
A Tutorial on the Maths behind Conditional Random

Fields for Sequential Labelling

Tran The Truyen, Dinh Phung

Department of Computing

Curtin University of Technology

thetruyen.tran@postgrad.curtin.edu.au, d.phung@curtin.edu.au

April 8, 2008

Contents

1 Introduction 1

2 Dynamic Programming 2

2.1 The Sum-product Problem . 2
2.2 The Max-product Problem . 3

3 Markov Chains 5

3.1 Markov Assumption . 5
3.2 Joint Probability and Marginalisation . 5

4 Conditional Logistic Regression 6

5 Conditional Random Fields 8

5.1 Learning . 8
5.2 Decoding . 9

6 Final Notes 9

1 Introduction

This note describes the maths behind the Conditional Random Fields (CRFs) [4] for sequential la-
belling. In this type of problems, we are given a data sequence (e.g. a sentence, a Web page, or a se-
quence of signal measures) and we need to provide labels for each data point in the sequence. Often
labels are drawn from a �xed set. For example, the set may include {DATE,PERSON,LOCATION,JOB}
for a typical named entity recognition (NER) task; {GOOD,PRICE,SIZE} for a commercial informa-
tion extraction application.

CRFs are a powerful machinery with wide range of applications. It is a right combination of
several well-known components from di�erent �elds

• Dynamic programming, a subject of discrete maths

• Markov chains, an intersection between probability theory and graph theory

• Conditional logistic regression, a subject of statistics

1

• Large-scale numerical optimisation

• Computer - without this, CRFs would not be implemented e�ciently for real world applica-
tions

We assume readers are familiar with college maths and computational techniques. We will approach
the CRFs from its components �rst and then build up the �nal model last.

2 Dynamic Programming

Dynamic programming refers to a practice in which large problem is decomposed into smaller
parts, and we reuse the part's results to compute the �nal output. Here, we are interested in two
problems: �nding (i) the sum and (ii) the max of the product of functions.

2.1 The Sum-product Problem

A simple example

Let us consider the following problem. We are given three variables x1, x2, x3 and two positive1

functions ψ1(x1, x2) and ψ2(x2, x3). Each of the three variables can receive 105 discrete values.
The task is to compute

Z =
∑
x1

∑
x2

∑
x3

ψ2(x2, x3)ψ1(x1, x2)

It can be seen that, brute-force approach would require 105×3 sum operations, which is clearly
quite expensive. However, since we do not have to deal with three variables at once, we can exploit
the distributive property of the summation

Z =
∑
x3

∑
x2

ψ2(x2, x3)

(∑
x1

ψ1(x1, x2)α1[x1]

)

=
∑
x3

(∑
x2

ψ2(x2, x3)α2[x2]

)
=

∑
x3

α3[x3]

where α1[x1] = 1 for all x1, α2[x2] =
∑

x1
ψ1(x1, x2)α1[x1] and α3[x3] =

∑
x2 ψ2(x2, x3)α2[x2].

Here we do three summations one-by-one, each step takes 105 operations, thus the total time
is 105 + 2× 105 × 105 operations.

This illustrates the main idea behind dynamic programming: we �rst deal with the sub-problems
α1[x1], α2[x2] and α3[x3] and then pass the result up to the large problems.

Generalisation

This trick can generalise easily given that we want to sum over more than three variables and
to deal with the product of more than two pairwise functions. Note that the functions must be
pairwise for the trick to work.

For simplicity, assume that the variables receive values from the same set S. Each variable can
be assigned to one of |S| values, and we have T variables. We want to compute

Z =
∑
x1

∑
x2

· · ·
∑
xT

 ∏
t∈[1,T−1]

ψt(xt, xt+1)

 (1)

1Although we do not use this positivity, it is included here to be consistent with those used in CRFs.

2

We need an extra variable to simplify the presentation. Let αt[xt] be variables to hold results
of the sub-problem at step t. Let α1[x1] = 1. For t > 1, we have

α2[x2] =
∑
x1

ψ1(x1, x2)α1[x1] (2)

α3[x3] =
∑
x2

ψ2(x2, x3)α2[x2] (3)

...

