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ABSTRACT

The performance of image retrieval depends critically on the
semantic representation and the distance function used to es-
timate the similarity of two images. A good representation
should integrate multiple visual and textual (e.g., tag) fea-
tures and offer a step closer to the true semantics of inter-
est (e.g., concepts). As the distance function operates on the
representation, they are interdependent, and thus should be
addressed at the same time. We propose a probabilistic so-
lution to learn both the representation from multiple feature
types and modalities and the distance metric from data. The
learning is regularised so that the learned representation and
information-theoretic metric will (i) preserve the regularities
of the visual/textual spaces, (ii) enhance structured sparsity,
(iii) encourage small intra-concept distances, and (iv) keep
inter-concept images separated. We demonstrate the capacity
of our method on the NUS-WIDE data. For the well-studied
13 animal subset, our method outperforms state-of-the-art ri-
vals. On the subset of single-concept images, we gain 79.5%
improvement over the standard nearest neighbours approach
on the MAP score, and 45.7% on the NDCG.

Index Terms— Image retrieval; Mixed-Variate; Re-
stricted Boltzmann Machines; metric learning; sparsity;
NUS-WIDE.

1. INTRODUCTION

Images are typically retrieved based on the distance from the
query image. Thus the retrieval quality depends critically on
how the images are represented and the distance metric oper-
ating on the representation space. Standard vector-based rep-
resentations may involve colour histograms or visual descrip-
tors; and distance metrics can be those working in the vector
space. However, they suffer from important drawbacks. First,
there are no simple ways to integrate multiple representations
(e.g., histograms and bag-of-words) and multiple modalities
(e.g., visual words and textual tags). Furthermore, designing a
representation separately from distance metric is sup-optimal
– it takes time to search for the best distance metric for a

given representation. And third, using low-level features may
not capture well the high-level semantics of interest, leading
to poor retrieval quality if the visual features are similar and
the objects are different. For example, it can be easy to con-
fuse between a lion and a wolf if we rely on the textures and
colours alone.

Our solution is to learn both the higher representation and
the distance metric specifically for the retrieval task. The
higher representation would capture the regularities and fac-
tors of variation in the data space from multiple lower fea-
ture types and modalities. At the same time, the repre-
sentation would lead to small distances between conceptu-
ally related objects and large distances between those unre-
lated. To that end, we extend our recent versatile machin-
ery known as Mixed-Variate Restricted Boltzmann Machine
(MV.RBM) [1]. The MV.RBM is a probabilistic architecture
capable of integrating several data types into a homogeneous
“latent” representation in an unsupervised fashion. Our exten-
sions include the introduction of the counting of visual/textual
words [2] and the group-wise sparsity [3] into the model. Dur-
ing the training phase, the model learning is regularised in the
way that the information theoretic distances on the latent rep-
resentation between intra-concept images are minimised and
those between inter-concept images are maximised. During
the testing phase, the learned distance metrics are then used
for retrieving similar images.

Our method differs substantially from the recent metric
learning methods such as those in [4, 5, 6, 7, 8]. The main
difference is the focus on the probabilistic representation it-
self which has not been presented in previous work. Our
goal is not only to learn a good distance function but also
to capture as much information from the heterogeneous data
as possible. The regularisation using intra-concept distances
under the RBM framework has been studied in our previous
work [9], but that work is limited to face recognition with sin-
gle type input.

We demonstrate the effectiveness of the proposed method
on the NUS-WIDE data. This data is particularly rich: Each
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Fig. 1: Image latent representation using Mixed-Variate RBM
with sparse group. The bottom layer contains visible units
which represent image features. Different colours denote var-
ied types. The top layer represents stochastic hidden binary
units. The hidden units within dotted squares mean that they
are arranged into their individual groups {G1, G2, ..., Gm}.

image has multiple visual representations, sometimes social
tags, and one or more manually annotated high-level con-
cepts. We run experiments on two subsets. The first is
the well-studied 13 animal subset in which we show that
our method is competitive against recent state-of-the-arts.
The second subset contains 20, 000 single-concept images.
We obtain 79.5% improvement on mean average precision
(MAP) over the standard nearest neighbours approach and
45.7% increase on the normalised discounted cumulative gain
(NDCG).

