises the

quantities computed in Section 4.2 and 4.3.

Alg. 3 summarises the AIO algorithm for computing all building blocks and the partition function.
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Algorithm 3 The AIO algorithm.

Input: D,T , all the potential function values

Output: all building blocks and partition function

Compute all inside/asymmetric inside masses using the algorithm in Alg. 1

Compute all outside/asymmetric outside masses using the algorithm in Alg. 2

5. The generalised Viterbi algorithm

The MAP assignment is380

ζ
MAP = argmax

ζ

Pr(ζ | z) = argmax
ζ

Φ[ζ ,z]

The process of computing the MAP assignment is similar to that of computing the partition function.

This similarity comes from the relation between the sum-product and max-product algorithm (a gener-

alisation of the Viterbi algorithm) of [15], and from the fact that inside/asymmetric inside procedures

described in Section 4.2 are essentially a sum-product. We just need to convert all the summations

into corresponding maximisations. The algorithm is a two-step procedure:385

• In the first step the maximum joint potential is computed and local maximum states and ending

indicators are saved along the way. These states and ending indicators are maintained in a

bookkeeper.

• In the second step we decode the best assignment by backtracking through saved local maximum

states.390

We make use of the contextual decompositions and factorisations from Section 4.2.

Notations

This section, with some abuse of notations, uses some slight modifications to the notations used

in the rest of the paper. See Tab. 6 for reference.

We now describe the first step.395

5.1. Computing the maximum joint potential, maximal states and time indices

For clarity, let us drop the notation z in Φ[ζ ,z]. As Φ[ζ ] = Φ

[
ζ̂

1,s
1:T

]
R1,s

1:T for s ∈ S1 we have

max
ζ

Φ[ζ ] = max
s∈S1

R1,s
1:T max

ζ
1,s
1:T

Φ

[
ζ̂

1,s
1:T

]
(48)
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Notation Description

∆
max,d,s
i: j The optimal potential function of the subset of variables ζ

d,s
i: j

∆̂
max,d,s
i: j The ‘full’ version of ∆

max,d,s
i: j

α
max,d,s
i: j (u) The optimal potential function of the subset of variables ζ

d,s
i: j (u)

∆
arg,d,s
i: j The optimal child ud+1

j of s

α
arg,d,s
i: j (u) The optimal child vd+1

t−1 that transits to ud+1
t: j and the time index t.

I d The set of optimal ‘segments’ at each level d.

Table 6: Notations used in this section.

Now, for a sub-assignment ζ
d,s
i: j for 1 ∈ [1,D−1], Eq. (39) leads to

max
ζ

d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
= max

u∈Sd+1
Ed,s

u, j max
ζ

d,s
i: j (u)

Φ

[
ζ̂

d,s
i: j (u)

]
(49)

With some slight abuse of notation we introduce ∆
max,d,s
i: j as the optimal potential function of the

subset of variables ζ
d,s
i: j , and α

max,d,s
i: j (u) as the optimal potential function of the subset of variables400

ζ
d,s
i: j (u).

Definition 7. We define ∆
max,d,s
i: j and α

max,d,s
i: j (u) as follows

∆
max,d,s
i: j = max

ζ
d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
(50)

∆̂
max,d,s
i: j = ∆

max,d,s
i: j Rd,s

i: j (51)

α
max,d,s
i: j (u) = max

ζ
d,s
i: j (u)

Φ

[
ζ̂

d,s
i: j (u)

]
(52)

Eqs. (48 and 49) can be rewritten more compactly as

Φ
[
ζ

MAP] = max
s∈S1

∆̂
max,1,s
1:T (53)

∆
max,d,s
i: j = max

u∈Sd+1
Ed,s

u, j α
max,d,s
i: j (u) (54)

for d ∈ [1,D−1]. When d = D, we simply set ∆
max,D,s
i:i = 1 for all s ∈ SD and i ∈ [1,T ].

From the factorisation in Eqs. (34,35), we have405

max
ζ

d,s
i: j (u)

Φ

[
ζ̂

d,s
i: j (u)

]
= max

{(
max

v∈Sd+1
max

t∈[i+1, j]
Rd+1,u

t: j Ad+1,s
v,u,t−1 max

ζ
d,s
i:t−1(v)

Φ

[
ζ̂

d,s
i:t−1(v)

]
×

× max
ζ

d+1,u
t: j

Φ

[
ζ̂

d+1,u
t: j

])
;

(
Rd+1,u

i: j max
ζ

d+1,u
i: j

π
d,s
u,i Φ

[
ζ̂

d+1,u
i: j

])}
(55)
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and

α
max,d,s
i: j (u) = max

{(
max

v∈Sd+1
max

t∈[i+1, j]
α

max,d,s
i:t−1 (v)∆̂max,d+1,u

t: j Ad,s
v,u,t−1

)
;

(
∆̂

max,d+1,u
i: j π

d+1,s
u,i

)}
(56)

for d ∈ [1,D−2] and i < j. For d = D−1, we cannot scan the index t in the interval [i+1, j] because

the maximum inside ∆
max,D,u
t: j is only defined at t = j. We have the following instead

α
max,D−1,s
i: j (u) = max

v∈SD
α

max,D−1,s
i: j−1 (v)∆̂max,D,u

j: j AD,s
v,u, j−1 (57)

There is a base case for i = j, where the context c =
[
ed

i−1 = 1
]

is active, then

α
max,d,s
i:i (u) = ∆̂

max,d+1,u
i:i π

d,s
u,i (58)

Of course, what we are really interested in is not the maximum joint potentials but the optimal410

states and time indices (or ending indicators). We need some bookkeepers to hold these quantities

along the way. With some abuse of notation let us introduce the symmetric inside bookkeeper ∆
arg,d,s
i: j

associated with Eq. (54), and the asymmetric inside bookkeeper α
arg,d,s
i: j (u) associated with Eqs. (56,

57 and 58).

Definition 8. We define the symmetric inside bookkeeper ∆
arg,d,s
i: j as follows415

∆
arg,d,s
i: j = u∗ = argmaxu∈Sd+1Ed,s

u, j α
max,d,s
i: j (u) (59)

Similarly, we define the asymmetric inside bookkeeper α
arg,d,s
i: j (u) associated with Eq. (56) for d ∈

[1,D−2] as

α
arg,d,s
i: j (u) = (v, t)∗ = argmaxt∈[i+1, j],v∈Sd+1α

max,d,s
i:t−1 (v)∆̂max,d+1,u

t: j Ad,s
v,u,t−1 (60)

if maxv∈Sd+1,t∈[i+1, j] α
max,d,s
i:t−1 (v)∆̂max,d+1,u

t: j Ad,s
v,u,t−1 > ∆̂

max,d+1,u
i: j π

d+1,s
u,i and i < j; and

α
arg,d,s
i: j (u) = undefined (61)

otherwise. For d = D−1, the α
arg,d,s
i: j (u) is associated with Eq. (57)

α
arg,D−1,s
i: j (u) = argmaxv∈SDα

max,d,s
i: j−1 (v)∆̂max,D,u

j: j Ad,s
v,u, j−1 (62)

The Eqs. (53,54,56,57 and 58) provide a recursive procedure to compute maximum joint potential420

in a bottom-up and left-right manner. Initially we just set ∆
max,D,s
i:i = 1 for all s ∈ SD and i ∈ [1,T ]. The

procedure is summarised in Alg. 4.
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Algorithm 4 Computing the bookkeepers.

Input: D,T , all the potential function values.