αt[xt] =
∑
xt−1

ψt−1(xt−1, xt)αt−1[xt−1] (4)

At the end of the sequence

Z =
∑
xT

αT [xT]

Thus, the overall cost is |S|+ (T − 1)× |S|2 operations.
Indeed αt[xt] are sometimes called the forward variables. Since the chain is undirected, we may

want to use a symmetric version of the forward which we will call the backward variables, denoted
by βt[xt]. That is, βT [xT] = 1 for all xT ∈ S and the recursive relations for t < T are almost
identical to those in Equations 2-4

βt[xt] =
∑
xt+1

ψt(xt, xt+1)βt+1[xt+1]

2.2 The Max-product Problem

We are now interested in a slightly di�erent problem. Instead of computing the sum of product of
pairwise functions, we want to �nd the maximal set of variable assignments, that is

(x∗1, x
∗
2, ..., x

∗
T) = arg max

x1,x2,...,xT

 ∏
t∈[1,T−1]

ψt(xt, xt+1)

Some of you may have recognised, this is actually a discrete combinatorial optimisation problem.

This can be rewritten in the min-sum form

(x∗1, x
∗
2, ..., x

∗
T) = arg min

x1,x2,...,xT

 ∑
t∈[1,T−1]

− logψt(xt, xt+1)

The three variable problem

Let us start with the base-case of this problem in that there are only three variables x1, x2, x3. Let
α∗1[x1] = 1 for all x1 ∈ S. Now we �rst �nd the maximal value of the product of functions

Φ∗ = max
x1

max
x2

max
x3

(
ψ2(x2, x3)ψ1(x1, x2)

)
= max

x3
max

x2

(
ψ2(x2, x3)

(
max

x1
ψ1(x1, x2)α∗1[x1]

))
= max

x3

(
max

x2

(
ψ2(x2, x3)α∗2[x2]

))
= max

x3
α∗3[x3] (5)

3

where α∗2[x2] = maxx1

(
ψ1(x1, x2)α∗1[x1]

)
and α∗3[x3] = maxx2

(
ψ2(x2, x3)α∗2[x2]

)
.

However, what we are really interested in is not the maximum product, but the maximal set of
variable assignments x∗1, x

∗
2, x
∗
3. Since maxx3 α

∗
3[x3] is the maximum of the product, the maximal

assignment of x3 must be

x∗3 = arg max
x3

α∗3[x3]

The next question is how to get x∗1, x
∗
2. Let us return back, and let us introduce some bookkeepers

Y2[x2] = arg max
x1

(
ψ1(x1, x2)α∗1[x1]

)
Y3[x3] = arg max

x2

(
ψ2(x2, x3)α∗2[x2]

)
where Y2[x2] and Y3[x3] may store more than one variables.

It follows that x∗2 ∈ Y [x∗3]. To see why, let assume that x∗2 /∈ Y [x∗3] then

α∗3(x∗3) = max
x2

(
ψ2(x2, x

∗
3)α∗2[x2]

)
= ψ2(Y3[x∗3], x∗3)α∗2[Y3(x∗3)]
< ψ2(x∗2, x

∗
3)α∗2(x∗2)

= ψ2(x∗2, x
∗
3) max

x1

(
ψ1(x1, x

∗
2)α∗1[x1]

)
= ψ2(x∗2, x

∗
3)ψ1(x∗1, x

∗
2)

= Φ∗

which clearly contradicts Equation 5 that says Φ∗ = α∗3[x∗3]. A similar argument leads to x∗1 ∈
Y [x∗2].

Generalisation

The procedure above can be generalised into arbitrary number of variables. There are two steps

• The maximisation step, where the forward variables are computed and bookkeepers are �lled.