In short, our main contributions are: (i) a novel exten-
sion of the recently introduced representation learning ma-
chinery, Mixed-Variate RBM, to construct a robust latent im-
age representation with sparsity structures; (ii) enhancing the
distance metric effectiveness by imposing intra-concept and
inter-concept constraints; (iii) demonstrating that the pro-
posed method outperforms recent state-of-the-art methods on
the well-known NUS-WIDE data.

The remaining paper is structured as follows. Sec. 2
presents the Mixed-Variate RBM with group-wise sparsity
and metric learning for image retrieval. We show empirical
evaluation on the two NUS-WIDE subsets in Sec. 3. Finally,
Sec. 4 concludes the paper.

2. LEARNING SPARSE LATENT REPRESENTATION
AND DISTANCE METRIC

In this section we present our framework of simultaneous
learning of sparse data representation and distance metric for
image retrieval tasks. The framework has three components:
(i) a mixed-variate machine that maps multiple feature types
and modalities into a homogeneous higher representation, (ii)
a regulariser that promotes structured sparsity on the learned
representation, and (iii) an information-theoretic distance op-
erating on the learned representation.

2.1. Learning Homogeneous Representation
Our representation is based on our recently introduced Mixed-
Variate Restricted Boltzmann Machine (MV.RBM) [1]. A
standard RBM is a bipartite network with two layers where
the first layer consists of binary visible units and the second
layer binary hidden units [10]. A MV.RBM has the same hid-
den layer as the RBM but integrates a variety of visible types,
and thus it is particularly suitable for representing multimedia
objects. See Fig 1 for an illustration of the MV.RBM.

More formally, let v denote the joint set of mixed-type
features: v = (v1, v2, ..., vN ), h the set of binary hidden
variables: h = (h1, h2, ..., hK) ∈ {0, 1}K . The MV.RBM
admits the Boltzmann distribution over all variables, i.e.,
P (v,h) ∝ exp {−E (v,h)}, where E (v,h) is the model
energy defined as

E (v,h) = −

(∑
i

F (vi) + a>v + b>h + h>Wv

)
where F (vi) is the type-specific function, a =
(a1, a2, ..., aN ) and b = (b1, b2, ..., bK) are biases of
visible and hidden units respectively, and W = [wij ] are the
weights connecting hidden and visible units.

Due to the bipartite structure of the RBM, the conditional
distributions over hidden and visible units can be factorised
as

P (h | v) =

K∏
j=1

P (hj | v) (1)

P (v | h) =

N∏
i=1

P (vi | h) (2)

The posterior representing the data in the latent space is ho-
mogeneous, i.e., P (hj = 1 | v) = σ

(
bj +

∑N
i=1 viwij

)
where

σ(x) = (1 + exp(−x))−1. The data generating distribution
P (vi | h) is, on the other hand, type-specific. For exam-
ple, let µi = ai +

∑K
j=1 hjwij , binary units (e.g., tex-

tual tags) would be specified as: P (vi = 1 | h) = σ (µi)

and Gaussian units (e.g., histograms) as: vi | h ∼
N (µi; 1). To represent counts (e.g., bag-of-visual words),
we adopt the constrained Poisson model by [2] in that
P (vi = n | h) = Poisson

(
n, exp{µi}∑

k exp{µk}L
)

, where L is the
“document” length. Note that the integration of counts is not
readily available in the original MV.RBM.

