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Abstract—Modelling patient flow is crucial in understanding
resource demand and prioritization. To date, there has been
limited work in predicting ward-level discharges. Our study
investigates forecasting total next-day discharges from an open
ward. In the absence of real-time clinical data, we propose to
construct a feature set from patient demographics, ward data
and discharge time series to derive a random forest model for
forecasting daily discharge. Using data from a general ward of
a large regional Australian hospital, we compared our random
forest model with a classical auto-regressive integrated moving
average (ARIMA) for 12,141 patient visits over 1826 days.
Forecasting quality was measured using Mean Forecast Error,
Mean Absolute Error, symmetric Mean Absolute Percentage
Error and Root Mean Square Error. When compared to the
baseline model, next day discharge forecasts using random forests
achieved 17.4 % improvement in Mean Absolute Error, for all
days in the year 2014.

I. INTRODUCTION

Healthcare services are becoming unsustainable [1]. This
is largely due to increase in population and life expectancy,
escalating costs, increased patient expectations and workforce
issues [2]. Despite the increased demands, the number of
inpatient beds in hospitals has come down by 2% since last
decade [3]. Efficient bed management is crucial in meeting
this rising demand and reducing health care costs.

Daily discharge rate can be a potential real-time indicator
of operational efficiency [4]. From a ward level perspective,
a good estimate of next day discharges will enable hospital
staff to foresee potential problems, such as: changes in number
of available beds and changes in number of required staff.
Efficient forecasting reduces bed crisis and improves resource
allocation. This foresight can help accelerate discharge pre-
paration which has huge cost on clinical staff and educating
patients and family, requiring post-discharge planning [5], [6].

Current methods in discharge forecasting resort to variations
of auto-regressive moving average models [7], [8], [9] and
estimating individual patient length of stay from clinical
data [10], [11]. Forecasting discharges from general wards
have received less attention than emergency and acute care
discharges. The task is challenging due to the following
reasons. First, ward discharges incorporate far greater hospital
dynamics that are often non-linear [12]. For example, routine
discharges from a regional hospital in Australia demonstrated
significant variation for each day of the week (Fig. 1), and the
weekly discharge pattern was highly irregular (Fig. 2). Second,
such wards have little information on the patient medical
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Figure 1. Distribution of daily discharges for each day of week
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Figure 2. Daily discharges over 6 consecutive weeks. Each colour represents
a week.

condition and variation in care quality. Since diagnosis coding
for ward patients is done after discharge, real-time clinical
information is often unavailable to make a good prediction.
This problem is further aggravated by having a case-mix of
patients. Patient admissions can be direct admissions from
home, from emergency care, or from other wards.

In the absence of real-time clinical data, we employed
feature engineering principles to build a predictor set from
commonly available features stored in hospital records. We
identified ward level and patient level features and time
series components from daily ward discharges. The final set
of features were used to train a random forest model that
forecasts total number of next-day discharges from the ward.
We compared our model with the classical auto-regressive
integrated moving average (ARIMA) time-series modelling.



2

Our experiments were conducted on commonly available data
from a surgical recovery ward (Heath Wing 5) in Barwon
Health, a regional hospital in Victoria, Australia. Forecasting
accuracy of our chosen methods was measured using mean
absolute error (MAE), root mean square error (RMSE) and
symmetric mean absolute percentage error (sMAPE) [13],
[14]. For a held-out set of 2, 511 patient visits in the year
2014, forecasts based on random forest were more accurate
than the traditional ARIMA model. We demonstrate through
our experiments that a random forest forecasting model that
incorporates seasonality, statistics of past admissions and
discharges, and ward occupancy details outperforms ARIMA
forecasts by 17.4 % (as measured using MAE).

The significance of our study is in identifying the import-
ance of foreseeing available beds in wards, which could help
relieve emergency access block [15].

A. Related Work

Patient length of stay directly contributes to hospital costs
and resource allocation. Reducing length-of-stay by one full
day was found to decrease the average care cost by 3% or more
[16]. Studies on understanding patient flow analyse metrics
such as bed occupancy[2], [12], [17], [18], [19], [20], patient
arrivals [21] and individual patient length of stay [11], [20],
[22], [23], [24]. A host of techniques have been used for this
purpose.