• The backtracking step, where we decode the maximal variable assignments

Let α∗t [xt] be variables to hold results of the sub-problem at step t. For t > 1, we have

α∗t [xt] = max
xt−1

(
ψt−1(xt−1, xt)α∗t−1[xt−1]

)
(6)

and the bookkeepers

Yt[xt] = arg max
xt−1

(
ψt−1(xt−1, xt)α∗t−1[xt−1]

)
We now backtrack to decode the maximal variables

x∗T = arg max
xT

α∗T [xT]

x∗t ∈ Yt+1[x∗t+1], for t ∈ [1, T − 1]

4

3 Markov Chains

3.1 Markov Assumption

Say we want to understand the evolution of some system over discrete time steps. At a particular
time step t − 1, the system is characterised by a state xt−1. At the next time step t, the state
changes to xt. Normally, the new state should depend on all of the previous states x1, x2, ..., xt−1

and the states after xt+1, xt+2, However, this is a too strong assumption, because we never know
how long the evolution will last. Modelling such dependency will be too hard for even simplest
problems. The simplest assumption is to say that xt only depends on xt−1, xt+1 and nothing else!
This is called the Markov assumption. Although it is simplistic, we will stick with it because
luckily, it has actually been proven to be very useful.

A Markov chain is a representation of temporal evolution with Markov assumption. Given that
we have T states, then we assume that xt only depends on xt−1 and xt+1. Formally, this is realised
by

P (xt|x1, x2, ..., xt−1,xt+1, ..., xT) = P (xt|xt−1,xt+1)

Let x = (x1, x2, ..., xT) be the joint variable. If each the element variable takes discrete values
from the set S of size |S| then x takes values from the exponential set of size |S|T , which is the
number of all possible assignments of the sequence (x1, x2, ..., xT).

There exists a theorem of Hammersley-Cli�ord [5] that basically says that in order to satisfy
the Markov assumption, the system must respect the following distribution

P (x) =
1
Z

Φ(x)

=
1
Z

∏
t∈[1,T−1]

ψt(xt, xt+1)

where ψt(xt, xt+1) are non-negative functions

Φ(x) =
∏

t∈[1,T−1]

ψt(xt, xt+1) (7)

and
Z =

∑
x

∏
t∈[1,T−1]

ψt(xt, xt+1) (8)

Thus Z is the normalisation constant, also known as the partition function. Note that Z is a sum
over exponentially many variable assignments. Fortunately, Z has the sum-product form, which
we have computed in O(T |S|2) steps in Section 2.1.

3.2 Joint Probability and Marginalisation

Given P (x) as a distribution, the probability of a subset xc of x is given as

P (xc) =
∑
x\xc

P (x)

where x\xc denotes the remaining element variables beside xc. This summation is sometimes
called marginalisation. Computing probability of arbitrary subset xc may not easy, but we often
need only the singleton marginal P (xt) and the pairwise marginal P (xt, xt+1). Let us start with
P (xt, xt+1) and leave P (xt) for readers.

5

Let us return to the set of Equations 2-4. Substituting αt−1[xt−1] into αt[xt], and αt−2[xt−2]
into αt−1[xt−1], and so on we have

αt[xt] =
∑

x1:t−1

[∏
i∈[2,t]

ψi−1(xi−1, xi)
]

A similar trick gives us

βt[xt] =
∑

xt+1:T

[∏
j∈[t+1,T]

ψj−1(xj−1, xj)
]

Denote by xi:j as a shorthand for (xi, xi+1, ..., xj). Now we proceed to compute P (xt)

P (xt, xt+1) =
∑

x1:t−1,xt+2:T

Pr(x)

∝
∑

x1:t−1,xt+2:T

Φ(x1:T) (9)

Let Z(xt, xt+1) =
∑

x1:t−1,xt+2:T
Φ(x1:T). By rearranging the factors in the RHS of Equation 7, we

have

Φ(x) =
[∏

i∈[2,t]

ψi−1(xi−1, xi)
]
ψt(xt, xt+1)

[∏
j∈[t+2,T]

ψj−1(xj−1, xj)
]

then Z(xt, xt+1) can be written as

Z(xt, xt+1) =

 ∑
x1:t−1

[∏
i∈[2,t]

ψi−1(xi−1, xi)
]× ψt(xt, xt+1)×

×

 ∑
xt+2:T

[∏
j∈[t+2,T]

ψj−1(xj−1, xj)
]

∝ αt[xt]ψt(xt, xt+1)βt+1[xt+1] (10)

In other words, we have

P (xt, xt+1) = κtαt[xt]ψt(xt, xt+1)βt+1[xt+1] (11)

where κt are appropriate normalisation constants to ensure
∑

xt,xt+1
P (xt, xt+1) = 1.