Once the model is fully specified, the latent representa-
tion can be achieved by transforming feature space of input
image into hidden posterior vector ĥ =

(
ĥ1, ĥ2, ..., ĥK

)
,

where ĥj = P (hj = 1 | v). This representation is highly in-
terpretable: Each ĥj is the probability that a particular latent
feature is activated. It also has nice numerical properties: The
posteriors are homogenous and bounded within (0, 1). Thus
the distance measures computed on latent representations do
not suffer from the heterogeneity and different scales of the
features.



2.2. Enhancing the Representation by Structured Spar-
sity

The latent representation learned from the MV.RBM captures
the regularities in the data space. However, it is largely un-
structured and may not readily disentangle all the factors of
variation (e.g., those due to different object types in the im-
age). One way to improve the representation is to impose
some structured sparsity, which may lead to better separation
of object groups and easier interpretation. Following the pre-
vious work in [3], we impose a mixed-norm regulariser on the
latent representation. In particular, hidden units are equally
arranged into M non-overlapped groups. Let Gm denote the
indices of hidden units in the mth group, the regulariser reads

R (v) =

M∑
m=1

√ ∑
j∈Gm

P (hj = 1 | v)2 (3)

During learning, this regulariser is minimised and this
leads to group-wise sparsity, i.e., only few groups of hidden
units will be activated (see the last column of Fig. 2).

2.3. Learning Distance Metric

Latent representation may not fully capture intra/inter-
concept variations, and thus it may not result in a good dis-
tance metric for retrieval tasks. It is better to directly learn
a distance metric that suppresses intra-concept variation and
enlarges inter-concept variation. Given the probabilistic na-
ture of our representation, a suitable distance is the symmetric
Kullback-Leibler divergence, also known as Jensen-Shannon
divergence:

D (g, f) =
1

2
(KL (g‖f) + KL (f‖g)) (4)

where KL (g‖f) =
∑

h P (h | g) log P (h|g)
P (h|f) . Let N (f) de-

note the set of other images that share the same concept with
the image f , and N̄ (f) denotes those do not. The mean dis-
tance to all other images in N (f) should be minimised:

DN(f) =
1

|N (f)|
∑

g∈N(f)

D
(
P
(
h | v(g)

)
, P
(
h | v(f)

))
(5)

On the other hand, the mean distance to all images in N̄ (f)
should be enlarged:

DN̄(f) =
1∣∣N̄ (f)
∣∣ ∑
g∈N̄(f)

D
(
P
(
h | v(g)

)
, P
(
h | v(f)

))
(6)

We note that the idea of intra-concept distance has been stud-
ied in our recent work [9], but the inter-concept distance is
new.

2.4. Putting Things Together

Our learning has three goals: Capturing the joint represen-
tation of visual and textual features by maximising the data
likelihood L (v) =

∑
h P (h,v), enhancing structural spar-

sity through minimisingR (v), and regularising intra-concept
and inter-concept distance metrics DN(f) and DN̄(f). The ob-
jective function is now the following regularised likelihood

Lreg =
∑
f

logL
(
v(f)

)

−αR (v)− β

∑
f

DN(f) −
∑
f

DN̄(f)


where α ≥ 0 is the regularising constant for sparsity, β ≥ 0 is
the coefficient to control the effect of distance metrics. Max-
imising this regularised likelihood is equivalent to simultane-
ously maximising the data likelihood L (v), minimising the
regularisation functionR (v), minimising the neighbourhood
distance DN(f) and maximising the non-neighbourhood dis-
tance DN̄(f).

Let ψ = {a,b,W } be the set of parameters. The gradient
of the log-likelihood function is

∂ logL (v)

∂ψ
= Ev,h

[
∂E (v,h)

∂ψ

]
− Eh|v

[
∂E (v,h)

∂ψ

]
where Ev,h is the model expectation and Eh|v is the data ex-
pectation. Whilst it is simple to compute the data expectation
using Eq. (1), it is intractable to exactly estimate the model ex-
pectation. We hereby choose an stochastic method known as
Contrastive Divergence (CD) [11] which runs short Markov
chains started from the data to approximate the model expec-
tation.