When looking at discharges as time series, auto regressive
moving average models are the most popular [7], [8], [9].
Exponential smoothing techniques have also been used to
forecast monthly [25] and daily patient flow [26]. Jones et
al. [26] compared several time series forecasting methods and
artificial neural networks to forecast daily patient volumes in
emergency department. Mackay and Lee [2] advise modelling
the patient flow in healthcare institutions for tactical and
strategic forecasting. To this end, compartmental modelling
[18], [27], queuing models [28], [29] and simulation models
[20], [29], [30], [31] have been applied to analyse the patient
flow.

A significant portion of forecast studies analyse emergency
department (ED) patient flow, since ED length of stay is
regarded as an important characteristic of hospital care quality
[32], [33]. However, patient flow in wards are more complex.
Patients are admitted from a variety of source: direct planned
admissions, ED admissions, admissions from other wards
or medical centres. Unlike ED, diagnosis coding for ward
patients is done after discharge. Hence, clinical data is not
available in real time. A recent work used random forests to
predict in-patient length of stay in an acute ward from patient
data containing demographic and clinical information [22]. In
difference, our work focuses on a surgical recovery ward with
minimum clinical information.

II. METHOD

A. Data

Our study used retrospective data collected from a surgical
recovery ward in Barwon Health, a large public health provider
in Victoria, Australia serving about 350,000 residents. Ethics

approval was obtained from the Hospital and Research Ethics
Committee at Barwon Health (number 12/83) and Deakin
University. Patient flow was collected for a period of 4 years.
A total of 12,141 patients were admitted into the ward with a
median discharge of 8 patients per day from January 1, 2010
to December 31, 2014. The physicians in the ward had no
teaching responsibilities. Table. I summarizes the data. For
each day, we analysed the number of admissions, discharges
and occupancy level in the ward. Patient level details included
age, gender, admission date and time, discharge date and
time, previous wards visited, reference to speciality and patient
class. Additional real-time data that described patient condi-
tion or disease progression were unavailable, since diagnosis
coding using medical codes is done after discharge.

Table I
COHORT DETAILS

Total patient visits 12,141

Unique patients 10,610

Length of stay: mean, median 4.26, 3 days

Discharges per day: mean, median 8.7, 8

Admissions per day: mean, median 8.6, 8

Mean ward occupancy 30.9 patients/day

Gender 54.8% Female

Age: mean, median 66, 63.23

1) Time series analysis: A time series decomposition of
our data revealed strong seasonal variations and high non-
linearity in daily discharge patterns. There was a defined
weekly pattern - discharges from ward peaked on Fridays
and dropped significantly on weekends (Fig. 3). This seasonal
nature is in tune with previous studies [9], [34]. Aggregating
the daily discharges into a monthly time series revealed defined
monthly patterns (Fig. 4). The data displayed no significant
trend.
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Figure 3. Mean Admissions and discharges per day from ward

We now describe two popular methods that are applicable
to forecasting under complex data dynamics: auto-regressive
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Figure 4. Time series of monthly discharge from ward

integrated moving average (ARIMA) and random forest. AR-
IMA is a standard forecasting method for time-series data.
While ARIMA models the temporal linear correlation between
nearby data nearby points in the time-series, random forest
looks for a non-linear functional relationship between the
future outcomes and descriptors in the past.

B. Auto-regressive integrated moving average (ARIMA)

Time-series forecasting methods analyse the pattern of past
discharges and formulate a forecasting model from underlying
temporal relationships [35]. Such models can then be used
to extrapolate the discharge time series into the future. Auto
regressive integrated moving average (ARIMA) models are
widely used in time-series forecasting. Their popularity can
be attributed to ease of model formulation and interpretability
[36]. ARIMA models look for linear relationships in the
discharge sequence to detect local trends and seasonality. But
such relationships can change over time. ARIMA models
are able to capture these changes and update themselves
accordingly. This is done by combining Autoregressive (AR)
and moving average (MA) models. Autoregressive models
formulate discharge at time t: yt , as a linear combination of
previous p discharges. On the other hand, moving averages
models characterize yt as linear combination of previous
q forecast errors. For ARIMA model, the discharge time
series is made stationary using differencing. If φ denotes the
autoregressive parameter, θ be moving average parameter, and
ε be the forecast error, we can define an ARIMA model as:

yt = µ+

p∑
i=1

φi yt−i + εt−
q∑

i=1

θq εt−i (1)

