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Abstract
We introduce Thurstonian Boltzmann Ma-
chines (TBM), a unified architecture that
can naturally incorporate a wide range of
data inputs at the same time. Our motiva-
tion rests in the Thurstonian view that many
discrete data types can be considered as be-
ing generated from a subset of underlying
latent continuous variables, and in the ob-
servation that each realisation of a discrete
type imposes certain inequalities on those
variables. Thus learning and inference in
TBM reduce to making sense of a set of in-
equalities. Our proposed TBM naturally sup-
ports the following types: Gaussian, inter-
vals, censored, binary, categorical, muticate-
gorical, ordinal, (in)-complete rank with and
without ties. We demonstrate the versatility
and capacity of the proposed model on three
applications of very different natures; namely
handwritten digit recognition, collaborative
filtering and complex social survey analysis.

1. Introduction
Restricted Boltzmann machines (RBMs) have

proved to be a versatile tool for a wide variety of
machine learning tasks and as a building block for
deep architectures (Hinton and Salakhutdinov, 2006;
Salakhutdinov and Hinton, 2009a; Smolensky, 1986).
The original proposals mainly handle binary visible
and hidden units. Whilst binary hidden units are
broadly applicable as feature detectors, non-binary
visible data requires different designs. Recent exten-
sions to other data types result in type-dependent
models: the Gaussian for continuous inputs (Hinton

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

and Salakhutdinov, 2006), Beta for bounded continu-
ous inputs (Le Roux et al., 2011), Poisson for count
data (Gehler et al., 2006), multinomial for unordered
categories (Salakhutdinov and Hinton, 2009b), and or-
dinal models for ordered categories (Truyen et al.,
2009; Tran et al., 2012).

The Boltzmann distribution permits several types
to be jointly modelled, thus making the RBM a good
tool for multimodal and complex social survey analy-
sis. The work of (Ngiam et al., 2011; Srivastava and
Salakhutdinov, 2012; Xing et al., 2005) combines con-
tinuous (e.g., visual and audio) and discrete modalities
(e.g., words). The work of (Tran et al., 2011) extends
the idea further to incorporate ordinal and rank data.
However, there are conceptual drawbacks: First, con-
ditioned on the hidden layer, they are still separate
type-specific models; second, handling ordered cate-
gories and ranks is not natural; and third, specifying
direct correlation between these types remains diffi-
cult.

The main thesis of this paper is that many data
types can be captured in one unified model. The key
observations are that (i) type-specific properties can
be modelled using one or several underlying continuous
variables, in the spirit of Thurstonian models1 (Thur-
stone, 1927), and (ii) evidences be expressed in the
form of one or several inequalities of these underlying
variables. For example, a binary visible unit is turned
on if the underlying variable is beyond a threshold; and
a category is chosen if its utility is the largest among all
those of competing categories. The use of underlying
variables is desirable when we want to explicitly model
the generative mechanism of the data. In psychology
and economics, for example, it gives much better in-
terpretation on why a particular choice is made given

1Whilst Thurstonian models often refer to human’s
judgment of discrete choices, we use the term “Thursto-
nian” more freely without the notion of human’s decision.
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the perceived utilities (Böckenholt, 2006). Further, it
is natural to model the correlation among type-specific
inputs using a covariance structure on the underlying
variables.

The inequality observation is interesting in its own
right: Instead of learning from assigned values, we
learn from the inequality expression of evidences,
which can be much more relaxed than the value as-
signments. This class of evidences indeed covers a wide
range of practical situations, many of which have not
been studied in the context of Boltzmann machines,
as we shall see throughout the paper.

To this end, we propose a novel class of models
called Thurstonian Boltzmann Machine (TBM). The
TBM utilises the Gaussian restricted Boltzmann ma-
chine (GRBM): The top layer consists of binary hidden
units as in standard RBMs; the bottom layer contains
a collection of Gaussian variable groups, one per in-
put type. The main difference is that TBM does not
require valued assignments for the bottom layer but
a set of inequalities expressing the constraints imposed
by the evidences. Except for a limiting case of point as-
signments where the inequalities are strictly equalities,
the Gaussian layer is never fully observed. The TBM
supports more data types in a unified manner than
ever before: For any combination of the point assign-
ments, intervals, censored values, binary, unordered
categories, multi-categories, ordered categories, (in)-
complete ranks with and without ties, all we need to
do is to supply relevant subset of inequalities.