The gradient of sparsity term in Eq. (3) reads
∂R (v)

∂ψ•j
=

P (hj = 1 | v)√∑
t∈Gm

P (ht = 1 | v)2

∂P (hj = 1 | v)

∂ψ•j

where ψ•j is the parameter associated with hidden units hj
and the jth hidden unit belongs to the mth group.

To compute the gradient of the mean distances DN(f) and
DN̄(f) defined in Eqs. (5,6), we need the gradient for each

pairwise distance D (g, f) = D
(
P
(
h | v(g)

)
, P
(
h | v(f)

))
.

Taking derivative of the metric distance function with respect
to parameter ψ•j , we have

∂D (g, f)

∂ψ•j
=

∂D (g, f)

∂P
(
h1
j | f

) ∂P
(
h1
j | f

)
∂ψ•j

+
∂D (g, f)

∂P
(
h1
j | g

) ∂P
(
h1
j | g

)
∂ψ•j

in which P
(
h1
j | f

)
is the shorthand for P

(
hj = 1 | v(f)

)
.

Recall from Sec. 2.1 that this probability is a sigmoid func-
tion. Thus the partial derivative with respect to the mapping
column W •j is then

∂P
(
h1
j | f

)
∂W •j

= P
(
h1
j | f

) (
1− P

(
h1
j | f

))
v(f) (7)

As defined in Eq. (4), the derivative ∂D(g,f)

∂P(h1
j |f)

depends on the

derivative of the KL-divergence, which reads

∂KL (g‖f)

∂P
(
h1
j | g

) =
∑
j

(
log

P
(
h1
j | g

)
P
(
h1
j | f

) − log
1− P

(
h1
j | g

)
1− P

(
h1
j | f

))(8)

Finally, parameters are updated using stochastic gradient
ascent as follows

ψ ← ψ + λ

(
∂

∂ψ
Lreg

)
for some learning rate λ > 0.



3. EXPERIMENTS

In this section, we quantitatively evaluate our method on two
real datasets. Both datasets are subsets selected from the
NUS-WIDE dataset [12], which was collected from Flickr.
The NUS-WIDE dataset includes 269,648 images which are
associated with 5,018 unique tags. There are 81 concepts in
total. For each image, six types of low-level features [12]
are extracted, including 64-D color histogram in LAB color
space, 144-D color correlogram in HSV color space, 73-
D edge direction histogram, 128-D wavelet texture, 225-D
block-wise LAB-based color moments extracted over 5×5
fixed grid partitions and 500-D bag-of-word (BOW) based on
SIFT descriptions.

For training our model, mapping parameters W are ran-
domly initialised from small normally distributed numbers,
i.e. Gaussian N (0; 0.01), and biases (a, b) are set to zeros.
To enhance the speed of training, we divide training images
into small “mini-batches” of B = 100 images. Hidden and
visible learning rates are fixed to 0.02 and 0.3, respectively1.
Parameters are updated after every mini-batch and the learn-
ing finishes after 100 scans through the whole data. Once pa-
rameters have been learned, images are projected onto the la-
tent space using Eq. (1). We set the number of hidden groups
M to the expected number of groups (e.g., concepts), and the
number of hidden units K is multiple of M . The retrieved
images are ranked based on the negative KL-div on these la-
tent representations. We repeat 10 times and report the mean
and standard deviation of the performance measures.

3.1. Retrieving Animals
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Fig. 3: The MAP performance (%) as functions of the hyper-
parameters: (Left) The number of hidden units K (with α =
0.003 and β = 0.001); (Middle) The regularisation constant
α (with K = 195); (Right) The metric learning coefficient β
(with K = 195 and α = 0.003).