By varying p and q, we can generate different models to
fit the data. Box Jenkins method [37] provides a well-defined
approach for model identification and parameter estimation. In
our work, we choose the auto.arima() function in the forecast
package [38] in R [39] to automatically select the best model.

C. Random forest

Here, we assume the next-day discharge as a function of
historical descriptor (or feature) vector x. We use each day
in the past as a data point, where the next-day discharge is
the outcome y, and the short-period prior to the discharge are

used to derive descriptors x. The random forest used in this
paper is currently one of the most powerful methods to model
the function y = f(x) [40]. A random forest is an ensemble
of regression trees. A regression tree approximates a function
f(x) by recursively partitioning the descriptor space. At each
region Rp, the function is approximated as

f (x) =
1

|Rp|
∑

xj∈Rp

yj

where |Rp| is the number of data point falling in region Rp.
The random forest creates a diverse collection of random trees
by varying the subsets of data points to train the trees and
the subsets of descriptors at each step of space partitioning.
The final outcome of random forest is an average of all trees
in the ensemble. Since tree growing is a highly adaptive
process, it can discover any non-linear function to any degree
of approximation if given enough training data. However,
the flexibility makes regression tree prone to overfitting, that
is, the inability to generalize to unseen data. This requires
controlling the growth by setting the number of descriptors
per partitioning step, and the minimum size of region Rp.

The voting leads to great benefits: reduce the variations per
tree. The randomness helps combat against overfitting. There
is no assumption about the distribution of data, or the form
of the function f(x). There is controllable quality of fits. We
now describe the process of building our descriptor set.

1) Deriving Features for Random Forest: We begin by
extracting the following features from different tables in the
hospital database: Admission id, Patient Id, Patient age and
gender, Hospital admission date, Hospital discharge date,
Name of admitted ward, Ward admission date, Ward discharge
date, Patient class, Type of admission and Unit that the patient
was referred to (Patient Referral). From this data, we derive
three main types of descriptors: (i) Patient level features
(ii) Ward level features (iii) Time series features. Table. II
summarizes our main descriptors.

a) Patient level features: For each patient, we calculated
the number of previous wards visited and type of last visited
ward. The elapsed length of stay in the ward was calculated
and updated daily for each patient. The data for age, patient
class, patient referral medical unit and type of admission were
divided into categories and updated for every admission and
discharge.

b) Ward level features: For each day, we compute (i)
number of admissions in the past 7 days (ii) number of
discharges in the past 7 days (iii) number of discharges in
the past 14th and 21st day (iv) number of patients in ward on
the previous day (ward occupancy)

c) Time series features: A time series decomposition for
the daily discharge pattern is done to obtain the seasonality
component for each day of the week. Trend for next day fore-
cast is calculated using locally weighted polynomial regression
[41] from past discharges on the same weekday.

D. Validation protocol

The characteristics of the training and validation cohort are
shown in Table III. Training data consisted of 1460 days from



4

Table II
FEATURES USED TO TRAIN THE RANDOM FOREST FORECASTING MODEL

Patient level

Admission type 5 categories

Patient Referral 49 categories

Patient Class 21 categories

Age 8 categories

Number of wards visited 4 categories

Elapsed length of stay Calculated daily for each patient
in the ward

Ward level

Admissions Number of admissions during past
7 days

Discharges Number of discharges during past
7 days, number of discharges in
previous 14th day and 21st day

Occupancy ward occupancy in previous day

Time-series

Seasonality current day-of-week, current
month, seasonality statistic from
time series decomposition [35]

Trend calculated using locally weighted
polynomial regression from past
discharges on the same weekday

January 1, 2010 to December 31, 2013. Testing data consisted
of 365 days in the year 2014. For each day, we analysed the
patient flow in the ward using the features in Table. II. The
majority of stays are short, around 65% of patients stayed for
less than 5 days.

