
A Practitioner Guide to Conditional Random Fields for

Sequential Labelling

Tran The Truyen, Dinh Phung

Department of Computing

Curtin University of Technology

thetruyen.tran@postgrad.curtin.edu.au, d.phung@curtin.edu.au

April 18, 2008

Contents

1 Introduction 2

2 The Sequential Labelling Problem 2

2.1 The Statistical Pattern Recognition Approach . 2
2.2 Some Notations . 3
2.3 CRFs for Sequential Labelling (CRF-SL) . 3

3 Feature Extraction 4

3.1 Feature APIs . 4
3.2 Node Feature . 4
3.3 Edge Feature . 5
3.4 Feature Selection . 5

4 The Training Phase 5

4.1 Numerical Optimisation . 5
4.2 Computing the Log-likelihood and Its Gradient . 7
4.3 The Forward Pass . 7
4.4 The Backward Pass . 7
4.5 Local Probabilities . 8
4.6 Put Everything Together . 8

5 The Testing Phase 8

5.1 The Maximal Forward Pass . 9
5.2 Backtracking . 9

6 Other Practical Issues 9

6.1 Trade-o� between Time and Space . 9
6.2 Build and Test . 10
6.3 Parallel Implementation . 10

7 Case Study: Noun-Phrase Chunking 10

8 Conclusion 11

1

1 Introduction

There has been much interest in Conditional Random Fields (CRFs) [4], a recent advance in
statistical machine learning. Its applications are wide, ranging from information extraction to
computer vision. For those familiar with neural networks, here is the link: if neural networks can
recognise a single digit, the CRFs can recognise a sequence of digits at the same time. However,
this power does come with a price: its formulation requires some understanding of probability
theory and dynamic programming, which may not readily available for most programmers.

This introduction is meant to give a practical tutorial for those who want to implement CRFs
without deep understanding of the theories. For general introduction, please see [10].

2 The Sequential Labelling Problem

This note focuses on the simplest labelling problem that involves sequential data. This type of
data is very popular in the real world. For example, in a natural language processing task known
as noun-phrase (NP) chunking, we are given a sentence, or a sequence of words, we want to provide
correct phrasal labels for each word. In our case, the phrasal labels are B-NP for begin-noun-phrase,
I-NP for inside-noun-phase and O for others. For instant, a labelled sentence in the CoNLL2000
dataset [8] reads:

Chancellor/O of/O the/B-NP Exchequer/I-NP Nigel/B-NP Lawson/I-NP 's/B-NP restated/I-NP
commitment/I-NP to/O a/B-NP �rm/I-NP monetary/I-NP policy/I-NP has/O helped/O to/O pre-
vent/O a/B-NP freefall/I-NP in/O sterling/B-NP over/O the/B-NP past/I-NP week/I-NP ./O

This problem may appear straightforward on the surface because we can always manually
specify textual patterns that correspond to certain labels. However, this quickly becomes a very
time-consuming approach because the texts are often highly ambiguous. For example, the word
restated may refer to a verb in the past tense, but it is inside a noun-phrase in this case. We may
have to create millions of patterns. The second problem is that even if the patterns are available,
they may con�ict with each other. In some cases, we have to rely on the fact that some patterns
are more likely to occur than others. Such `likelihood' suggests a better approach: we should rely
on the statistical properties of the labels given the text. This is the foundation of the CRFs.

2.1 The Statistical Pattern Recognition Approach

In the statistical pattern recognition approach, there are two phases:

• In the training phase, we are given a dataset with labels. Then we collect the statistical
properties of the raw data and the association patterns between these statistics with the
known labels. Typically, in a long data sequence, we extract only the local patterns around
each position. These patterns are then weighed in a process known as learning (or parameter
estimation). The resulting local patterns and their parameters are collectively called a model.

• In the testing phase, we are given the raw data and ask the trained model to output the
labels.

It may appear that this approach takes too much time to manually prepare the training data.
However, giving the labels typically does not require programming knowledge, and anyone familiar
with the domain can do. For example, in information extraction, most adults can easily give
correct labels after some initial guidance. Second, this training data is independent of any speci�c
modelling methods or training algorithms.