The first subset is the NUS-WIDE animal dataset which con-
tains 3,411 images of 13 animals - squirrel, cow, cat, zebra,
tiger, lion, elephant, whale, rabbit, snake, antler, wolf and
hawk. Fig. 2 shows example images of each category. Out
of 3,411 images, 2,054 images are used for training and the
remaining for testing. In the testing phase, each test image
is used to query images in training set to receive a list of im-
ages ranked basing on similarities. These settings are identi-
cal to those used in previous work [14, 15, 13]. For our meth-

1Learning rate settings are different since the hidden are binary whilst the
visible are unbounded.

Table 1: Image retrieval results to compare with recent state-
of-the-art multiview learning and hierarchical modelling tech-
niques on NUS-WIDE animal dataset. RBM+SG+ML is
RBM with latent sparse groups and metric learning.

Method MAP
DWH [13] 0.153
TWH [13] 0.158
MMH [13] 0.163

NHFA-GGM (approx.) [14] 0.179±0.013
Proposed NHFA-GGM [15] 0.195±0.013

RBM 0.199±0.001
RBM+SG 0.206±0.002

RBM+SG+ML 0.252±0.002

ods, the similarity measure is negative symmetric Kullback-
Leibler divergence (KL-div) learned from data (Sec. 2.4). The
retrieval performance is evaluated using Mean Average Pre-
cision (MAP) over all received images in training set. Two
images are considered similar if they depict the same type of
animal.

In this experiment, we concatenate first five histogram
features of each animal image into a long vector and ignore
BOW features to fairly compare with recent work. Thus we
treat elements of the vector as Gaussian units and normalise
them across all training images to obtain zeros mean and unit
standard variance. Note that the MV.RBM here reduces to the
plain RBM with single Gaussian type.

To find the best setting of the hyper-parameters α, β and
K, we perform initial experiments with varying values. Fig. 3
reports the MAP performance (%) with respect to these val-
ues. Here α = 0 means no sparsity constraint and β = 0
means no metric learning. As can be seen from the left figure,
the performance stops increasing after some certain hidden
size. Adding certain amount of sparsity control slightly im-
proves the result (see the middle figure). A much stronger
effect is due to metric learning, as shown in the right figure.
From these observations, we choose K = 195 (15 units per
group), α = 0.003 and β = 0.001.

Fig. 4 shows how structured sparsity and metric learning
contributes to the higher retrieval quality. The naive nearest
neighbour on concatenated normalised features2 would con-
fuse a wolf with the query of lion, possibly due to the similar
colour profiles. The standard RBM admits the same error sug-
gesting that learning just regularities is not enough. Adding
structured sparsity (RBM+SG) corrects one error and using
learned metric (RBM+SG+ML) would correct all the errors.

Finally, Table 1 presents the MAP results of our methods
(RBM, RBM with sparse group (SG) and with metric learning
(ML)) in comparison with recent work [13, 14, 15] on the
NUS-WIDE animal dataset. It is clear that RBM and RBM

2Each feature is normalised to zero mean and unit standard variance over
images.
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Fig. 2: Example images of each species in NUS-WIDE animal dataset. The last column shows the group mean of hidden
posteriors by colours, one line per image. The red cells illustrate higher values whilst the blue denote the lower. It is clear that
4 groups of 6 consecutive images form 4 strips in different groups (9,6,1,8).

Table 2: Comparison of image retrieval results with 4 base-
lines on NUS-WIDE single label subset. (model)+SG+ML
means (model) is integrated with sparse groups and metric
learning. MAP@100 is evaluated at top 100 similar images.
N@10 = NDCG estimated at top 10 results. (↑%) denotes im-
proved percentage.

Method MAP@100 (↑%) N@10 (↑%)

kNN 0.283 0.466

RBM 0.381±0.001(+34.6) 0.565±0.001(+21.2)

RBM+SG 0.402±0.035(+42.1) 0.584±0.001(+25.3)

MV.RBM 0.455±0.002 (+60.8) 0.631±0.002 (+35.4)

MV.RBM+SG 0.483±0.002 (+70.7) 0.668±0.002 (+43.4)

MV.RBM+SG+ML 0.508±0.002(+79.5) 0.679±0.001(+45.7)

with SG are competitive against all previous methods; and
RBM integrated with SG and ML significantly outperforms
state-of-the-art approaches.