Output: the bookkeepers; ∆
arg,1,s
1:T , for s ∈ S1 and 1≤ i≤ j ≤ T ;

∆
arg,d,s
i: j , for d ∈ [2,D−1], s ∈ Sd ; ∆

arg,D,s
i:i for s ∈ SD and i ∈ [1,T ];

α
arg,d,s
i: j (u) for d ∈ [1,D−1], u ∈ Sd+1 and 1≤ i≤ j ≤ T

Initialise: ∆
max,D,s
i:i = 1 for all i ∈ [1,T ] and s ∈ SD

/* At the level d=D-1 */

For i = 1,2, ...,T ; j = i, i+1, ...,T

Compute α
max,D−1,s
i: j (u) using Eq. (57) and α

arg,D−1,s
i: j (u) using Eq. (62)

Compute ∆
max,D−1,s
i: j using Eq. (54) and ∆

arg,D−1,s
i: j using Eq. (59)

EndFor

/* The main recursion loops: bottom-up and forward */

For d = D−2,D−3, ...,1

For i = 1,2, ...,T ; j = i, i+1, ...,T

If j = i

Compute α
max,d,s
i:i (u) using Eq. (58)

Else

Compute α
max,d,s
i: j (u) using Eq. (56) and α

arg,d,s
i:i (u) using Eq. (60)

EndIf

If d > 1

Compute ∆
max,d,s
i: j using Eq. (54) and ∆

arg,d,s
i: j using Eq. (59)

EndIf

EndFor

EndFor

Compute ∆
max,1,s
1:T using Eq. (54) and ∆

arg,1,s
1:T using Eq. (59)
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5.2. Decoding the MAP assignment

The proceeding of the backtracking process is opposite to that of the max-product. Specifically,

we start from the root and proceed in a top-down and right-left manner. The goal is to identify the425

right-most segment at each level. Formally, a segment is a triple (s, i, j) where s is the segment label,

and i and j are start and end time indices, respectively. From the maximum inside ∆
max,d,s
i: j at level

d, we identify the best child u and its ending time j from Eq. (54). This gives rise to the maximum

asymmetric inside α
max,d,s
i: j (u). Then we seek for the best child v that transits to u under the same

parent s using Eq. (56). Since the starting time t for u has been identified the ending time for v is t−1.430

We now have a right-most segment (u, t, j) at level d+1. The procedure is repeated until we reach the

starting time i of the parent s. The backtracking algorithm is summarised in Alg. 5.

Finally, the generalised Viterbi algorithm is given in Alg. 6.

Working in log-space to avoid numerical overflow

With long sequence and complex topology we may run into the problem of numerical overflow,435

i.e. when the numerical value of the maximum joint potential is beyond the number representation of

the machine. To avoid this, we can work in the log-space instead, using the monotonic property of the

log function. The equations in the log-space are summarised in Tab. 7.

Log-space equations Equations

log∆
max,d,s
i: j = maxu∈Sd+1{logEd,s

u, j + logα
max,d,s
i: j (u)} Eq. (54)

logα
max,d,s
i: j (u) = max

{
maxt∈[i+1, j] maxv∈Sd+1{logα

max,d,s
i:t−1 (v)+

+ log ∆̂
max,d+1,u
t: j + logAd,s

v,u,t−1}; log ∆̂
max,d+1,u
i: j + logπ

d+1,s
u,i

}
Eq. (56)

logα
max,D−1,s
i: j (u) = maxv∈SD{logα

max,D−1,s
i: j−1 (v)+

+ log ∆̂
max,D,u
j: j + logAD,s

v,u, j−1} Eq. (57)

logα
max,d,s
i:i (u) = log ∆̂

max,d+1,u
i:i + logπ

d,s
u,i Eq. (58)

Table 7: MAP equations in the log-space.

6. Parameter estimation

In this section, we tackle the problem of parameter estimation by maximising the (conditional)440

data likelihood. Typically we need some parametric form to be defined for a particular problem and
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Algorithm 5 Backtracking for optimal assignment (nested Markov blankets).

Input: D,T , all the filled bookkeepers.

Output: the optimal assignment ζ MAP

s∗ = argmaxs∈S1∆̂
max,1,s
1:T

Initialise triple buckets I 1 = {(s∗,1,T )} and I d = {} for d ∈ [2,D]

For d = 1,2, ...,D−1

For each triple (s∗, i, j) in I d

Let u∗ = ∆
arg,d,s∗
i: j

For i≤ j

If α
arg,d,s∗
i: j (u∗) is defined Then

(t∗,v∗) = α
arg,d,s∗
i: j (u∗)

Add the triple (v∗, t∗, j) to I d+1 and Set j = t∗−1 and u∗ = v∗

Else

Add the triple (u∗, i, j) to I d+1 and Break this loop

EndIf

EndFor

EndFor

EndFor

For each stored triple (s∗, i, j) in the bucket I d , for d ∈ [1,D],

create a corresponding set of variables (xd
i: j = s∗,ed

i−1 = 1,ed
j = 1,ed

i: j−1 = 0).

The joining of these sets is the optimal assignment ζ MAP

we need some numerical method to do the optimisation task.

Here we employ the log-linear parameterisation, which is commonly used in the CRF setting. Re-

call from Section 2.1 that estimating parameters of the log-linear models using gradient-based meth-

ods requires the computation of feature expectation, or expected sufficient statistics (ESS). For our445

HSCRFs we need to compute four types of ESS corresponding to the state-persistence, state-transition,

state-initialisation and state-ending.
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Algorithm 6 The generalised Viterbi algorithm.

Input: D,T , all the potential function values.

Output: the optimal assignment ζ MAP

Run the bottom-up discrete optimisation procedure described in Alg. 4.

Run the top-down backtracking procedure described in Alg. 5.

6.1. Log-linear parameterisation

In our HSCRF setting there is a feature vector fd
σ (σ ,z) associated with each type of contextual

clique σ , in that φ(σd ,z) = exp
[
w>

σd fd
σ (σ ,z)

]
. Thus, the features are active only in the context in450

which the corresponding contextual cliques appear.

For the state-persistence contextual clique, the features incorporate state-duration, start time i

and end time j of the state. Other feature types incorporate the time index in which the features are

triggered. Specifically,

Rd,s,z
i: j = exp

[
w>

σ persist,d fd,s
σ persist (i, j,z)

]
(63)

Ad,s,z
u,v,i = exp

[
w>

σ transit,d fd,s
σ transit ,u,v(i,z)

]
(64)

π
d,s,z
u,i = exp

[
w>

σ init,d fd,s
σ init ,u(i,z)

]
(65)

Ed,s,z
u,i = exp

[
w>

σ end,d fd,s
σ end ,u(i,z)

]
(66)

Denote by Fd
σ (ζ ,z) the global feature, which is the sum of all active features fd

σ (z) at level d in the455

duration [1,T ] for a given assignment of ζ and a clique type σ . Recall that τd = {ik}m
k=1 is the set of

ending time indices (i.e. ed
ik = 1). The four feature types are given in Eqs. (67–70).

Fd,s
σ persist (ζ ,z) = fd,s

σ persist (1, i1,z)+ ∑
ik∈τd ,k>1

fd,s
σ persist (ik +1, ik+1,z) (67)

Fd,s
σ transit ,u,v(ζ ,z) = ∑

ik /∈τd−1,ik∈τd

fd,s
σ transit ,u,v(ik,z) (68)

Fd,s
σ init ,u(ζ ,z) = fd,s

σ init ,u,v(1,z)+ ∑
ik∈τd

fd,s
σ init ,u,v(ik +1,z) (69)

Fd,s
σ end ,u(ζ ,z) = ∑

ik∈τd

fd,s
σ end ,u,v(i,z) (70)

Substituting the global features into potentials in Eqs. (8,9) we obtain the following log-linear

model:

Pr(ζ | z) =
1

Z(z)
exp

[
∑
c∈C

w>σ cFσ c(ζ ,z)

]
(71)
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where C = {persist, transit, init,exit}.460

Again, for clarity of presentation we will drop the notion of z but implicitly assume that it is still

in the each quantity.