2

2.2 Some Notations

Denote by z the data and x = (x1, x2, ..., xT) the sequence of labels of length T . The subscript
t ∈ [1, T] will be referred to as time, even though our data may have nothing to do with time.

2.3 CRFs for Sequential Labelling (CRF-SL)

z

i x i+1x

Figure 1: A CRF for sequential labelling. Empty circles denote state variables x and �lled circle
denotes data z.

A CRF-SL is a formulation that supports joint modelling of the data and its sequential labels.
Formally, x given z is represented by a undirected Markov chain1. The conditional probability of
x given z is de�ned as

P (x|z) =
1

Z(z)

∏
c

ψc(xc, z)

where ψc(xc, z) are positive functions known as potentials, and Z(z) =
∑

x

∏
c ψc(xc, z) is the

normalisation constant known as the partition-function.
In a typical implementation, there are two types of potentials:

• The node potential φt(xt, z) takes care of the label xt at time t. This usually accounts
for the contribution of the local information around time t in the global model. It can be
implemented as a 2D array of size S × T .

• The edge potential ψt(xt, xt+1, z) realises the relationship between the two nearby labels xt

and xt+1. We may not need the data z, and sometimes, this does not even depend on time t.
If the data is involved, then we can implement it as a 3D array of size S×S×T . Otherwise,
a 2D array of size S × S is needed.

The potentials refer to some quantities that tie the labels and the local data patterns at particular
time together. The data patterns are commonly known as features in the CRF literature. In the
simplest case which is often used in practice, potentials are exponential of sum of weighted features.
The node potential is given as

φt(xt, z) = exp(
∑

k

wkfk(xt, z, t)) (1)

The edge potential is formally computed as

ψt(xt, xt+1, z) = exp(
∑

k

wkfk(xt, xt+1, z, t)) (2)

In a typical implementation of CRFs, once the labelled data is available for training, we often
have to perform the following tasks:

1. Extracting features from training data.

2. Formulating the data likelihood and maximising it to obtain the parameters.

3. Using the learnt parameters, performing feature extracting in the test data, and decoding
the best label sequence for each test data instance.

1A undirected chain is Markovian if P (xt|x1, x2, ..., xt−1, xt+1, ..., xT) = P (xt|xt−1, xt+1). In words, a variable,
when given its neighbours, does not depend on the rest.

3

3 Feature Extraction

3.1 Feature APIs

Features are perhaps the most important element of the model. Good feature engineering can
often increase the labelling accuracy very signi�cantly. Feature extraction may follow certain basic
rules, which are application speci�c. However, the common practice is to deal with a segment of
raw data falling within a window of length W . For information extraction, W may range from 3 to
11. So typically, at a particular time t, we have a vector of features. The size of the vector greatly
varies with applications. In chunking tasks, the vector size may be up to several millions [9] but it
may be few hundreds in speech recognition.

In typically implementation, there is a function of input called data pattern gm(z, t) that takes
care of the raw data and returns a (real or binary) value. For example, in noun-phrase chunking,
we may have a feature

g100(z, 10) =

{
1 z9 = today.

0 otherwise

that is, the 100th data feature receives value of 1 at current time t = 10 if the previous word is
today.

Since the number of patterns may be potentially very large, representing the whole pattern
vector at each time is not desirable. We should, however, implement a spare vector in that only
non-empty patterns and their indices are stored. So we assume that there exists an API equivalent
to

getNextDataPattern(int dataID, int t)

This function returns both the data pattern value ant its index, where dataID is the index of
the data instance and t is the time index.

Once data patterns are extracted, we need to associate them with labels to make up the model
features. Usually, one of the following associations is implemented:

• Node association that is realised in the node feature fk(xt, z, t) which takes into account the
current label xt and an element of gm(z, t).

• Edge association that is realised in the edge features fk(xt, xt+1, z, t) which takes into account
the two nearby labels xt and xt+1 and an element of gm(z, t).

