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Abstract—A major contributing factor to the recent advances
in deep neural networks is structural units that let sensory
information and gradients to propagate easily. Gating is one
such structure that acts as a flow control. Gates are employed
in many recent state-of-the-art recurrent models such as LSTM
and GRU, and feedforward models such as Residual Nets and
Highway Networks. This enables learning in very deep networks
with hundred layers and helps achieve record-breaking results
in vision (e.g., ImageNet with Residual Nets) and NLP (e.g.,
machine translation with GRU). However, there is limited work in
analysing the role of gating in the learning process. In this paper,
we propose a flexible p-norm gating scheme, which allows user-
controllable flow and as a consequence, improve the learning
speed. This scheme subsumes other existing gating schemes,
including those in GRU, Highway Networks and Residual Nets as
special cases. Experiments on large sequence and vector datasets
demonstrate that the proposed gating scheme helps improve the
learning speed significantly without extra overhead.

I. INTRODUCTION

Deep neural networks are becoming the method of choice in
vision [1], speech recognition [2] and NLP [3], [4]. Deep
nets represent complex data more efficiently than shallow
ones [5]. With more non-linear hidden layers, deep networks
can theoretically model functions with higher complexity
and nonlinearity [6]. However, learning standard feedforward
networks with many hidden layers is notoriously difficult [7].
Likewise, standard recurrent networks suffer from vanishing
gradients for long sequences [8] making gradient-based learning
ineffective. A major reason is that many layers of non-linear
transformation prevent the data signals and gradients from
flowing easily through the network. In the forward direction
from data to outcome, a change in data signals may not lead to
any change in outcome, leading to the poor credit assignment
problem. In the backward direction, a large error gradient at
the outcome may not be propagated back to the data signals.
As a result, learning stops prematurely without returning an
informative mapping from data to outcome.

There have been several effective methods to tackle the
problem. The first line of work is to use non-saturated non-
linear transforms such as rectified linear units (ReLUs) [9],
[1], [10], whose gradients are non-zero for a large portion of
the input space. Another approach that also increases the level
of linearity of the information propagation is through gating
[11], [12]. The gates are extra control neural units that let part
of information pass through a channel. They are learnable and
have played an important role in state-of-the-art feedforward

architectures such as Highway Networks [13] and Residual
Networks [14], and recurrent architectures such as such as Long
Short-Term Memory (LSTM) [11], [12] and Gated Recurrent
Unit (GRU) [15].

Although the details of these architectures differ, they share
a common gating scheme. More specifically, let ht be the
activation vector of size K (or memory cells, in the case of
LSTM) at computational step t, where t can be the index of
the hidden layer in feedforward networks, or the time step in
recurrent networks. The updating of ht follows the following
rule:

ht ← α1 ∗ h̃t +α2 ∗ ht−1 (1)

where h̃t is the non-linear transformation of ht (and the input
at t if given), α1,α2 ∈ [0, 1]

k are gates and ∗ is point-wise
multiplication. When α2 > 0, a part of the previous activation
vector is copied into the new vector. Thus the update has a
nonlinear part (controlled by α1) and a linear part (controlled
by α2). The nonlinear part keeps transforming the input to more
complex output, whilst the linear part retains a part of input
to pass across layers much easier. The linear part effectively
prevents the gradient from vanishing even if there are hundreds
of layers. For example, Highway Networks can be trained with
more than 1000 layers [13], which were previous impossible
for feedforward networks.

This updating rule opens room to study relationship between
the two gates α1 and α2, and there has been a limited work in
this direction. Existing work includes Residual Networks with
α1 = α2 = 1, hence h̃t plays the role of the residual. For the
LSTM, there is no explicit relation between the two gates. The
GRU and the work reported in [13] use α1 +α2 = 1, which
leads to less parameters compared to the LSTM. This paper
focuses on the later, and aims to address the inherent drawback
in this linear relationship. In particular, when α1 approaches
1 with rate λ, α2 approaches 0 with the same rate, and this
may prevent information from passing too early. To this end
we propose a more flexible p-norm gating scheme, where the
following relationship holds: (αp

1 +α
p
2)

1/p
= 1 for p > 0 and

the norm is applied element-wise. This introduces just one an
extra controlling hyperparameter p. When p = 1, the scheme
returns to original gating in Highway Networks and GRUs.