4 Conditional Logistic Regression

Let x and z be the random variables of interest, and f1(x, z), f2(x, z), ..., fK(x, z) are some real
functions known as features. In our cases, we are mainly interested in discrete x while z can be
anything and is always observed. In our applications, z plays the role of the raw data (e.g. text),
while x plays the role of semantics (e.g. text categories like SCIENCE, SPORT or CAR) extracted from
the data.

Assume that (x, z) are jointly generated by some unknown distribution P (x, z). From the
standard probability theory, we have the following factorisation

P (x, z) = P (x|z)P (z)

6

Here, we are not really interested in modelling P (z). We want to model P (x|z) as a distribution
of the following parametric form

P (x|z,w) =
1

Z(z)
exp(

∑
k∈[1,K]

wkfk(x, z)) (12)

where Z(z) =
∑

x exp(
∑

k∈[1,K] wkfk(x, z)) is the normalisation constant and w = (w1, w2, ..., wK)
are the weights of corresponding features (f1(x, z), f2(x, z), ..., fK(x, z)). The weight wk speci�es
how much the feature fk(x, z) contributes to the model probability.

How do we get the weights? If we have a good understanding of the domain, then we may
manually specify the weights. But it is not generally the case. Fortunately, what we often have a
set of observed values of the random variable D = (x̃1, z1); (x̃2, z2); ...; (x̃D, zD). For the modelling
purpose, we assume that these values are independently randomly drawn from the distribution
P (x, z).

A theoretically sound method to estimate wk is to �nd the optimal w∗k that helps to maximise
the (log) likelihood of the observation

w∗ = arg max
w
L(w), where

L(w) =
1
D

log
∏

d∈[1,D]

P (x̃d|zd,w)

=
1
D

∑
d∈[1,D]

logP (x̃d|zd,w)

=
1
D

∑
d∈[1,D]

 ∑
k∈[1,K]

wkfk(x̃d, zd)− logZ(zd)

 (13)

There exists several e�cient methods to �nd the maximum likelihood solution including the scaling
methods like Generalised Iterative Scaling (GIS) [2], the Improved Iterative Scaling (IIS) [1], and
gradient-based methods like Conjugate Gradients (CG) [3] and L-BFGS [6]. See [7] for a compar-
ison. The most e�cient methods are gradient-based, in that they seek to solve the zero gradient
problem

∂L
∂wk

=
1
D

∑
d∈[1,D]

fk(x̃d, zd)− 1
Z(zd)

∑
x

exp(
∑

k∈[1,K]

wkfk(x, zd))fk(x, zd)

=

1
D

∑
d∈[1,D]

(
fk(x̃d, zd)−

∑
x

P (x|zd)fk(x, zd)

)
(14)

= Ẽ[fk]− E[fk]
= 0

where

Ẽ[fk] =
1
D

∑
d∈[1,D]

fk(x̃d, zd)

E[fk] =
1
D

∑
d∈[1,D]

∑
x

P (x|zd)fk(x, zd)

Since Ẽ[fk] depends only on the observed data, it is sometimes called the empirical feature expec-
tation. Likewise, E[fk] is known as model feature expectation.

7

5 Conditional Random Fields

We now have enough ingredients to build up the Conditional Random Fields (CRFs). A CRF, in
essence, is a combination of undirected Markov chain and conditional logistic regression. Undi-
rected Markov chain is used to model the sequential structure of x and conditional logistic regression
is used to derive the parametric forms. As before, we are given z as observed raw data, and x to
be the semantics (or patterns) to be extracted from x.

More speci�cally, for each z, we assume that x when conditioned on z is a undirected Markov
chain

P (x|z) =
1

Z(z)

∏
t∈[1,T−1]

ψt(xt, xt+1, z) (15)

where Z(z) =
∑

x

∏
t∈[1,T−1] ψt(xt, xt+1, z) and all of these conditional distributions share the

same parameter set w

ψt(xt, xt+1, z) = exp(
∑

k∈[1,K]

wkfk(xt, xt+1, z))

Let Fk(x, z) =
∑

t∈[1,T−1] fk(xt, xt+1, z). Equation 15 reduces to

P (x|z) =
1

Z(z)
exp(

∑
t∈[1,T−1]

∑
k∈[1,K]

wkfk(xt, xt+1, z))

=
1

Z(z)
exp(

∑
k∈[1,K]

wkFk(xt, xt+1, z))

which is essentially the conditional logistic regression in Equation 12.
There are two main problems associated with CRFs (and any statistical pattern recognition

methods in general)

• Learning : this is to estimate the parameter w using an observed dataset

• Decoding : this is to �nd the optimal pattern x∗ = (x∗1, x
∗
2, ..., x

∗
T) for a given raw data z.