3.2 Node Feature

Depending on the role of the node, we may associate it with data patterns in that the node feature
is given as

fk(xt, z, t) = δ[xt, s]gm(z, t) (3)

where δ[xt, s] returns 1 if xt = s and 0 otherwise. Continued from the previous example, we may
have

f1000(x10, z, 10) =

{
g100(z, 10) x10 = B-NP

0 otherwise

that is, the 1000th node feature received a value returned by g100(z, 10) if the current label is B-NP.
Here s is any label in the label set. So the number of node features will be S ×M , where M is

the number of data patterns. We do not usually need to store the fk. Instead, whenever we need
to use fk, we repeatedly call getNextDataPattern(int dataID, int t) until a NULL is returned.

If we need only to account for the label bias, and leave the data association to the edge, then
we need only the following node feature

fk(xt, z, t) = δ[xt, s]

4

3.3 Edge Feature

The simplest implementation of edge feature is not to implement anything! This is because we
need only indicator function:

fk(xt, xt+1, z, t) = δ[xt, s]δ[xt+1, s
′] (4)

This does not depend on time t nor data z. So simply, the edge feature set is just an identity
matrix of size S × S. For example, we choose

f9(x10, x11z, 10) =

{
1 x10 = B-NP&x11 = I-NP

0 otherwise

This models co-occurrence patterns of label pairs. This is important to capture the strong relations
between label pairs, like those in the noun-phrase chunking example: I-NP must follow B-NP.

Another option is to choose

fk(xt, xt+1, z, t) = δ[xt, xt+1] (5)

which models the continuity of labels. This may be suitable for problems where the same label
persists for a long time, like those in activity recognition. This special feature also enables the fast
computation: the complexity is O(ST) rather than O(S2T).

However, if we believe that data association to the node may not enough to capture the rela-
tionship between data and labels then we may want to tie up the transition from xt to xt+1 and
the data. The typically implementation is

fk(xt, xt+1, z, t) = δ[xt, s]δ[xt+1, s
′]gm(z, t) (6)

For example, the feature may be

f10000(x10, x11, z, 10) =

{
g100(z, 10) x10 = B-NP&x11 = I-NP

0 otherwise

As with node features, we do not need store fk(xt, xt+1, z, t) but rather repeatedly call
getNextDataPattern(int dataID, int t) until a NULL is returned.

3.4 Feature Selection

Since our method relies on statistical properties of the data, for the model to work e�ectively,
features need to occur in the training data frequently. Rare features may degrade the performance
of the model. The easiest way is to keep only those features with occurrences larger than a
threshold. In many cases, if often results in a compact feature set and improves the performance.
A typical threshold is 4.

4 The Training Phase

We a given a set of D data instances of the form (x̃d, zd) for d ∈ [1, D], where zd is the raw
input and x̃d is the label sequence. Except for the numerical optimisation described in the next
subsection, we deal with each data instance separately so we drop the superscript d for clarity.

4.1 Numerical Optimisation

Numerical optimisation refers to the process of �nding the optimal point of a given function. In
our cases, the function is the log-likelihood, a quantity that characterises how much the current
parameters are supported by the training data. Maximising the log-likelihood means �nding the

5

optimal parameters so that the support by the training data is strongest. Since there is no direct
algebraic solution for this maximisation problem, we rely on iterative method to improve the
log-likelihood step-by-step. Typically, numerical optimisation methods require two elements: the
evaluation of the log-likelihood and its gradient at a particular parameter. We will show how to
compute these two quantities in the next subsections.

Limited memory quasi-Newton method

Theoretically any optimisation methods that are capable of �nding the locally optimal solution
for a function will do. In practice, however, most CRFs implementation use a method known as
L-BFGS, after the work of [9]. We will not go into the details of the methods and assume that
there exists an e�cient implementation for you to use. L-BFGS is an iterative method in that each
step the objective function is improved. So we need to know when to stop the improvement loop.
Typically, we set some thresholds on the number of steps (e.g. ≥ 500) or the relative improvement
of the objective function (e.g. ≤ 10−5).

Stochastic gradient method

For those who do not want to deal with other people's implementation of L-BFGS, there is a simple
but e�ective alternative [12]. Unlike L-BFGS which requires to loop through all the data in one
integration before updating the parameters, we can update the parameters after seeing only one
data instance

wk ← wk + ωGz
k

where Gz
k is the kth element of the gradient of the log-likelihood (see Equations 8 and 9) with

respect to the data instance z and ω > 0 is the learning rate. This is an example of online
learning, where we update parameters as new data arrives. Typically, we choose ω ∈ [0.001, 0.1].
This method is fast and easy to implement but its �nal performance may be slightly less than
the L-BFGS. The number of iterations through the training data is quite small, about 5 − 20 in
practice. However, this method is potentially unstable numerically. So use it with care or use it
for pilot study.