We evaluate this p-norm gating scheme on two settings:
the traditional classification of vector data under Highway



Networks and sequential language models under the GRUs.
Extensive experiments demonstrate that with p > 1, the
learning speed is significantly higher than existing gating
schemes with p = 1. Compared with the original gating,
learning with p > 1 is 2 to 3 times faster for vector data
and more than 15% faster for sequential data.

The paper is organized as follows. Section 2 presents the
Highway Networks, GRUs and the p-norm gating mechanism.
Experiments and results with the two models are reported in
Section 3. Finally, Section 4 discusses the findings further and
concludes the paper.

II. METHODS

In this section, we propose our p-norm gating scheme. To
aid the exposition, we first briefly review the two state-of-the-
art models that use gating mechanisms: Highway Networks
[13] (a feedforward architecture for vector-to-vector mapping)
and Gated Recurrent Units [15] (a recurrent architecture for
sequence-to-sequence mapping) in Sections II-A and II-B,
respectively.

Notational convention : We use bold lowercase letters for
vectors and capital letters for matrices. The sigmoid function
of a scalar x is defined as σ(x) = [1 + exp(−x)]−1

, x ∈
R. With a slight abuse of notation, we use σ (x), where
x = (x1, x2, ..., xn) is a vector, to denote a vector
(σ (x1) , ..., σ (xn)). The same rule applies to other function
of vector g(x). The operator ∗ is used to denote element-wise
multiplication. For both the feedforward networks and recurrent
networks, we use index t to denote the computational steps,
and it can be layers in feedforward networks or time step in
recurrent networks. As shown from Fig. 1, the two architectures
are quite similar except for when extra input xt is available at
each step.
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(a) Highway Network layer (b) Gated Recurrent Unit
Figure 1. Gating mechanisms in Highway Networks and GRUs. The current
hidden state ht is the sum of candidate hidden state h̃t moderated by α1

and the previous hidden state ht−1 moderated by α2

A. Highway Networks

A Highway Network is a feedforward neural network
which maps an input vector x to an outcome y. A standard
feedforward network consists of T hidden layers where the
activation ht ∈ Rkt at the tth layer (t = 1, .., T ) is a non-linear
function of its lower layer:

ht = g (Wtht−1 + bt)

where Wt and bt are the parameter matrix and bias vector at
the tth layer, and g(·) is the element-wise non-linear transform.
At the bottom layer, h0 is the input x. The top hidden layer
hT is connected to the outcome.

Training very deep feedforward networks remains difficult
for several reasons. First, the number of parameters grows with
the depth of the network, which leads to overfitting. Second,
the stack of multiple non-linear functions makes it difficult for
the information and the gradients to pass through.

In Highway Networks, there are two modifications that
resolve these problems: (i) Parameters are shared between
layers leading to a compact model, and (ii) The activation func-
tion is modified by adding sigmoid gates that let information
from lower layers pass linearly through. Fig. 1(a) illustrates a
Highway Network layer. The first modification requires that all
the hidden layers to have the same hidden units k. The bottom
layer is identical to that of standard feedforward networks. The
second modification defines a candidate hidden state h̃t ∈ Rk

as the usual non-linear transform:

h̃t = g (Wht−1 + b)

where W and b are parameter matrix and bias vector that
shared among all hidden layers. Finally the hidden state is
gated by two gates α1,α2 ∈ [0, 1]

k as follows:

ht = α1 ∗ h̃t +α2 ∗ ht−1 (2)

for t ≥ 2. The two gates α1 and α2 are sigmoid functions
and can be independent, where α1 = σ (U1ht−1 + c1) and
α2 = σ (U2ht−1 + c2) or summed to unit element-wise, e.g.,
1 = α1 + α2. The latter option was used in the paper of
Highway Networks [13].

The part α2 ∗ ht−1, which is called carry behavior, makes
the information from layers below pass easily through the
network. This behavior also allows the back-propagation to
compute the gradient more directly to the input. The net effect
is that the networks can be very deep (up to thousand of layers).