6.2. ESS for state-persistence features

Recall from Section 6.1 that the feature function for the state-persistence fd,s
σ persist (i, j) is active only

in the context where Π
d,s
i: j ∈ ζ . Thus, Eq. (67) can be rewritten as465

Fd,s
σ persist (ζ ) = ∑

i∈[1,T ]
∑

j∈[i,T ]
fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]
(72)

The indicator function in the RHS ensures that the feature fd,s
σ persist (i, j) is only active if there exists a

symmetric Markov blanket Π
d,s
i: j in the assignment of ζ . Consider the following expectation

E
[
fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ ]

]]
= ∑

ζ

Pr(ζ )fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]
(73)

=
1
Z ∑

ζ

Φ[ζ ]fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]
(74)

Using the factorisation in Eq. (22) we can rewrite

E
[
fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]]
=

1
Z ∑

ζ

Φ

[
ζ̂

d,s
i: j

]
Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]
(75)

Note that the elements inside the sum of the RHS are only non-zeros for those assignment of ζ that

respect the persistent state sd
i: j and the factorisation in Eq. (22), i.e. ζ = (ζ d,s

i: j ,ζ
d,s
i: j
,Πd,s

i: j ). Thus, the470

equation can be simplified to

E
[
fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]]
=

1
Z ∑

ζ
d,s
i: j

∑
ζ

d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j fd,s
σ persist (i, j) (76)

=
1
Z

∆
d,s
i: j Λ

d,s
i: j Rd,s

i: j fd,s
σ persist (i, j) (77)

Using Eq. (72) we obtain the ESS for the state-persistence features

E
[
Fd,s

k (ζ )
]

= ∑
i∈[1,T ]

∑
j∈[i,T ]

E
[
fd,s
σ persist (i, j)δ

[
Π

d,s
i: j ∈ ζ

]]
=

1
Z ∑

i∈[1,T ]
∑

j∈[i,T ]
∆

d,s
i: j Λ

d,s
i: j Rd,s

i: j fd,s
σ persist (i, j) (78)

There are two special cases: (1) when d = 1, we do not sum over i, j but fix i = 1, j = T , and (2)

when d = D then we keep j = i.
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6.3. ESS for transition features475

Recall that in Section 6.1 we define fd,s
σ transit ,u,v(t) as a function that is active in the context ctransit =[

ed−1
t = 0,ed

t = 1
]
, in which the child state ud finishes its job at time t and transits to the child state vd

under the same parent sd−1 (that is sd−1 is still running). Thus Eq. (68) can be rewritten as

Fd,s
σ transit ,u,v(ζ ) = ∑

t∈[1,T−1]
fd,s
σ transit ,u,v(t)δ

[
ctransit ∈ ζ

]
(79)

We now consider the following expectation

E
[
fd,s
σ transit ,u,v(t)δ

[
ctransit ∈ ζ

]]
= ∑

ζ

Pr(ζ )fd,s
σ transit ,u,v(t)δ

[
ctransit ∈ ζ

]
(80)

=
1
Z ∑

ζ

Φ[ζ ]fd,s
σ transit ,u,v(t)δ

[
ctransit ∈ ζ

]
(81)

Assume that the parent s starts at i. Since ed
t = 1, the child v must starts at t + 1 and ends some480

time later at j ≥ t +1. We have the following decomposition of the configuration ζ that respects this

assumption

ζ =
(

ζ̂
d−1,s

i: j
(v), ζ̂ d−1,s

i:t (u), ζ̂ d,v
t+1: j

)
(82)

and the following factorisation of the joint potential

Φ[ζ ] = Φ

[
ζ̂

d−1,s

i: j
(v)
]

Φ

[
ζ̂

d−1,s
i:t (u)

]
Φ

[
ζ̂

d,v
t+1: j

]
Rd,v

t+1: jA
d,s
u,v,t (83)

The state persistent potential Rd,v
t+1: j is enabled in the context c =

[
ed

t = 1,ed
t+1: j−1 = 0,ed

j = 1
]

and the

state transition potential Ad,s
u,v,t in the context ctransit .485

Substituting this factorisation into the RHS of Eq. (81) gives us

1
Z ∑

i∈[1,t]
∑

j∈[t+1,T ]
∑

ζ
d−1,s
i:t (u)

∑
ζ

d−1,s
i: j

(v)
∑

ζ
d,v
t+1: j

Φ

[
ζ̂

d−1,s

i: j
(v)
]

Φ

[
ζ̂

d−1,s
i:t (u)

]
Φ

[
ζ̂

d,v
t+1: j

]
Rd,v

t+1: jA
d,s
u,v,tf

d,s
σ transit ,u,v(t)

which can be simplified to

1
Z ∑

i∈[1,t]
∑

j∈[t+1,T ]
λ

d−1,s
i: j (v)αd−1,s

i:t (u)∆̂d,v
t+1: jA

d,s
u,v,tf

d,s
σ transit ,u,v(t) (84)

Using Eqs. (79 and 84) we obtain the ESS for the state-transition features

E
[
Fd,s

σ transit ,u,v(ζ )
]
= ∑

t∈[1,T−1]
E
[
fd,s
σ transit ,u,v(t)δ [c

transit ∈ ζ ]
]

=
1
Z ∑

t∈[1,T−1]
Ad,s

u,v,tf
d,s
σ transit ,u,v(t) ∑

i∈[1,t]
∑

j∈[t+1,T ]
α

d−1,s
i:t (u)λ d−1,s

i: j (v)∆̂d,v
t+1: j (85)

When d = 2 we must fix i = 1 since α
1,s
i:t (u) and λ

1,s
i: j (v) are only defined at i = 1.
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6.4. ESS for initialisation features490

Recall tat in Section 6.1 we define fd,s
σ init ,u(i) as a function at level d that is triggered at time i when

a parent s at level d initialises a child u at level d+1. In this event, the context cinit =
[
ed

i−1 = 1
]

must

be activated for i > 1. Thus, Eq. (69) can be rewritten as

Fd,s
σ init ,u(ζ ) = ∑

i∈[1,T ]
fd,s
σ init ,u(i)δ

[
cinit ∈ ζ

]
(86)

Now we consider the following feature expectation

E
[
fd,s
σ init ,u(i)δ [c

init ∈ ζ ]
]

= ∑
ζ

Pr(ζ )fd,s
σ init ,u(i)δ

[
cinit ∈ ζ

]
=

1
Z ∑

ζ

Φ[ζ ]fd,s
σ init ,u(i)δ

[
cinit ∈ ζ

]
(87)

For each assignment of ζ that enables fd,s
σ init ,u(i), we have the following decomposition495

ζ =
(

ζ̂
d,s

i: j
(u), ζ̂ d+1,u

i: j

)
(88)

where the context cinit activates the emission from s to u and the feature function fd,s
σ init ,u(i). Thus the

joint potential Φ[ζ ] can be factorised as

Φ[ζ ] = Φ

[
ζ̂

d,s

i: j
(u)
]

Φ

[
ζ̂

d+1,u
i: j

]
Rd+1,u

i: j π
d,s
u,i (89)

Using this factorisation and noting that the elements within the summation in the RHS of Eq. (87) are

only non-zeros with such assignments, we can simplify the RHS of Eq. (87) to

1
Z ∑

j∈[i,T ]
∑

ζ
d,s
i: j
(u)

∑
ζ

d+1,u
i: j

Φ

[
ζ̂

d,s

i: j
(u)
]

Φ

[
ζ̂

d+1,u
i: j

]
Rd+1,u

i: j π
d,s
u,i fd,s

σ init ,u(i)

=
1
Z ∑

j∈[i,T ]
λ

d,s
i: j (u)∆̂

d+1,u
i: j π

d,s
u,i fd,s

σ init ,u(i) (90)

The summation over j ∈ [i,T ] is due to the fact that we do not know this index.500

Using Eqs. (86,90) we obtain the ESS for the initialisation features

E
[
Fd,s

σ init ,u(ζ )
]

= ∑
i∈[1,T ]

E
[
fd,s
σ init ,u(i)δ [c

init ∈ ζ ]
]

=
1
Z ∑

i∈[1,T ]
π

d,s
u,i fd,s

σ init ,u(i) ∑
j∈[i,T ]

λ
d,s
i: j (u)∆̂

d+1,u
i: j (91)

There are two special cases: (1) when d = 1, there must be no scanning of i but fix i = 1 since

there is only a single initialisation at the beginning of sequence, (2) when d = D−1, we fix j = i for

∆̂
D,u
i: j is only defined at i = j.
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6.5. ESS for ending features505