3.2. Retrieving Individual Concepts

In the second experiment, we aim to demonstrate the capabil-
ity of our method to handle heterogeneous types of features
and larger data. We randomly pick 10,000 images for training
and 10,000 for testing. Each image in this subset has exactly
one concept and altogether, they cover the entire 81 concepts
of the NUS-WIDE dataset. Six visual features (1 bag-of-word
and 5 histogram-like) and associated social tags, limited to
1,000, of each image are taken. The MV.RBM encodes 5 his-
togram features as Gaussian, social tags as binary and BOW
as Poisson units. We further transform counts into log space
using [log (1 + count)].

Besides MAP score, we also compute the Normalized
Discounted Cumulative Gain (NDCG) [16] for evaluation.
Here we only use the top 100 similar images for calculating
MAP and top 10 images for computing NDCG. We create

2 baselines and 4 versions of our approach to show the im-
provement of the MV.RBM when adding sparse groups and
metric learning (MV.RBM+SG+ML). The first baseline is to
employ k-NN method on concatenated feature vectors. First
features are normalised to zeros mean and unit vector over im-
ages to eliminate the differences in dimensionality and scale.
The second baseline is fusion of multiple plain RBMs, each
of which is type specific, i.e., BOW as Poisson, visual his-
tograms as Gaussian and textual tags as binary. For each type
of RBM, visible input data is mapped into binary latent repre-
sentation. Then these latent representations are concatenated
into a single latent representation.

The first version (RBM+SG) is the second baseline
with group-wise sparsity (Sec. 2.2). The second version
(MV.RBM) jointly models all 7 types of features. The
third version (MV.RBM+SG) is MV.RBM with 81 sparse
groups (Sec. 2.2). And finally, the proposed solution
(MV.RBM+SG+ML) integrates both the sparsity and the met-
ric learning into the MV.RBM.

Different from the first experiment, we query within test-
ing set for each testing image3. Table 2 reports the retrieval
results of all RBM models. Again, it demonstrates that (i) rep-
resentation learning, especially when it comes to fusing multi-
ple feature types and modalities, is highly important in image
retrieval, (ii) adding structured sparsity can improve the per-
formance, and (iii) distance metric, when jointly learned with
representation, has significant effect on the retrieval quality.
In particular, the improvement over the k-NN when using
the proposed method is significant: MAP score increases by
79.5% and NDCG score by 45.7%.

4. CONCLUSION
We have presented a novel probabilistic image retrieval
framework that simultaneously learns the image representa-
tion and the distance metric. The framework is based on

3This way of testing is more realistic since we do not always have all
images for training.
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Fig. 4: Retrieved images for query image of a lion in test-
ing set. k-NN: k−nearest neighbours, RBM+SG+ML: RBM
with sparse group, metric learning. First column is the
queried images. Blue titles are right retrieval whilst the red
are wrong. Four retrieved images are sorted in descent order
of similarities from left to right.

our recent architecture known as Mixed-Variate Restricted
Boltzmann Machine which can seamlessly integrate multiple
feature types and modalities. Our main extensions are the
handling of visual/textual word counts, and a regularisation
scheme that promotes structured sparsity in the learned repre-
sentation, suppresses intra-concept information-theoretic dis-
tances, and enlarges inter-concept distances. Our experiments
on the NUS-WIDE data confirm that (i) effective representa-
tions for image retrieval can be learned from multiple raw fea-
ture sets and modalities, (ii) performance can be further im-
proved by appropriate structured sparsity in the learned rep-
resentation, and (iii) distance metric should be learned jointly
with the representation.
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