B. Gated Recurrent Units

Recurrent neural networks: A recurrent neural network
(RNN) is an extension of feedforward networks to map a
variable-length input sequence x1, ...,xT to a output sequence
y1, ..., yT . An RNN allows self-loop connections and shared
parameters across all steps of the sequence. For vanilla RNNs,
the activation (which is also called hidden state) ht is a function
of the current input and the previous hidden state ht−1:

ht = g (Wxt + Uht−1 + b) (3)

where W,U and b are parameters shared among all steps.
However, vanilla RNNs suffer from vanishing gradient for
large T , thus preventing the use for long sequences [8].



Gated Recurrent Units: A Gated Recurrent Unit (GRU)
[16], [15] is an extension of vanilla RNNs (see Fig. 1(b) for
an illustration) that does not suffer from the vanishing gradient
problem. At each step t, we fist compute a candidate hidden
state h̃t as follows:

rt = σ (Wrxt + Urht−1 + br)

h̃t = tanh (Whxt + Uh (rt ∗ ht−1) + bh)

where rt is a reset gate that controls the information flow of the
previous state to the candidate hidden state. When rt is close
to 0, the previous hidden state is ignored and the candidate
hidden state is reset with the current input.

GRUs then update the hidden state ht using the same rule
as in Eq. (2). The difference is in the gate function: α1 =
σ (Wαxt + Uαht−1 + bα), where current input xt is used.
The linear relationship between the two gates is assumed: α2 =
1−α1. This relationship enables the hidden state from previous
step to be copied partly to the current step. Hence ht is a linear
interpolation of the candidate hidden state and all previous
hidden states. This prevents the gradients from vanishing and
captures longer dependencies in the input sequence.

Remark: Both Highway Networks and GRUs can be consid-
ered as simplified versions of Long Short-Term Memory [11].
With the linear interpolation between consecutive states, the
GRUs have less parameters. Empirical experiments revealed
that GRUs are comparable to LSTM and more efficient in
training [17].

C. p-norm Gates

As described in the two sections above, the gates of the
non-linear and linear parts in both Highway Networks (the
version empirically validated in [13]) and GRUs use the same
linear constraint:

α1 +α2 = 1, s.t. α1,α2 ∈ (0, 1)
k

where α1 plays the updating role and α2 plays the forgetting
role in the computational sequence. Since the relationship is
linear, when α1 gets closer to 1, α2 will get closer to 0 at
the same rate. During learning, the gates might become more
specialized and discriminative, this same-rate convergence may
block the information from the lower layer passing through at
a high rate. The learning speed may suffer as a result.

We propose to relax this scheme by using the following the
following p-norm scheme:

(αp
1 +α

p
2)

1
p = 1, equivalently: α2 = (1−αp

1)
1
p (4)

for p > 0, where the norm is applied element-wise.
The dynamics of the relationship of the two gates as a

function of p is interesting. For p > 1 we have α1 +α2 > 1.
This increases the amount of information passing for the linear
part. To be more concrete, let α1 = 0.9. For the linear gates
relationship with p = 1, there is a portion of α2 = 0.1 of
old information passing through each step. But for p = 2,
the passing portion is α2 = 0.4359, and for p = 5, it is

α2 = 0.865. When p → ∞, α2 → 1, regardless of α1 as
long as α1 < 1. This is achievable since α1 is often modelled
as a logistic function. When p→∞, α2 → 1, the activation
of the final hidden layer loads all the information of the past
without forgetting. Note that the ImageNet winner 2015, the
Residual Network [14], is a special case with α1,α2 → 1.

On the other hand, p < 1 implies α1+α2 < 1, the linearity
gates are closed at a faster rate, which may prevent information
and gradient flow passing easily through layers.

III. EXPERIMENTS

In this section, we empirically study the behavior of the
p-norm gates in feedforward networks (in particular, Highway
Networks presented in Section. II-A) and recurrent networks
(Gated Recurrent Unit in Section. II-B).

A. Vector Data with Highway Network

We used vector-data classification tasks to evaluate the
Highway Networks under p-norm gates. We used 10 hidden
layers of 50 dimensions each. The models were trained using
standard stochastic gradient descent (SGD) for 100 epochs
with mini-batch of 20.