Recall that in Section 6.1 we define fd,s
σ end ,u( j) as a function that is activated when a child u at level

d + 1 returns the control to its parent s at level d and time j. This event also enables the context

cend =
[
ed

j = 1
]
. Thus Eq. (70) can be rewritten as

Fd,s
σ end ,u(ζ ) = ∑

j∈[1,T ]
fd,s
σ end ,u( j)δ

[
cend ∈ ζ

]
(92)

Now we consider the following feature expectation

E
[
fd,s
σ end ,u( j)δ [cend ∈ ζ ]

]
= ∑

ζ

Pr(ζ )fd,s
σ end ,u( j)δ

[
cend ∈ ζ

]
=

1
Z ∑

ζ

Φ[ζ ]fd,s
σ end ,u( j)δ

[
cend ∈ ζ

]
(93)

Assume that the state s starts at i and ends at j. For each assignment of ζ that enables fd,s
σ end ,u( j) and510

respects this assumption, we have the following decomposition

ζ =
(

ζ̂
d,s

i: j
, ζ̂ d,s

i: j (u)
)

(94)

This assignment has the context cend that activates the ending of u. Thus the joint potential Φ[ζ ] can

be factorised as

Φ[ζ ] = Φ

[
ζ̂

d,s

i: j

]
Φ

[
ζ̂

d,s
i: j (u)

]
Rd,s

i: j Ed,s
u, j (95)

Substituting this factorisation into the summation of the RHS of Eq. (93) yields

∑
i∈[1, j]

∑
ζ

d,s
i: j

∑
ζ

d,s
i: j (u)

Φ

[
ζ̂

d,s

i: j

]
Φ

[
ζ̂

d,s
i: j (u)

]
Rd,s

i: j Ed,s
u, j f

d,s
σend ,u

( j) = ∑
i∈[1, j]

Λ̂
d,s
i: j α

d,s
i: j (u)E

d,s
u, j f

d,s
σend ,u

( j) (96)

Using Eqs. (92 and 96) we obtain the ESS for the exiting features515

E
[
Fd,s

σ end ,u(ζ )
]

= ∑
j∈[1,T ]

E
[
fd,s
σ end ,u( j)δ [ed

i−1 ∈ ζ ]
]

=
1
Z ∑

j∈[1,T ]
Ed,s

u, j f
d,s
σ end ,u( j) ∑

i∈[1, j]
Λ̂

d,s
i: j α

d,s
i: j (u) (97)

There is a special case: when d = 1 there must be no scanning of i, j but fix i = 1, j = T .
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7. Partially observed data in learning and inference

So far we have assumed that training data is fully labeled, and that testing data does not have any

labels. In this section we extend the AIO to handle the cases in which these assumptions do not hold.

Specifically, it may happen that the training data is not completely labeled, possibly due to lack of520

labeling resources. In this case, the learning algorithm should be robust enough to handle missing

labels. On the other hand, during inference, we may partially obtain high quality labels from external

sources. This requires the inference algorithm to be responsive to that data.

7.1. The constrained AIO algorithm

In this section we consider the general case when ζ = (ϑ ,h), where ϑ is the visible set labels,525

and h the hidden set. Since our HSCRF is also an exponential model it shares the same computation

required for general CRFs (Eqs. 6 and 7). We have to compute four quantities: the partial log-partition

function Z(ϑ ,z), the partition function Z(z), the ‘constrained’ ESS Eh|ϑ ,z[F(ϑ ,h,z)], and the ‘free’

ESS Eζ |z[F(ζ ,z)]. The partition function and the ‘free’ ESS has been computed in Sections 4 and 6,

respectively. This section describes the other two quantities.530

Let the set of visible labels be ϑ = (x̃, ẽ) where x̃ is the visible set of state variables and ẽ is the

visible set of ending indicators. The basic idea is that we have to modify procedures for computing the

building blocks such as ∆
d,s
i: j and α

d,s
i: j (u), to address constraints imposed by the labels. For example,

∆
d,s
i: j implies that the state s at level d starts at i and persists till terminating at j. Then, if any labels (e.g.

there is an x̃d
k 6= s for k ∈ [i, j]) are seen, causing this assumption to be inconsistent, ∆

d,s
i: j will be zero.535

Therefore, in general, the computation of each building block is multiplied by an identity function

that enforces the consistency between these labels and the required constraints for computation of that

block. As an example, we consider the computation of ∆
d,s
i: j and α

d,s
i: j (u).

The symmetric inside mass ∆
d,s
i: j is consistent only if all of the following conditions are satisfied:

1. If there are state labels x̃d
k at level d within the interval [i, j], then x̃d

k = s,540

2. If there is any label of ending indicator ẽd
i−1, then ẽd

i−1 = 1,

3. If there is any label of ending indicator ẽd
k for some k ∈ [i, j−1], then ẽd

k = 0, and

4. If any ending indicator ẽd
j is labeled, then ẽd

j = 1.

These conditions are captured by using the following identity function:

I
[
∆

d,s
i: j

]
= δ

[
x̃d

k∈[i, j] = s
]

δ

[
ẽd

i−1 = 1
]

δ

[
ẽd

k∈[i: j−1] = 0
]

δ

[
ẽd

j = 1
]

(98)
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When labels are observed, Eq. (40) is thus replaced by545

∆
d,s
i: j = I

[
∆

d,s
i: j

](
∑

u∈Sd+1

α
d,s
i: j (u)E

d,s
u, j

)
(99)

Note that we do not need to explicitly enforce the state consistency in the summation over u since in

the bottom-up and left-right computation, α
d,s
i: j (u) is already computed and contributes to the sum only

if it is consistent.

Analogously, the asymmetric inside mass α
d,s
i: j (u) is consistent if all of the following conditions

are satisfied:550

1. The first three conditions for the symmetric inside mass ∆
d,s
i: j hold,

2. If the state at level d at time j is labeled, it must be u, and

3. If any ending indicator ẽd+1
j is labeled, then ẽd+1

j = 1.

These conditions are captured by the identity function

I
[
α

d,s
i: j (u)

]
= δ

[
x̃d

k∈[i, j] = s
]

δ

[
ẽd

i−1 = 1
]

δ

[
ẽd

k∈[i: j−1] = 0
]

δ

[
x̃d+1

j = u
]

δ

[
ẽd+1

j = 1
]

(100)

Thus Eq. (36) becomes555

α
d,s
i: j (u) = I

[
α

d,s
i: j (u)

]( j

∑
k=i+1

∑
v∈Sd+1

α
d,s
i:k−1(v)∆̂

d+1,u
k: j Ad,s

v,u,k−1 + ∆̂
d+1,u
i: j π

d+1,s
u,i

)
(101)

Note that we do not need to explicitly enforce the state consistency in the summation over v and time

consistency in the summation over k since in bottom-up computation, α
d,s
i: j (u) and ∆

d+1,u
k: j are already

computed and contribute to the sum only if they are consistent. Finally, the constrained partition func-

tion Z(ϑ ,z) is computed using Eq. (25) given that the inside mass is consistent with the observations.

Other building blocks, such as the symmetric outside mass Λ
d,s
i: j and the asymmetric outside mass560

λ
d,s
i: j (u), are computed in an analogous way. Since Λ

d,s
i: j and ∆

d,s
i: j are complementary and they share

(d,s, i, j), the same indicator function I
[
∆

d,s
i: j

]
can be applied. Similarly, the pair asymmetric inside

mass α
d,s
i: j (u) and asymmetric outside mass λ

d,s
i: j (u) are complementary and they share d,s, i, j,u, thus

the same indicator function I
[
α

d,s
i: j (u)

]
can be applied.

Once all constrained building blocks have been computed they can be used to calculate constrained565

ESS as in Section 6 without any further modifications. The only difference is that we need to replace

the partition function Z(z) by the constrained version Z(ϑ ,z).
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7.2. The constrained Viterbi algorithm

Recall that in the Generalised Viterbi Algorithm described in Section 5 we want to find the most

probable configuration ζ MAP = argmaxζ Pr(ζ | z). When some variables ϑ of ζ are labeled, it is not570

necessary to estimate them. The task is now to estimate the most probable configuration of the hidden

variables h given the labels:

hMAP = argmax
h

Pr(h | ϑ ,z) = argmax
h

Φ[h,ϑ ,z]

It turns out that the constrained MAP estimation is identical to the standard MAP except that we have

to respect the labeled variables ϑ .