We evaluate the proposed model on three appli-
cations of very different natures: handwritten digit
recognitions, collaborative filtering and complex sur-
vey analysis. For the first two applications, the per-
formance is competitive against methods designed for
those data types. On the last application, we be-
lieve we are among the first to propose a scalable
and generic machinery for handle those complex data
types.

2. Gaussian RBM
Let x = (x1, x2, ..., xN )> ∈ RN be a vector of input

variables. Let h = (h1, h2, ..., hK)> ∈ {0, 1}K be a set
of hidden factors which are designed to capture the
variations in the observations. The input layer and the
hidden layer form an undirected bipartite graph, i.e.,
only cross-layer connections are allowed. The model
admits the Boltzmann distribution

P (x,h) =
1

Z
exp {−E(x,h)} (1)

where Z =
∑

h

´
exp {−E(x,h)} dx is the normal-

ising constant and E(x,h) is the state energy. The
energy is decomposed as

E(x,h) =
∑
i

(
x2i
2
− (αi +Wi•h)xi

)
− γ>h

where{αi}Ni=1 ,W = {Wik},γ = {γk} are free param-
eters and Wi• denotes the i-th row.

Given the input x, the posterior has a simple form

P (h | x) =
∏
k

P (hk | x) (2)

P (hk = 1 | x) =
1

1 + e−γk−W
′
•kx

where W•k denotes the k-th column. Similarly, the
generative process given the binary factor h is also
factorisable

P (x | h) =
∏
i

P (xi | h) (3)

P (xi | h) = N (αi +Wi•h, 1)

where N (µ, 1) is the normal distribution of mean µ
and unit deviation.

3. Thurstonian Boltzmann Machines
We now generalise the Gaussian RBM into the

Thurstonian Boltzmann Machine (TBM). Denote by
e an observed evidence of x. Standard evidences are
the point assignment of x to some specific real-valued
vector, i.e., x = v. Generalised evidences can be ex-
pressed using inequality constraints

b ≤� Ax ≤� c (4)

for some transform matrix A ∈ RM×N and vectors
b, c ∈ RM , where ≤� denotes element-wise inequali-
ties. Thus an evidence can be completely realised by
specifying the triple 〈A, b, c〉. For example, for the
point assignment, 〈A = I, b = v, c = v〉, where I is the
identity matrix. In what follows, we will detail other
useful popular realisations of these quantities.

3.1. Boxed Constraints

This refers to the case where input variables are in-
dependently constrained, i.e., A = I, and thus we need
only to specify the pair 〈b, c〉.

Censored observations. This refers to situation
where we only know the continuous observation be-
yond a certain point, i.e., b = e and c = +∞. For
example, in survival analysis, the life expectancy of a
person might be observed up to a certain age, and we
have no further information afterward.

Interval observations. When the measurements
are imprecise, it may be better to specify the range
of possible observations with greater confidence rather
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than a singe point, i.e., b = e − δ and c = e + δ for
some pair (e, δ). For instance, missile tracking may
estimate the position of the target with certain preci-
sion.

Binary observations. A binary observation ei can
be thought as a result of clipping xi by a threshold θi,
that is ei = 1 if xi ≥ θi and ei = 0 otherwise. The
boundaries in Eq. (3.2) become:

〈bi, ci〉 =

{
〈−∞, θi〉 ei = 0

〈θi,+∞〉 ei = 1
(5)

Thus, this model offers an alternative2 to standard bi-
nary RBMs of (Smolensky, 1986; Freund and Haussler,
1993).

Ordinal observations. Denote by e =
(e1, e2, ..., eN ) the set of ordinal observations, where
each ei is drawn from an ordered set {1, 2, .., L}. The
common assumption is that the ordinal level ei = l
is observed given xi ∈ [θl−1, θl] for some thresholds
θ1 ≤ θ2 ≤ ...θL−1. The boundaries thus read

〈bi, ci〉 =


〈−∞, θ1〉 l = 1

〈θl−1, θl〉 l = 2, 3, ..L− 1

〈θL−1,+∞〉 otherwise

(6)

This offers an alternative3 to the ordinal RBMs of
(Truyen et al., 2009).