5.1 Learning

As before, given a dataset D = (x̃1, z1); (x̃2, z2); ...; (x̃D, zD), we want to estimate the parameter w
using the maximum likelihood method. Since the CRF is actually a conditional logistic regression,
learning using gradients requires to evaluate two main quantities

• The log-likelihood of the data as in Equation 13.

• The gradient of the log-likelihood as in Equation 14.

Computing the log-likelihood in turns requires the normalisation constants Z(zd) for each observ-
able zd. We have

Z(z) =
∑
x1

∑
x2

· · ·
∑
xT

∏
t∈[1,T−1]

ψt(xt, xt+1, z)

which is essentially the sum-product form in Equation 1.
The gradient of the log-likelihood has two parts: the empirical expectation of feature Ẽ[Fk] and

the model expectation E[Fk]. The empirical expectation is straightforward to compute

Ẽ[Fk] =
1
D

∑
d∈[1,D]

∑
t∈[1,T−1]

fk(x̃t, x̃t+1, z
d)

8

The model expectation can be expanded as

E[fk] =
1
D

∑
d∈[1,D]

∑
x

P (x|zd)
∑

t∈[1,T−1]

fk(xt, xt+1, z
d)

=
1
D

∑
d∈[1,D]

∑
x

P (x|zd)
∑

t∈[1,T−1]

fk(xt, xt+1, z
d)

=
1
D

∑
d∈[1,D]

∑
t∈[1,T−1]

∑
xt,xt+1

P (xt, xt+1|zd)fk(xt, xt+1, z
d)

Thus the model expectation depends on P (xt, xt+1|zd) which we know how to compute e�ciently
in Section 3.2.

5.2 Decoding

Once the parameter has bee estimated, at test time, we are given raw data z and need to �nd the
optimal x∗ in the following sense

x∗ = arg max
x

P (x|z)

which translates to
x∗ = arg max

x

∏
t∈[1,T−1]

ψt(xt, xt+1, z)

which is essentially the max-product problem described in Section 2.2.

6 Final Notes

CRFs are not an overnight invention. It is basically a conditional version of Markov random �elds
(MRFs) [5] - a well-known representation scheme for stochastic patterns. CRFs are not limited to
sequential problems. It can be applied to anything where MRFs are able to represent. If we use
MRFs to represent relational data, then we will get the Relational Markov Networks [9][8].

References

[1] Adam Berger. The Improved Iterative Scaling algorithm: A gentle introduction. URL:
http://www.cs.cmu.edu/afs/cs/user/aberger/ www/ps/scaling.ps, 1997.

[2] J. Darroch and D. Ratcli�. Generalized iterative scaling for log-linear models. The Annals of
Mathematical Statistics, 42:1470�1480, 1972.

[3] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49(6):409�436, 1952.

[4] J. La�erty, A. McCallum, and F. Pereira. Conditional random �elds: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the International Conference on
Machine learning (ICML), pages 282�289, 2001.

[5] S.L. Lauritzen. Graphical Models. Oxford Science Publications, 1996.

[6] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45:503�528, 1989.

9

[7] Robert Malouf. A comparison of algorithms for Maximum Entropy parameter estimation. In
Dan Roth and Antal van den Bosch, editors, Proceedings of the 6th Conference on Natural
Language Learning (CoNLL), pages 49�55, Taipei, 2002.

[8] Charles Sutton and Andrew McCallum. An introduction to conditional random �elds for
relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational
Learning, chapter 4, pages 93�128. MIT Press, 2006.

[9] B. Taskar, A. Pieter, and D. Koller. Discriminative probabilistic models for relational data.
In Proceedings of the 18th Conference on Uncertainty in Arti�cial Intelligence (UAI), pages
485�49. Morgan Kaufmann, 2002.

10