Since the Viterbi algorithm is just the max-product version of the AIO, the constrained Viterbi575

can be modified in the same manner as in the constrained AIO (Section 7.1). Specifically, for each

auxiliary quantities such as ∆
max,s
i: j and α

max,s
i: j (u), we need to maintain a set of indicator functions that

ensures the consistency with labels. Eqs. (98,99) become

I
[
∆

max,d,s
i: j

]
= δ

[
x̃d

k∈[i, j] = s
]

δ

[
ẽd

i−1 = 1
]

δ

[
ẽd

k∈[i: j−1] = 0
]

δ

[
ẽd

j = 1
]

∆
max,d,s
i: j = I

[
∆

max,d,s
i: j

](
max

u∈Sd+1
α

max,d,s
i: j (u)Ed,s

u, j

)
(102)

Likewise, we have the modifications to Eq. (100) and Eq. (101), respectively.

I
[
α

max,d,s
i: j (u)

]
= δ

[
x̃d

k∈[i, j] = s
]

δ

[
ẽd

i−1 = 1
]

δ

[
ẽd

k∈[i: j−1] = 0
]

δ

[
x̃d+1

j = u
]

δ

[
ẽd+1

j = 1
]

α
max,d,s
i: j (u) = I

[
α

max,d,s
i: j (u)

]
max

{
max

k∈[i+1, j]
max

v∈Sd+1
α

max,d,s
i:k−1 (v)∆̂max,d+1,u

k: j Ad,s
v,u,k−1;

∆̂
max,d+1,u
i: j π

d+1,s
u,i

}
(103)

Other tasks in the Viterbi algorithm including bookkeeping and backtracking are identical to those580

described in Section 5.

7.3. Complexity analysis

The complexity of the constrained AIO and constrained Viterbi has an upper bound of O(T 3),

when no labels are given. It also has a lower bound of O(T ) when all ending indicators are known

and the model reduces to the standard tree-structured graphical model. In general, the complexity585

decreases as more labels are available, and we can expect a sub-cubic time behaviour.
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8. Numerical scaling

In previous sections, we have derived AIO-based inference and learning algorithms for both

unconstrained and constrained models. The quantities computed by these algorithms like the in-

side/outside masses often involve summation over exponentially many positive potentials. The po-590

tentials, when estimated from data, are not upper-bounded, causing the magnitude of the masses to

increase exponentially fast in the sequence length T . The magnitude goes beyond the numerical ca-

pacity of most machines for moderate T . In this section we present a scaling method to reduce this

numerical overflow problem.

8.1. Scaling symmetric/asymmetric inside masses595

Let us revisit Eq. (40). If we scale down the asymmetric inside mass α
d,s
i: j (u) by a factor κ j > 1,

i.e.

α
′d,s
i: j (u) ←

α
d,s
i: j (u)

κ j
(104)

then the symmetric inside mass ∆
d,s
i: j is also scaled down by the same factor. Similarly, as we can see

from Eq. (36) that

α
d,s
i: j (u) =

j

∑
t=i+1

∑
v∈Sd+1

α
d,s
i:t−1(v)∆̂

d+1,u
t: j Ad,s

v,u,t−1 + ∆̂
d+1,u
i: j π

d,s
u,i

where ∆̂
d+1,u
t: j = ∆

d+1,u
t: j Rd+1,u

t: j , if ∆
d+1,u
t: j for t ∈ [1, j] is reduced by κ j, then α

d,s
i: j is also reduced by the600

same factor. In addition, using the set of recursive relations in Eqs. (36,40), any reduction at the bottom

level of ∆
D,s
j: j will result in the reduction of the symmetric inside mass ∆

d,s
i: j and of the asymmetric inside

mass α
d,s
i: j (u), for d < D, by the same factor.

Suppose ∆
D,s
i:i is reduced by a factor of κi > 1 for all i ∈ [1, j], the quantities ∆

d,s
1: j and α

d,s
1: j (u) will

be reduced by a factor of ∏
j
i=1 κi. That is605

∆̂
′d,s
1: j ←

∆̂
d,s
1: j

∏
j
i=1 κi

(105)

α
′d,s
1: j (u) ←

α
d,s
1: j (u)

∏
j
i=1 κi

(106)

It follows immediately from Eq. (25) that the partition function is scaled down by a factor of ∏
T
i=1 κi

Z′ = ∑
s∈S1

∆̂
′1,s
1:T =

Z

∏
T
j=1 κ j

(107)

38



where ∆̂
′1,s
1:T = ∆

′1,s
1:T B1,s

1:T . Clearly, we should deal with the log of this quantity to avoid numerical

overflow. Thus, the log-partition function can be computed as

log(Z) = log ∑
s∈S1

∆̂
′1,s
1:T +

T

∑
j=1

logκ j (108)

where ∆
′1,s
1:T has been scaled appropriately.

One question is how to choose the set of meaningful scaling factors {κ j}T
1 . The simplest way is610

to choose a relatively large number for all scaling factors but making the right choice is not straight-

forward. Here we describe a more natural way to do so. Assume that we have chosen all the scaling

factors {κi} j−1
1 . Using the original Eqs. (36, 37, and 38), where all the sub-components have been

scaled appropriately, we compute the partially-scaled inside mass ∆
′′d,s
i: j for d ∈ [2,D] and asymmetric

inside mass α
′′d,s
i: j (u), for d ∈ [1,D−1] and i ∈ [1, j]. Then the scaling factor at time j is computed as615

κ j = ∑
s,u

α
′′1,s
1: j (u) (109)

The next step is to rescale all the partially-scaled variables:

α
′d,s
i: j (u) ←

α
′′d,s
i: j (u)

κ j
for s ∈ Sd ,d ∈ [1,D−1] (110)

∆
′d,s
i: j ←

∆
′′d,s
i: j

κ j
for s ∈ Sd ,d ∈ [2,D−1] (111)

∆
′D,s
j: j ←

∆
′′D,s
j: j

κ j
for s ∈ SD (112)

where i ∈ [1, j].

8.2. Scaling symmetric/asymmetric outside masses

In a similar fashion we can work out the set of factors from the derivation of symmetric/asymmetric

outside masses since these masses solely depend on the inside masses as building blocks. In other620

words, after scaling the inside masses we can compute the scaled outside masses directly, using the

same set of equations described in Section 4.3.

The algorithm is summarised in Alg. 7. Note that the order of performing the loops in this case is

different from that in Alg. 1.

9. Applications625

In this section we present experimental results to demonstrate the capacity of the proposed HSCRFs

in two applications: activity recognition and shallow parsing.
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Algorithm 7 Scaling algorithm to avoid numerical overflow.

Input: D,T and all the contextual potentials.

Output: Scaled inside/asymmetric inside masses, outside/asymmetric outside masses.

For j = 1,2, ..,T

Compute α
d,s
1: j (u), d ∈ [1,D−1] using Eqs. (36, 37 and 38)

Compute κ j using Eq. (109)

Rescale α
1,s
1: j(u) using Eq. (110)

For i = 1,2, .., j

For d = 2,3, ..,D−1

Rescale α
d,s
i: j (u) using Eq. (110)

Rescale ∆
d,s
i: j using Eq. (111)

EndFor

EndFor

Rescale ∆
D,s
j: j using Eq. (112)

EndFor

Compute true log-partition function using Eq. (108).