Table III
TRAINING AND VALIDATION COHORTS CHARACTERISTICS.

Training (2010-2013) Testing (2014)
Total days 1460 365
Mean discharges per day 8.47 9.17
Number of admissions 9630 2511
Gender:

Male 4329 (44.9%) 1135(45.2%)
Female 5301 (55.1%) 1376 (54.8%)

Mean age (years) 63.65 61.62
Length of Stays:

1-4 days 6377 (66.22%) 1636 (65.15%)
5 or more days 3253 (33.78%) 875 (34.85%)

The baseline was chosen to be the auto-regressive intensive
moving average (ARIMA) model, which was derived from
daily ward discharges. We compared the forecasts of our
random forest model with ARIMA based on the measures
of mean forecast error, mean absolute error, symmetric mean
absolute percentage error and root mean square error [13],
[14]. If yt is the measured discharge at time t, and ft is the
forecast discharge at time t, we can define the following:

• Mean Forecast Error (MFE): is used to gauge model bias
and is calculated as:

MFE = mean (yt − ft)

For an ideal model, MFE = 0. If MFE >0 model tends to
under-forecast, and if MFE <0 , model tends to over-forecast.
• Mean Absolute Error (MAE): is calculated as the average

of unsigned errors:

MAE = mean|yt − ft|

MAE indicates the absolute size of the errors.
• Root mean square error (RMSE) is a measure of the

deviation of forecast errors. It is calculated as:

RMSE =

√
mean (yt − ft)2

Due to squaring and averaging, large errors tend to have
more influence over RMSE. In contrast, individual errors
are weighted equally in MAE. There has been much debate
on the choice of MAE or RMSE as an indicator of model
performance [42], [43]. In our work, we use both measures
• Symmetric mean absolute percentage error (sMAPE): is a

form of percentage error which is scale independent and
hence be used to compare models from different data. It
is calculated as:

sMAPE = mean (200|yt − ft|/(yt + ft))

It overcomes the disadvantage of MAPE which penalizes
positive errors more than negative errors. But sMAPE ranges
from -200% to 200%, giving it an ambiguous interpreta-
tion [44].

III. RESULTS

A. Model Performance

A naive method of forecasting next day discharge is to
take the mean of last week discharges. We compared a naive
forecasting method, ARIMA time series model, and random
forest model using metrics in Section II-D. The results are
summarized in Table IV. Fig. 5 compares the distribution of
actual discharges with different model forecasts.

Table IV
FORECAST ACCURACY OF DIFFERENT MODELS

Model MFE MAE sMAPE RMSE

Naive Forecast 0.02 3.57 41.68 % 4.42

ARIMA Forecast 0.06 3.27 38.32 % 4.15

Random forest 0.44 2.70 32.15 % 3.56

The naive forecast acts as a moving average, and is unable
to capture the variations in the data. As expected, among all
our models, the naive forecast showed the maximum error.

The variations in seasonality and trend are better captured in
an ARIMA model. The time-series consisting of past 3 months
discharges were used to generate the next day discharge
forecast. When compared to naive forecast, this resulted in
small improvements.

The random forest model was trained using a total of 329
features, where 22 features were related to ward level data
and 307 features related to patient level data in the ward. The
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Figure 5. Comparison of actual discharges and model forecasted discharges
from ward for each day in the year 2014

random forest forecast model returned the least error, with
17.4 % improvement in MAE when compared to ARIMA
(Table. IV). When looking at forecast error for each day of
week, RF was more accurate (Fig. 6).
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Figure 6. Forecast error in predicting each day of week in test data

B. Feature importance

Figure. 7 summarizes the most significant features, ordered
by importance in the random forest model. The seasonality
value from time series decomposition, day of week, and
number of patients in the ward during the day of forecast
were substantially important than the rest of the features. Other
important features were: number of patients who had visited
only one previous ward (Pre Ward Cnt 1), the number of
males in the ward, number of discharges 14 days before (Dis-
charges d14), the trend of discharges measured using locally
weighted polynomial regression, number of patients labeled
as: “Public standard” (PatientClass 15), number of discharges
21 days before (Discharges d21) and elapsed length of stay
in hospital (HospitalLOS 1).