Voted perceptron

Voted perceptron (VP) was originated in [7, 3] for general classi�ers and adapted in [2] for classi�ers
with structured output patterns. The perceptron family aims to �nd classi�ers that can achieve
zeros errors in training data, and thus hope to achieve the similar performance in unseen data.

Perceptron is another example of online learning. First, it tries to predict the label sequence
x∗ (using techniques described in Section 5) for the instance z and then checks if x∗ 6= x̃. The
parameters are updated as follows

wk ← wk + ω
∑

t∈[1,T]

(
fk(x̃t, z, t)− fk(x∗t , z, t)

)

wk′ ← wk′ + ω
∑

t∈[1,T−1]

(
fk′(x̃t, x̃t+1, z, t)− fk′(x∗t , x

∗
t+1, z, t)

)
for any ω > 0. Typically we choose a small ω for numerical stability (e.g. ω ∈ [0.001, 0.01]). The
data is passed through multiple times until all predicted labels are correct, or until time runs out.

As proposed in [2], we may want to use the average of these parameters over all steps for
prediction rather than the parameter at the last step. The idea is that we consider the model
learned at each step is an `expert' and the �nal model is the `voted' version of all experts. This
technique appears to improve the prediction accuracy and is more stable.

In general, voted perceptron may be slightly less accurate that the maximum likelihood methods
but it is quite fast (about 5-10 times faster) and is easy to implement. So it may be a good candidate
for system testing purposes.

6

4.2 Computing the Log-likelihood and Its Gradient

The log-likelihood is the quantity we want to optimise in the learning process. It is given as

L =
∑

t∈[1,T]

∑
k

wkfk(x̃t, z, t)−
∑

t∈[1,T−1]

∑
k′

wk′fk′(x̃t, x̃t+1, z, t)− logZ(z)−
∑

k

w2
k

2σ2
(7)

where Z(z) is a special quantity known as partition function with respect to the input z, and σ is
the standard deviation of the Gaussian distribution. The last term is to `regularise' the objective
function as it penalises large parameter wk. Choosing the right σ often requires trials-and-errors,
probably through di�erent values like 0.1, 10, and 10.

The gradient is given

Gz
k =

∑
t∈[1,T]

(
fk(t)−

∑
xt

Pt(xt|z)fk(xt, z, t)

)
− wk

σ2
(8)

Gz
k′ =

∑
t∈[1,T−1]

fk′(x̃t, x̃t+1, z, t)−
∑
xt

∑
xt+1

Pt(xt, xt+1|z)fk′(xt, xt+1, z, t)

− wk′

σ2
(9)

where Pt(xt|z) is the probability of the label xt occurs at time t given the data instance z. This
can be implemented as a 2D array of size S × T z. Likewise, Pt(xt, xt+1|z) is the probability that
both the labels xt and xt+1 co-occur at time t and t+1, respectively. This can be implemented as
a 3D array of size S × S × T z. The two arrays are computed in a two-pass procedure through the
data sequence. This procedure is known as forward-backward.

In the case where each node feature k is associated with only one assignment of xt (as in
Equation 3) then we do not need to make the sum over xt in Equation 8. Likewise, if each edge
feature k′ is associated with the assignments of the pair (xt, xt+1) (as in Equations 4 and 6) then
we can drop the sum over xt and xt+1 in Equation 9.

4.3 The Forward Pass

The forward-pass refers to the scanning from time t = 1 to time t = T . At the end of the pass,
we are able to compute the partition function Z. We need another pass in the reverse order to
compute all the local probabilities.

Assume that we have computed all the local potentials φt(xt, z) and ψt(xt, xt+1, z). We need
a bookkeeper known as the forward variable, denoted by αt[xt]. This is a 2D array of size S × T .
When t = 1, we initialise α1(x1) = 1/S for all labels x1. When t > 2, we have the following
recursion

αt[xt] = κt

∑
xt−1

αt−1[xt−1)]φ(xt, z)ψt−1(xt−1, xt, z) (10)

where κt > 0 is the scaling factor. This is important to avoid the so-call numerical over�ow problem
which happens when T is large. Typically, we set κt so that

∑
xt
αt[xt] = 1.