Compute the outside/asymmetric outside masses using the

scaled inside/asymmetric inside masses instead of the original

inside/asymmetric inside in Eqs. (43 and 47).
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9.1. Recognising indoor activities

In this experiment, we evaluate the HSCRFs with a relatively small dataset from the domain of

indoor video surveillance. The task is to recognise indoor trajectories and activities of a person from630

his noisy positions extracted from video. The data, which was captured in [16], and subsequently used

to evaluate DCRFs in [17], has 90 sequences, each of which corresponds to one of 3 the persistent

activities: (1) preparing short-meal, (2) having snack and (3) preparing normal-meal. The persistent

activities share the some of 12 sub-trajectories. Each sub-trajectory is a sub-sequence of discrete

positions. Thus naturally, the data has a state hierarchy of depth 3: the dummy root for each position635

sequence, the persistent activities, and the sub-trajectories. The input observations to the model are

simply sequences of discrete positions.

We split the data into two sets of equal size for training and testing, respectively. For learning,

labels for each sequence are provided fully for the case of fully observed state data, and partially for

the case of missing state data. For testing, no labels are given to the decoder, and decoded labels640

obtained from the max-product algorithm are compared against the ground-truth.

In designing features, we assume that state features (i.e. between nodes) such as initialisation, tran-

sition and exiting are indicator functions. For the data-associations (i.e. embedded in state-persistence

potentials) at the bottom level, we use the same features as in [17]. At the second level, we use aver-

age velocities and a vector of positions visited in the state duration. To encode the duration into the645

state-persistence potentials, we employ the sufficient statistics of the gamma distribution as features

fk(s,∆t) = I(s) log(∆t) and fk+1(s,∆t) = I(s)(∆t).

At each level d and time t we count an error if the predicted state is not the same as the ground-

truth. Firstly, we examine the fully observed case where the HSCRF is compared against the DCRF at

both data levels, and against the flat-CRF at bottom level. Table 8 (the left half) shows that (a) both the650

multilevel models significantly outperform the flat model and (b) the HSCRF outperforms the DCRF.

Alg. d = 2 d = 3 Alg. d = 2 d = 3

HSCRF 100 93.9 PO-HSCRF 80.2 90.4

DCRF 96.5 89.7 PO-CRF - 83.5

flat-CRF - 82.6 - - -

Table 8: Accuracy (%) for fully observed data (left), and partially observed (PO) data (right).
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We also test the ability of the model to learn the hierarchical topology and state transitions. We

find the it is very informative to examine parameters which correspond to the state transition features.

Typically, negative entries in the transition parameter matrix means that the transition is improbable.

This is because state features are non-negative, so negative parameters mean the probabilities of these655

transitions are very small (due to the exponential), compared to the positive ones. For the transition

at the second level (the complex activity level), we obtain all negative entries. This clearly match the

training data, in which each sequence already belongs to one of three complex activities. With this

method, we are able to construct the correct hierarchical topology as in Fig. 9. The state transition

model is presented in Fig. 10. There is only one wrong transition, from state 12 to state 10, which is660

not presented in the training data. The rest is correct.
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Figure 9: The topology learned from data
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Figure 10: The state transition model learned from data. Primitive states are duplicated for clarity only. They are shared

among complex states

Next we consider partially-supervised learning in that about 50% of start/end times of a segment

and segment labels are observed at the second level. All ending indicators are known at the bottom
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level. The results are reported in Tab. 8 (the right half). As can be seen, although only 50% of the state

labels and state start/end times are observed, the model learned is still performing well with accuracy665

of 80.2% and 90.4% at levels 2 and 3, respectively.

We now consider the issue of using partial observed labels during decoding to improve prediction

accuracy of poorly estimated models. We extract the parameters from the 10th iteration of the fully

observed data case. The labels are provided at random time indexes. Fig. 11a shows the decoding

accuracy as a function of available state labels. It is interesting to observe that a moderate amount of670

observed labels (e.g. 20−40%) causes the accuracy rate to go up considerably.
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Figure 11: Performance of the constrained max-product algorithm as a function of available information on label/start/end

time.

9.2. POS tagging and noun-phrase chunking

In this experiment we apply the HSCRF to the task of noun-phrase chunking. The data is from the

CoNLL-2000 shared task [5], in which 8926 English sentences from the Wall Street Journal corpus

are used for training and 2012 sentences are for testing. Each word in a pre-processed sentence is675

labeled by two labels: the part-of-speech (POS) and the noun-phrase (NP). There are 48 POS different

labels and 3 NP labels (B-NP for beginning of a noun-phrase, I-NP for inside a noun-phrase or O for
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others). Each noun-phrase generally has more than one word. To reduce the computational burden, we

reduce the POS tag-set to 5 groups: noun, verb, adjective, adverb and others. Since in our HSCRFs

we do not have to explicitly indicate which node is at the beginning of a segment, the NP label set can680

be reduced further into NP for noun-phrase, and O for anything else.

The POS tags are actually the output of the Brill’s tagger [18], while the NPs are manually labeled.

We extract raw features from the text in the way similar to that in [19]. However, we consider only

a limited vocabulary extracted from the training data in that we only select words with more than

3 occurrences. This reduces the vocabulary and the feature size significantly. We also make use of685

bi-grams with similar selection criteria. Furthermore, we use the contextual window of 5 instead of

7 as in [19]. This setting gives rise to about 32K raw features. The model feature is factorised as

f (xc,z) = I(xc)gc(z), where I(xc) is a binary function on the assignment of the clique variables xc, and

gc(z) are the raw features.

We build an HSCRF topology of 3 levels where the root is just a dummy node, the second level has690

2 NP states and the bottom level has 5 POS states. For comparison, we implement a DCRF, a simple

sequential CRF (SCRF), and a semi-Markov CRF (SemiCRF) [8]. The DCRF has grid structure of

depth 2, one for modelling the NP process and another for the POS process. Since the state spaces are

relatively small, we are able to run exact inference in the DCRF by collapsing both the NP and POS

state spaces to a combined state space of size 3× 5 = 15. The SCRF and SemiCRF model only the695

NP process, taking the POS tags as input.

The raw feature set used in the DCRF is identical to those in our HSCRF. However, the set shared

by the SCRF and the SemiCRF is a little more elaborate since it takes the POS tags into account [19].

Although both the HSCRF and the SemiCRF are capable of modelling arbitrary segment durations,

we use a simple exponential distribution as it can be processed sequentially and thus is very efficient.700

For learning, we use a simple online stochastic gradient ascent method since it has been shown to

work relatively well and fast in CRFs [20]. At test time, as the SCRF and the SemiCRF are able to

use the Brill’s POS tags as input, it is not fair for the DCRF and HSCRF to predict those labels during

inference. Instead, we also give the POS tags to the DCRF and HSCRF and perform constrained

inference to predict only the NP labels. This boosts the performance of the two multi-level models705

significantly.

The performance of these models is depicted in Fig. 12 and we are interested in only the prediction

of the noun-phrases since this data has Brill’s POS tags. Without Brill’s POS tags given at test time,
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Figure 12: Performance of various models on Conll2000 noun-phrase chunking. HSCRF+POS and DCRF+POS mean

HSCRF and DCRF with POS given at test time, respectively.

both the HSCRF and the DCRF perform worse than the SCRF. This is not surprising because the Brill’s

POS tags are always given in the case of SCRF. However, with POS tags the HSCRF consistently710

works better than all other models. The DCRF does worse than the SCRF, even with POS tags given.

This does not share the observation made in [19]. However, we use a much smaller POS tag set than

[19] does. Our explanation is that the SCRF is able to make use of wider context of the given POS

tags (here, within the window of 5 tags) than the DCRF (limited to 1 POS tag per NP chunk). The

SemiCRF, although in theory it is more expressive than the SCRF, does not show any advantage under715

current setting. Recall that the SemiCRF is a special case of HSCRF in that the POS level is not

modelled, it is possible to conclude that joint modelling of NP and POS levels is important.

10. Related work

Hierarchical modelling of stochastic processes can be largely categorised as either graphical mod-

els extending the flat hidden (semi-)Markov models (HMM/HsMM) (e.g., the layered HMM [6], the720

abstract HMM [21], hierarchical HMM (HHMM) [2, 10], DBN [22]) or grammar-based models (e.g.,

PCFG [23]). These models are all generative.
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Higher-order extensions to the linear-chain CRFs have been developed recently [24, 25, 26]. These

methods exploit sparsity in the state transition for efficient inference, but they are shallow models.