Datasets: We used two large UCI datasets: MiniBooNE par-
ticle identification (MiniBoo) 1 and Sensorless Drive Diagnosis
(Sensorless) 2. The first is a binary classification task where
data were taken from the MiniBooNE experiment and used
to classify electron neutrinos (signal) from muon neutrinos
(background). The second dataset was extracted from motor
current with 11 different classes. Table 1 reports the data
statistics.

Table I
DATASETS FOR TESTING HIGHWAY NETWORKS.

Dataset Dimens. Classes Train. set Valid. set
MiniBoo 50 2 48,700 12,200

Sensorless 48 11 39,000 9,800

Training curves: Fig. 2 shows the training curves on training
sets. The loss function is measured by negative-log likelihood.
The training costs with p = 2 and p = 3 decrease and converge
much faster than ones with p = 0.8 and p = 1. In the MiniBoo
dataset, training with p = 2 and p = 3 only needs 20 epochs
to reach 0.3 nats, while p = 1 needs nearly 100 epochs and
p = 0.8 does not reach that value. The pattern is similar in the
Sensorless dataset, the training loss for p = 1 is 0.023 after
100 epochs, while for p = 2 and p = 3, the losses reach that
value after 53 and 44 epochs, respectively. The training for
p = 0.5 was largely unsuccessful so we do not report here.

Prediction: The prediction results on the validation sets are
reported in Table II. To evaluate the learning speed, we report
the number of training epochs to reach a certain benchmark
with different values of p. We also report the results after 100
epochs. For the MiniBoo dataset (Table II(a)), p = 0.8 does
not reach the benchmark of 89% of F1-score, p = 1 needs 94

1https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification
2https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis
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Figure 2. Learning curves on training sets. (a) MiniBoo dataset. (b) Sensorless dataset.

epochs while both p = 2 and p = 3 need 33 epochs, nearly
3 times faster. For the Sensorless dataset (Table II(b)), p = 3
has the best result and needs only 35 epochs to achieve 99%
of macro F1-score while p = 1 and p = 2 need 77 and 41
epochs, respectively.

Visualization: Fig. 3 illustrates how 50 channels of the two
gates open through 10 layers with different value of p for
a randomly chosen data instance in the test set of MiniBoo.
Recall from Sec. II-C that α1 and α2 control the amount of
information in the non-linearity part and the linearity part,
respectively and αp

1 +α
p
2 = 1. It is clear that with the larger

value of p, the more the two gates are open. Interestingly, the
values of most channels in the gate α2 are larger than ones in
the gate α1 for all values of p. The model seems to prefer the
linearity part. More interestingly, there is a gradual change in
gates over the layers, although gates between layers are not
directly linked. At the lower layers, gates are more uniform,
but get more informative near the top (which is closer to the
outcome).

B. Sequential Data with GRUs

To evaluate the p-norm with GRUs, we compare the results
with different values of p in the task of language modeling
at character-level [12], [18], [19]. This modeling level has
attracted a great interest recently due to their generalizability
over language usage, a very compact state space (which equals
the alphabet size, hence the learning speed), and the ability to
capture sub-word structures. More specifically, given a sequence
of characters c1, ..., ct−1, the GRU models the probability of the
next character ct: P (ct | ct−1, ..., c1). The quality of model
is measured by bits-per-character in the test set which is
−log2P (ct | ct−1, ..., c1). The model is trained by maximizing
the log-likelihood:

∑T
t=1 logP (ct | ct−1, ..., c1).

Dataset: We used the UCI Reuters dataset which contains
articles of 50 authors in online Writeprint 3. We randomly

3https://archive.ics.uci.edu/ml/datasets/Reuter_50_50

chose 10, 000 sentences for training and 4, 000 sentences for
validation. For sentences with length longer than 100 characters,
we only used the first 100 characters. The model is trained with
400 hidden units, 50 epochs and 32 sentences each mini-batch.