That is, for each xt, we need to sum over all the previous labels xt−1. So to �ll in the forward
bookkeeper, we need S × S × T steps.

The log-partition function can be computed as

logZ(z) =
∑

t∈[1,T]

log κt + log
∑
xT

αT [xT]φT (xT , z) (11)

4.4 The Backward Pass

The backward pass is almost identical to the forward pass. The only di�erence is that we scan from
time t = T to time t = 1. We also need to maintain a 2D array bookkeeper known as backward

7

Algorithm 1 Computing log-likelihood and gradient

Input: data patterns APIs, parameter vector w
Output: real evaluation of log-likelihood and gradient vector

For d = 1 to D

Compute the node potentials φt(xt, z) for t ∈ [1, T] using Equation 1

Compute the edge potentials ψt(xt, xt+1, z) for t ∈ [1, T − 1] using Equation 2

Compute forward variables αt[xt]
and store scaling factors κt for t ∈ [1, T] using Equation 10

Compute backward variables β1[xt] for t ∈ [1, T] using Equation 12

Compute the node probabilities Pt(xt, z) for t ∈ [1, T] using Equation 13

Compute the edge probabilities Pt(xt, xt+1, z) for t ∈ [1, T−1] using Equation 14

Compute the log-likelihood using Equations. 11 and 7

Compute the gradient using Equations 9 and 8

End

variables, denoted by βt[xt]. When t = T , we initialise βT [xT] = 1/S for all labels xT . When
t < T , the recursion is as follows

βt[xt] = µt

∑
xt+1

βt+1[xt+1]φt+1(xt+1, z)ψt(xt, xt+1, z) (12)

The is another way to compute the partition function

logZ(z) =
∑

t∈[1,T]

logµt + log
∑
x1

β1(x1)φ1(x1, z)

4.5 Local Probabilities

Once the forward and backward arrays have been �lled, local probabilities are straightforward

Pt(xt|z) = λtαt[xt]φt(xt, z)βt[xt] (13)

Pt(xt, xt+1|z) = γtαt[xt]φt(xt, z)ψt(xt, xt+1, z)φt+1(xt+1, z)βt+1[xt+1] (14)

where λt, γt are the normalisation factors to ensure that∑
xt

Pt(xt|z) = 1∑
xt

∑
xt+1

Pt(xt, xt+1|z) = 1

respectively.

4.6 Put Everything Together

We assume that features have been computed, or there exists an API to get any feature we want
to use. The algorithm to compute the log-likelihood and the gradient vector is summarised in
Algorithm 1.

5 The Testing Phase

In the testing phase, we want to provide the labels for the whole sequence, not just a single node.
Theoretically, we want to �nd the sequence of labels that are most likely to happen given the input.
There are several ways to do, but here we describe the well-known method called Viterbi decoding
[6]. This is a two-step procedure

8

Algorithm 2 Viterbi decoding

Input: data patterns APIs, parameter vector w
Output: sequence of optimal labels

Compute the node potentials φt(xt, z) for t ∈ [1, T] using Equation 1

Compute the edge potentials ψt(xt, xt+1, z) for t ∈ [1, T − 1] using Equation 2

Compute maximal forward variables αmax
t [xt] using Equation 15

and update bookkeeper Yt[xt] using Equation 16

Backtrack to decode the optimal label sequence using Eqs.17 and 18.

1. The maximal forward pass. This is almost identical to the forward pass described above. The
only di�erence is that we replace the summation by the maximisation. We need to maintain
a bookkeeper to hold the local optimal labels.