Development in deeper structures include dynamic CRFs (DCRF) [19], hierarchical CRFs [27, 28]),725

and stacked CRFs [29]. The main problem of the DCRFs is that they are not scalable due to inference

intractability. The hierarchical CRFs, on the other hand, are tractable but assume fixed tree structures,

and therefore are not flexible to adapt to complex data. For example, in the noun-phrase chunking

problem no prior tree structures are known. Rather, if such a structure exists, it can only be discovered

after the model has been successfully built and learned.730

Our HSCRFs deal with the inference problem of DCRFs by limiting to recursive processes, and

thus obtaining efficient inference via dynamic programming in the Inside-Outside family of algo-

rithms. Furthermore, it generalises the SemiCRFs to model multilevel of semantics. It also addresses

partial labels by introducing appropriate constraints to the Inside-Outside algorithms.

The conditional probabilistic context-free grammar (C-PCFG) appears to address both tractability735

and dynamic structure issues (e.g. see [30, 31]). More precisely, in C-PCFGs it takes cubic time

in sequence length to parse a sentence. However, the context-free grammar does not limit the depth

of semantic hierarchy, thus making it unnecessarily difficult to map many hierarchical problems into

its form. Secondly, it lacks a graphical model representation and thus does not enjoy the rich set of

approximate inference techniques available in graphical models.740

The AIO algorithm presented in Section 4 is inspired from the AIO algorithm in HHMMs [10, 2].

However, due to the log-linear parameterisation, there are no probabilistic interpretations of the inside

and outside masses.

The idea of numerical scaling presented in Section 8 can be traced back to the Pearl’s message-

passing procedure [15, 32]. In our AIO algorithms, the inside masses play the role of the inside-out745

messages. In Pearl’s method, we reduce the messages’ magnitude by normalising them at each step.

The overflow problem is opposite to the underflow in directed counterparts. A similar idea has been

proposed in [10] for HHMMs.

The graphical model-like dynamic representation of the HSCRF appears similar to the DBN rep-

resentation of the HHMMs in [13], and somewhat resembles a dynamic factor graph [33]. However,750

it is not exactly the standard graphical model because the contextual cliques in HSCRFs are not fixed

during inference.
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11. Conclusions

In this paper, we have presented a novel model called Hierarchical Semi-Markov Conditional Ran-

dom Field which extends the standard CRFs to incorporate hierarchical and multilevel semantics. We755

have developed a graphical model-like dynamic representation of the HSCRF. We have derived effi-

cient algorithms for learning and inference, especially the ability to learn and inference with partially

given labels. We have demonstrated the capacity of the HSCRFs on home video surveillance data and

the shallow parsing of English text, in which the hierarchical information inherent in the context helps

to increase the recognition.760

In future work we plan to attack the computational bottleneck in large-scale settings. Although the

AIO family has cubic time complexity, it is still expensive in large-scale application, especially those

with long sequences. It is therefore desirable to introduce approximation methods that can provide

speed/quality trade-offs. Our early work using Rao-Blackwellised Gibbs sampling shows promising

results [34]. We also need to make a choice between pre-computing all the potentials prior to inference765

and learning, and computing them on-the-fly. The first choice requires O(DK3T 2) space, which is

very significant with typical real-world problems, even with today’s computing power. The second

choice, however, will slow the inference and learning very significantly due to repeated computation

at every step of the AIO algorithm. Finally, it is interesting to see how good the HSCRFs can be

an approximation to general multilevel processes, which are not necessarily recursive (e.g., HSCRF770

as an approximation to DCRFs). This is important because HSCRFs are tractable while DCRFs are

generally not.

Appendix A. Proofs

In this appendix we give detailed proofs of propositions stated in the main text.

Appendix A.1. Proof of Propositions 1 and 2775

Before proving Proposition 1 and 2 let us introduce a lemma.

Lemma 1. Given a distribution of the form Pr(x) ∝ Φ[x] and x = (xa,xs,xb), if there exists a factori-

sation

Φ[x] = Φ[xa,xs]Φ[xs]Φ[xs,xb] (A.1)

then xa and xb are conditionally independent given xs.
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Proof: We want to prove that780

Pr(xa,xb | xs) = Pr(xa | xs)Pr(xb | xs) (A.2)

Since Pr(xa,xb | xs) = Pr(xa,xb,xs)/∑xa,xb
Pr(xa,xb,xs), the LHS of Eq. (A.2) becomes

Pr(xa,xb | xs) =
Φ[xa,xs]Φ[xs]Φ[xs,xb]

∑xa,xb
Φ[xa,xs]Φ[xs]Φ[xs,xb]

=
Φ[xa,xs]

∑xa Φ[xa,xs]

Φ[xs,xb]

∑xb
Φ[xs,xb]

(A.3)

where we have used the following fact

∑
xa,xb

Φ[xa,xs]Φ[xs]Φ[xs,xb] = Φ[xs]

(
∑
xa

Φ[xa,xs]

)(
∑
xb

Φ[xs,xb]

)
(A.4)

To prove Pr(xa | xs) = Φ[xa,xs]/∑xa Φ[xa,xs], we need only to show Pr(xa | xs) ∝ Φ[xa,xs] since

the normalisation over xa is due to ∑xa Pr(xa|xs) = 1. Using the Bayes rule, we have

Pr(xa | xs) ∝ Pr(xa,xs) = ∑
xb

Pr(xa,xs,xb)

∝ Φ[xa,xs]Φ[xs]∑
xb

Φ[xs,xb]

∝ Φ[xa,xs] (A.5)

where we have ignored all the factors that do not depend on xa.785

A similar proof gives Pr(xb | xs) = Φ[xs,xb]/∑xb
Φ[xs,xb]. Combining this result and Eq. (A.5)

with Eq. (A.3) gives us Eq. (A.2). This completes the proof �

In fact, xs acts as a separator between xa and xb. In standard Markov networks there are no paths

from xa to xb that do not go through xs. Now we proceed to proving Propositions 1 and 2.

Given the symmetric Markov blanket Π
d,s
i: j , there are no potentials that are associated with vari-790

ables belonging to both ζ
d,s
i: j and ζ

d,s
i: j

. The blanket completely separates the ζ
d,s
i: j and ζ

d,s
i: j

. Therefore,

Lemma 1 ensures the conditional independence between ζ
d,s
i: j and ζ

d,s
i: j

.

Similarly, the asymmetric Markov blanket Γ
d,s
i: j (u) separates ζ

d,s
i: j (u) and ζ

d,s
i: j
(u) and thus these two

variable sets are conditionally independent due to Lemma 1 �

Appendix A.2. Proof of Proposition 3795

Here we want to derive Eqs. (28, 29 and 30). With the same conditions as in Lemma 1, in Eq. (A.5)

we have shown that Pr(xa | xs) ∝ Φ[xa,xs]. Similarly, this extends to

Pr
(

ζ
d,s
i: j |Π

d,s
i: j

)
∝ Φ

[
ζ

d,s
i: j ,Π

d,s
i: j

]
= Φ

[
ζ̂

d,s
i: j

]
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which is equivalent to

Pr
(

ζ
d,s
i: j |Π

d,s
i: j

)
=

1

∑
ζ

d,s
i: j

Φ

[
ζ̂

d,s
i: j

]Φ

[
ζ̂

d,s
i: j

]
=

1

∆
d,s
i: j

Φ

[
ζ̂

d,s
i: j

]
The last equation follows from the definition of the symmetric inside mass in Eq. (23). Similar proce-

dure will yield Eq. (29).800

To prove Eq. (30), notice the Eq. (19) that says

Pr(ζ ) = Pr
(

Π
d,s
i: j

)
Pr
(

ζ
d,s
i: j ] |Π

d,s
i: j

)
Pr
(

ζ
d,s
i: j
|Πd,s

i: j

)
(A.6)

or equivalently

Pr(Πd,s
i: j ) = Pr(ζ )