Results: Fig. 4 reports (a) training curves and (b) results on
validation set through epochs. It is clear from the two figures
that the model with p = 3 performs best among the choices
p ∈ (0.5, 1, 2, 3), both in learning speed and model quality. To
give a more concrete example, as indicated by the horizontal
lines in Figs. 4(a,b), learning with p = 3 reaches 1.5 nats after
34 epoch, while learning p = 1 reaches that training loss after
43. For model quality on test data, model with p = 3 achieves
2.0 bits-per-character after 41 epochs, faster than model with
p = 1 after 50 epochs.

C. Evaluating the Effectiveness of p

We have demonstrated in both Highway Nets and GRUs that
training is faster with p > 1. However, we question whether
the larger value of p always implies the better results and
faster training? For example, as p → ∞, we have α2 → 1
and the activation at the final hidden layer contains a copy
of the first layer and all other candidate states: hT = h1 +∑T

t=2αth̃t. This makes the magnitude of hidden states not
properly controllable in very deeper networks. To evaluate the
effectiveness of p, we conducted experiments on the MiniBoo
dataset with p = 0.8, 1, 2, ..., 8 and networks with depths of
10, 20, 30. We found that the model works very well for all
values of p with 10 hidden layers. When the number of layers
increase (let say 20 or 30), the model only works well with
p = 2 and p = 3. This suggests that a proper control of the
hidden state norms may be needed for very deep networks and
widely open gates.

IV. DISCUSSION AND CONCLUSION

A. Discussion

Gating is a method for controlling the linearity of the
functions approximated by deep networks. Another method is



Table II
RESULTS ON VALIDATION SETS. THE SECOND COLUMN IS THE NUMBER OF EPOCHS TO REACH A BENCHMARK MEASURED BY F1-SCORE (%) FOR

MINIBOO AND MACRO F1-SCORE (%) FOR SENSORLESS. THE THIRD COLUMN IS THE RESULTS AFTER RUNNING 100 EPOCHS.

(a) MiniBoo dataset (b) Sensorless dataset
p epochs to 89% F1-score F1-score (%)

0.8 N/A 88.5
1 94 89.1
2 33 90.2
3 33 90.4

p epochs to 99% F1-score macro F1-score (%)
0.8 92 99.1
1 77 99.4
2 41 99.7
3 35 99.7
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Figure 3. The dynamics of 50 channels of the two gates through 10 layers with different p.
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to use piece-wise linear units, such as those in ReLU family
[9], [1], [10]. Still, partial or piece-wise linearity has desirable
nonlinearity for complex functions. At the same time it helps to
prevent activation units from being saturated and the gradients
from being vanishing, making gradient-based learning possible
for very deep networks [13], [11]. The main idea of p-norm
gates is to allow a greater flow of data signals and gradients
through many computational steps. This leads to faster learning,
as we have demonstrated through experiments.

It remains less clear about the dynamics of the relationship
between the linearity gate α2 and nonlinearity gate α1. We
hypothesize that, at least during the earlier stage of the learning,
larger gates help to improve the credit assignment by allowing
easier gradient communication from the outcome error to each
unit. Since the gates are learnable, the amount of linearity in
the function approximator is controlled automatically.

B. Conclusion

In this paper, we have introduced p-norm gates, a flexible
gating scheme that relaxes the relationship between nonlinearity
and linearity gates in state-of-the-art deep networks such as
Highway Networks, Residual Networks and GRUs. The p-norm
gates make the gates generally wider for larger p, and thus
increase the amount of information and gradient flow passing
through the networks. We have demonstrated the p-norm gates
on two major settings: vector classification tasks with Highway
Networks and sequence modelling with GRUs. The extensive
experiments consistently demonstrated that faster learning is
caused by p > 1.

There may be other ways to control linearity through the
relationship between the linearity gate α2 and nonlinearity
gate α1. A possible scheme could be a monotonic relationship
between the two gates so as α1 → 0 then α2 → 1 and α1 → 1
then α2 → 0. It also remains open to validate this idea on
LSTM memory cells, which may lead to a more compact model

with less than one gate parameter set. The other open direction
is to modify the internal working of gates to make them more
informative [20], and to assist in regularizing the hidden states,
following the findings in Sec. III-C and also in a recent work
[21].
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