2. The backtracking pass. Given the bookkeeper, we track backward to decode the most likely
labels.

5.1 The Maximal Forward Pass

We need to maintain a 2D array of maximal forward variables αmax
t [xt]. We also need a 2D

bookkeeper Yt[xt] of size S × T . When t = 1, we initialise αmax
1 [x1] = 1/S for all labels x1. When

t > 2, we have the following recursion

αmax
t [xt] = κt max

xt−1

(
αt−1[xmax

t−1]φt(xt, z)ψt−1(xt−1, xt, z)

)
(15)

Yt[xt] = arg max
xt−1

(
(α[xmax

t−1]φt(xt, z)ψt−1(xt−1, xt, z)

)
(16)

where κt > 0 is any scaling factor. The purpose of the bookkeeper is to store the optimal label at
time t− 1 according to the label xt.

5.2 Backtracking

The purpose of backtracking is to recover the optimal labels. Since at each time step t and label
xt, we store the previous optimal label xt−1, if we know x∗t ,we can always recover x∗t−1. At the
end of the sequence, i.e. t = T , the optimal label is

x∗T = arg max
xT

(
αmax

T [xT]φT (xT , z)

)
(17)

Then for general case: for t = T − 1, T − 2, ..., 1

x∗t = Yt[x∗t+1] (18)

The sequence (x∗1, x
∗
2, ..., x

∗
T) is the optimal label sequence.

6 Other Practical Issues

6.1 Trade-o� between Time and Space

One important issue is memory requirement and training time. In standard implementation, each
pass through a training sequence takes S×S×T steps. In typical text processing applications, we
may have to deal with millions of sentences. Besides, the L-BFGS may takes around 100 − 1000
iterations to converge. The L-BFGS stores about 10− 20 gradient vectors (the size of the gradient

9

vector is the same as the number of features). This is quite signi�cant because the number of
features (or equivalently the size of the gradient vector) can be as large as several millions. So we
may not have the option to pre-compute all the features for large data set (e.g. about a million
sentences).

6.2 Build and Test

Often we have to deal with large-scale data, especially in natural language processing. The most
time-consuming part in using the system is perhaps learning. Theoretically, we need to learn the
model only once and use it theoretically forever. Practically, however, we do not have such luxury
because we need to test the system for correctness and performance. So it is best to extract small
subsets of training and testing data for debugging purposes. Bear in mind that the performance
on small datasets may not necessarily re�ect that on the full-scale dataset.

6.3 Parallel Implementation

Since we are dealing with independent data, parallelisation is quite straightforward. We can �rst
randomly decompose the training data D into equal partitions D1,D2, ...,DN . Each process is in
charge of one partition, the gradient and log-likelihood are passed to the master process to perform
parameter update. See [5] for implementation details.

7 Case Study: Noun-Phrase Chunking

In this experiment we apply the CRFs to the task of noun-phrase (NP) chunking. The data
is from the CoNLL-2000 shared task [8], in which 8926 English sentences from the Wall Street
Journal corpus are used for training and 2012 sentences are for testing. Each word in a sentence is
annotated by two labels: the part-of-speech (POS) and the noun-phrase (NP). There are 44 POS
labels and 3 NP labels (B-NP for beginning of a noun-phrase, I-NP for inside a noun-phrase or O
for others). Each noun-phrase generally has more than one word. The POS tags are actually the
output of the Brill's tagger [1], while the NPs are manually labeled.

In our implementation, we separate the data pattern extraction task from the CRF model. We
extract data patterns from the text in the way similar to that in [11]. Pre-processing steps include
extraction of unigram and bigram lists and �nding the association between words and POS tags.
We consider only a limited vocabulary extracted from the training data in that we only select
unigrams and bigrams with more than 3 occurrences. This reduces the vocabulary and the feature
size signi�cantly. Data patterns are extracted from words and POS tags falling within a sliding
window of size 5. This setting gives rise to about 32+K data patterns.

Since most data patterns for each word position are zeros (this is due to the fact that we use only
indicator features), we need not to include them in the feature database. So a sparse representation
is used. We store the pre-computed features in a text �le, where each line has the following format:

v1:ID1 v2:ID2 v3:ID3 ...

where v1, v2 and v3 are feature values (which are 1 in this case) and ID1, ID2 and ID3 are re-
spective feature indices.

As outlined in Section 3, there are two alternatives of associating data patterns: with the nodes
and with the edges. In the �rst choice, edge features are simply indicator functions. Likewise in
the second choice, node features are set to indicators. The number of parameters are S ×M + S2

and S + S2M , respectively2. Clearly, the number of parameters in the �rst choice is much smaller
when S is large.