1

Pr
(

ζ
d,s
i: j |Π

d,s
i: j

) 1

Pr
(

ζ
d,s
i: j
|Πd,s

i: j

) (A.7)

∝ Φ[ζ ]
∆

d,s
i: j

Φ[ζ̂ d,s
i: j ]

Λ
d,s
i: j

Φ[ζ̂
d,s

i: j
]

(A.8)

= Φ[ζ̂ d,s
i: j ]R

d,s
i: j Φ[ζ̂

d,s

i: j
]

∆
d,s
i: j

Φ[ζ̂ d,s
i: j ]

Λ
d,s
i: j

Φ[ζ̂
d,s

i: j
]

(A.9)

= ∆
d,s
i: j Rd,s

i: j Λ
d,s
i: j (A.10)

In the proof proceeding, we have made use of the relation in Eq. (22). This completes the proof �

Appendix B. Computing state marginals

We are interested in computing the marginals of state variables Pr
(
xd

t
)
. We have805

Pr
(

xd
t

)
= ∑

ζ\xd
t

Pr
(

xd
t ,ζ\xd

t

)
= ∑

ζ

Pr(ζ )δ
[
xd

t ∈ ζ

]
=

1
Z ∑

ζ

Φ[ζ ]δ
[
xd

t ∈ ζ

]
(B.1)

Let s = xd
t and assume that the state s starts at i and end at j, and t ∈ [i, j]. For each configuration ζ

that respects this assumption, we have the factorisation of Eq. (22) that says

Φ[ζ ] = Φ

[
ζ̂

d,s
i: j

]
Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j (B.2)
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Then Eq. (B.1) becomes

Pr(xd
t = s) =

1
Z ∑

ζ

Φ

[
ζ̂

d,s
i: j

]
Φ

[
ζ̂

d,s

i: j

]
Rd,s

i: j δ [t ∈ [i, j]]

=
1
Z ∑

i∈[1,t]
∑

j∈[t,T ]
∆

d,s
i: j Λ

d,s
i: j Rd,s

i: j (B.3)

The summing over i and j is due to the fact that we do not know these indices.

There are two special cases, (1) when d = 1 we cannot scan the left and right indices, the marginals810

are simply

Pr(x1
t = s) =

1
Z

∆̂
1,s
1:T (B.4)

since Λ
1,s
1:T = 1 for all s ∈ S1; and (2) when d = D, the start and end times must be the same (i = j),

thus

Pr(xD
t = s) =

1
Z

Λ̂
D,s
t:t (B.5)

since ∆
D,s
t:t = 1 for all t ∈ [1,T ] and s ∈ SD.

Since ∑s∈Sd Pr
(
xd

t = s
)
= 1, it follows from Eq. (B.3) that815

Z = ∑
s∈Sd

∑
i∈[1,t]

∑
j∈[t,T ]

∆
d,s
i: j Λ

d,s
i: j Rd,s

i: j (B.6)

This turns out to be the most general way of computing the partition function. Some special cases

have been shown earlier. For example, when d = 1, i = 1 and j = T , Eq. (B.6) becomes Eq. (25) since

Λ
1,s
1:T = 1. Similarly, when d = D, i = j = t, Eq. (B.6) recovers Eq. (26) since ∆

D,s
i:i = 1.

Appendix C. Semi-Markov CRFs as a special case
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Figure C.13: The SemiCRFs in our contextual clique framework.

In this Appendix we show how to convert a semi-Markov CRF (SemiCRF) [8] into an HSCRF.820

SemiCRF is an interesting flat segmental undirected model that generalises the chain CRF. In the
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SemiCRF framework the Markov process operates at the segment level, where a segment is a non-

Markovian chain of nodes. A chain of segments is a Markov chain. However, since each segment can

potentially have arbitrary length, inference in SemiCRFs is more involved than the chain CRFs.

Represented in our HSCRF framework (Fig. C.13), each node xt of the SemiCRF is associated825

with an ending indicator et , with the following contextual cliques

• Segmental state, which corresponds to a single segment si: j and is essentially the state persis-

tence contextual clique in the context c = [ei−1: j = (1,0, ..,0,1)] in the HSCRF’s terminology.

• State transition, which is similar to the state transition contextual clique in the HSCRFs, corre-

sponding to the context c = [et = 1].830

Associated with the segmental state clique is the potential Rs
i: j, and with the state transition is the

potential As′,s,t , where s,s′ ∈ S, and S = {1,2, ...,K}.

A SemiCRF is a three-level HSCRF, where the root and bottom are dummy states. This gives

a simplified way to compute the partition function, ESS, and the MAP assignment using the AIO

algorithms. Thus, techniques developed in this paper for numerical scaling and partially observed data835

can be applied to the SemiCRF. To be more consistent with the literature of flat models such as HMMs

and CRFs, we call the asymmetric inside/outside masses by the forward/backward, respectively. Since

the model is flat, we do not need the inside and outside variables.

Forward

With some abuse of notation, let ζ s
1: j = (x1: j−1,e1: j−1,x j = s,e j = 1). In other words, there is a840

segment of state s ending at j. We write the forward αt(s) as

α j(s) = ∑
ζ s

1: j

Φ
[
ζ

s
1: j,z

]
(C.1)

As a result the partition function can be written in term of the forward as

Z(z) = ∑
ζ1:T

Φ [ζ1:T ,z] = ∑
s

∑
ζ s

1:T

Φ [ζ s
1:T ,z]

= ∑
s

αT (s) (C.2)

We now derive a recursive relation for the forward. Assume that the segment ending at j starts

somewhere at i∈ [1, j]. Then for i> 1, there exists the decomposition ζ s
1: j =

(
ζ s′

1:i−1,xi: j = s,ei: j−1 = 0
)
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for some s′, which leads to the following factorisation845

Φ
[
ζ

s
1: j,z

]
= Φ

[
ζ

s′
1:i−1

]
As′,s,i−1Rs

i: j (C.3)

The transition potential As′,s,i−1 occurs in the context c = [ei−1 = 1], and the segmental potential Rs
i: j

in the context c = [xi: j = s,ei−1 = 1,ei: j−1 = 0].

For i = 1, the factorisation reduces to Φ

[
ζ s

1: j,z
]
= Rs

1: j. Since we do not know the starting i, we

must consider all possible values in the interval [1, j. Thus, Eq. (C.1) can be rewritten as

α j(s) = ∑
i∈[2, j]

∑
s′

∑
ζ s′

1:i−1

Φ

[
ζ

s′
1:i−1

]
As′,s,i−1Rs

i: j +Rs
1: j (C.4)

= ∑
i∈[2, j]

∑
s′

αi−1(s′)As′,s,i−1Rs
i: j +Rs

1: j (C.5)

Backward850

The backward is the ‘mirrored’ version of the forward. In particular, let ζ
s
j:T

=(x j+1:T ,e j:T ,x j = s,e j−1 = 1).

and we define the backward βt(s) as

β j(s) = ∑
ζ

s
j:T

Φ

[
ζ

s
j:T
,z
]

(C.6)

Clearly, the partition function can be written in term of the backward as

Z(z) = ∑
s

β1(s) (C.7)

The recursive relation for the backward

βi(s) = ∑
j∈[i,T−1]

∑
s′

Rs
i: jAs,s′, jβ j+1(s′)+Rs

i:T (C.8)

Typically, we want to limit the segment to the maximum length of L ∈ [1,T ]. This limitation855

introduces some special cases when performing recursive computation of the forward and backward.

Eqs. (C.4 and C.8) are rewritten as follows

α j(s) = ∑
i∈[ j−L+1, j],i>1

∑
s′

αi−1(s′)As′,s,i−1Rs
i: j +Rs

1: j (C.9)

βi(s) = ∑
j∈[i,i+L−1], j<T

∑
s′

Rs
i: jAs,s′, jβ j+1(s′)+Rs

i:T (C.10)

Finally, we can extend the HSCRF straightforwardly by allowing the bottom level states to persist.

With this relaxation we have a nested semi-Markov CRF model in the sense that each segment in a

Markov chain is also a Markov chain of sub-segments.860
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