IV. DISCUSSION AND CONCLUSION

Improved patient flow and efficient bed management is
key to counter escalating service and economic pressures
in hospitals. Predicting next day discharges is crucial, but
has been seldom studied for general wards. When compared
to emergency and acute care wards, predicting next day
discharges from a general ward is more challenging because
of the non availability of real-time clinical information. The

  HospitalLOS_1

  Discharges_d21

  PatientClass_15

Trend

  Discharges_d14

  Males in ward

  Pre_Ward Cnt_1 

  Ward Occupancy

  Day of week

  Seasonality

0 1 2 3 4
Feature Importance

Figure 7. Top features (ranked by feature importance) from training random
forest model

daily discharge pattern, though seasonal is highly irregular.
This could be attributed to how hospital processes such as
ward rounds, inpatient tests, and medication are managed. The
nonlinear nature of these processes contribute to unpredictable
length of stay even in patients with similar diagnosis.

In this paper, we attempt to forecast next day discharges
from a general ward using ARIMA models and random forest
model. We have compared the forecasting performance using
MAE, RMSE and sMAPE. Our predictors are extracted from
commonly available data in the hospital database. The random
forest model can be implemented by the analytics staff in
hospital IT department and can be easily integrated into
existing health information systems.

A. Findings

In our experiments, forecast based on random forest model
outperformed ARIMA model. Forecasting error rate is 32.5%
(as measured by sMAPE) which is in the same ballpark as
the recent work of [22], though we had no real-time clinical
information. A random forest model makes minimum assump-
tions about the underlying data. Hence it is the most flexible,
and at the same time, comes with great overfitting control.
ARIMA models can adapt to linear changes in patterns, and
fails to model the nonlinear relationships in daily discharge
time series. As expected, a naive forecast of using the median
of past discharges performed worst.

We noticed a weekly pattern (Fig. 3) and monthly pattern
(Fig. 4) in discharges from the ward. Other studies have also
confirmed that discharges peak on Friday and drop during
weekends [34], [4], [45]. This “weekend effect” could be
attributed to shortages in staffing, or reduced availability of
services like sophisticated tests and procedures [46], [45]. This
suggests discharges are heavily influenced by administrative
reasons and staffing.

The seasonality values from discharge time series proved
to be one of the most important features in the random
forest model. Other important features included trend based
on non linear regression of past weekdays, day of week of
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discharge, ward occupancy in previous day, elapsed length of
stay, distribution of number of wards visited.

When looking at forecasts for each day of the week, Friday
had the least error in prediction for both models (Fig. 6),
while Saturday proved to be the most difficult. Retraining the
random forest model by omitting “day of the week” increased
the forecast error by 1.39% (as measured by sMAPE).

B. Study limitations

We acknowledge the following limitations in our study.
First, we focused only on a single ward. However, it was
a ward with different patient types, and hence the results
could be an indication for all general wards. Second, we did
not use patient clinical data to model discharges. This was
because clinical diagnosis data was available only for 42.81%
of patients who came from emergency. In a general ward,
clinical coding is not done in real-time. However, we believe
that incorporating clinical information to model patient length
of stay could improve forecasting performance. Third, we did
not compare our forecasts with clinicians/managing nurses.
Finally, our study is retrospective. However, we have selected
prediction period separated from development period. This has
eliminated possible leakage and optimism.

C. Conclusion

This study set out to model patient outflow from an open
ward with no real-time clinical information. We have demon-
strated that non-linear analysis of daily discharges outperforms
the traditional auto-regressive method in forecasting next day
discharge. Our proposed models are built from commonly
available data and hence could be easily extended to other
wards. By supplementing patient level clinical information
when available, we believe that the forecasting accuracy of
our models can be further improved.
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