2Recall that S is the size of the label set, and M is the number of data patterns.

10

Associating data patterns with nodes.

Training data 10% 100%

VP 83.11/83.04/83.07 88.10/88.21/88.16
SGA 90.39/90.70/90.54 91.66/92.61/92.13
L-BFGS 90.48/91.07/90.77 92.66/92.93/92.80

Associating data patterns with edges.

Training data 10% 100%

VP 90.51/90.63/90.57 93.18/93.43/93.30
SGA 91.06/91.15/91.11 93.01/93.43/93.22
L-BFGS 90.85/91.50/91.17 93.01/93.37/93.19

Table 3: Results of noun-phrase chunking on the CoNLL2000 data: Recall/Precision/F1.

For optimisation, we implement Collin's voted perceptron (VP), stochastic gradient ascent
(SGA) and L-BFGS. The L-BFGS code is borrowed from Taku Kudo3. The voted perceptron is
stopped after 100 iterations, or when the training error increases or reaches zero. The learning rate
for the stochastic gradient is 0.1, and it is stopped after 20 iterations or when the log-likelihood
decreases. The L-BFGS is terminated after 100 iterations or after the convergence rate falls below
10−5. The log-likelihood is regularised by a Gaussian prior with standard deviation of σ = 3.

The performance of the three training algorithms the two pattern association methods are
reported in Table 3. We evaluate these combinations on two training sets: a small set which is
about 10% of the original set, and the full set. Three measure scores are used: recall/precision/F1.

In our experiments, the voted perceptron is the fastest training algorithm but its performance
may be worse than the others. The stochastic gradient ascent is generally fast as it requires less
iterations to reach reasonable performance. The L-BFGS may achieve a better performance at
the cost of running time. It also requires good machine precision to be numerically stable. In our
study, when converting double data to float, the L-BFGS by Kudo crashes.

8 Conclusion

We have attempted to introduce the CRFs in the way that may be helpful for practitioners.
However, there is no substitute for deep understanding of the probability and statistics theory
behind the formulation of CRFs.

References

[1] E. Brill. Transformation-based error-driven learning and natural language processing: A case
study in part-of-speech tagging. Computational Linguistics, 21(4):543�566, 1995.

[2] M. Collins. Discriminative training methods for hidden Markov models: Theory and experi-
ments with the perceptron algorithm. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2002.

[3] Y. Freund and R.E. Schapire. Large margin classi�cation using the perceptron algorithm.
Machine Learning, 37(3):277�296, 1999.

3http://crfpp.sourceforge.net/

11

[4] J. La�erty, A. McCallum, and F. Pereira. Conditional random �elds: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the International Conference on
Machine learning (ICML), pages 282�289, 2001.

[5] X.-H. Nguyen Phan, L.-M. Inoguchi, and S. Y. Horiguchi. High-performance training of condi-
tional random �elds for large-scale applications of labeling sequence data. IEICE Transactions
on Information and Systems, E90, Series E(1):13�21, Jan 2007.

[6] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257�286, 1989.

[7] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol Rev, 65(6):386�408, Nov 1958.

[8] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th
Conference on Computational Natural Language Learning, volume 7, pages 127�132, Lisbon,
Portugal, 2000. http://www.cnts.ua.ac.be/conll2000/chunking/.

[9] Fei Sha and Fernando Pereira. Shallow parsing with conditional random �elds. In Marti Hearst
and Mari Ostendorf, editors, Proceedings of Human Language Technology (NAACL), pages
213�220, Edmonton, Alberta, Canada, May 27 - June 1 2003. Association for Computational
Linguistics.

[10] Charles Sutton and Andrew McCallum. An introduction to conditional random �elds for rela-
tional learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational
Learning, chapter 4, pages 93�128. MIT Press, 2006.

[11] Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. Dynamic conditional
random �elds: Factorized probabilistic models for labeling and segmenting sequence data.
Journal of Machine Learning Research, 8:693�723, Mar 2007.

[12] S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy. Accel-
erated training of conditional random �elds with stochastic gradient methods. In Proceedings
of the International Conference on Machine learning (ICML), pages 969�976, 2006.

12