3.2. Inequality Constraints

Categorical observations. This refers to the sit-
uation where out of an unordered set of categories,
we observe only one category at a time. This can
be formulated as follows. Each category is associ-
ated with a “utility” variable. The category l is ob-
served (i.e., ei = m) if it has the largest utility, that is
xil ≥ maxm6=l xim. Thus, xil is the upper-threshold for
all other utilities. On the other hand, maxm6=l xim is
the lower-threshold for xil. This suggests an EM-style
procedure: (i) fix xil (or treat it as a threshold) and
learn the model under the intervals xim ≤ xil for all
m 6= l, and (ii) fix all categories other than l, learn the
model under the interval xil ≥ maxm6=l xim. This of-
fers an alternative4 to the multinomial logit treatment
in (Salakhutdinov et al., 2007).

To illustrate the point, suppose there are only four
variables z1, z2, z3, z4, and z1 is observed, then we have
z1 ≥ max {z2, z3, z4}. This can be expressed as z1 −
z2 ≥ 0; z1 − z3 ≥ 0 and z1 − z4 ≥ 0. These are

2To be consistent with the statistical literature, we can
call it the probit RBM, which we will study in Section 6.1.

3This can be called ordered probit RBM.
4We can call this model multinomial probit RBM.

equivalent to〈
A =

 1 −1 0 0
1 0 −1 0
1 0 0 −1

 ; b = 0; c = +∞

〉
Imprecise categorical observations. This gener-
alises the categorical case: The observation is a sub-
set of a set, where any member of the subset can be
a possible observation5. For example, when asked
to choose the best sport team of interest, a per-
son may pick two teams without saying which is the
best. For instance, suppose the subset is {z1, z2}, then
min {z1, z2} ≥ max{z3, z4}, which can be expressed as
z1− z3 ≥ 0; z2− z3 ≥ 0, z1− z4 ≥ 0 and z2− z4 ≥ 0.
This translates to the following triple〈

A =


1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

 ; b = 0; c = +∞

〉

Rank (with Ties) observations. This generalises
the imprecise categorical cases: Here we have a (par-
tially) ranked set of categories. Assume that the rank
is produced in a stagewise manner as follows: The best
category subset is selected out of all categories, the
second best is selected out of all categories except for
the best one, and so on. Thus, at each stage we have
an imprecise categorical setting, but now the utilities
of middle categories are constrained from both sides
– the previous utilities as the upper-bound, and the
next utilities as the lower-bound.

As an illustration, suppose there are four variables
z1, z2, z3, z4 and a particular rank (with ties) imposes
that min {z1, z2} ≥ z3 ≥ z4. This be rewritten as
z1 ≥ z3; z2 ≥ z3; z3 ≥ z4, which is equivalent to〈

A =

 1 0 −1 0
0 1 −1 0
0 0 1 −1

 ; b = 0; c = +∞

〉

4. Inference Under Linear Constraints
Under the TBM, MCMC-based inference without

evidences is simple: we alternate between P (h | x)
and P (x | h). This is efficient because of the factori-
sations in Eqs. (2,3). Inference with inequality-based
evidence e is, however, much more involved except for
the limiting case of point assignments.

Denote by Ω(e) =
{
x | b ≤� Ax ≤� c

}
the con-

strained domain of x defined by the evidence e. Now
we need to specify and sample from the constrained
distribution P (x,h | e) defined on Ω(e). Sampling
P (h | x) remains unchanged, and in what follows we
focus on sampling from P (x | h, e).

5This is different from saying that all the members of
the subset must be observed.



Thurstonian Boltzmann Machines

4.1. Inference under Boxed Constraints

For boxed constraints (Section 3.1), due to the con-
ditional independence, we still enjoy the factorisation
P (x | h, e) =

∏
i P (xi | h, e). We further have

P (xi | h, e) =
P (xi | h)

Φ(ci | h)− Φ(bi | h)

where Φ(· | h) is the normal cumulative distribution
function of P (xi | h). Now P (xi | h, e) is a trun-
cated normal distribution, from which we can sample
using the simple rejection method, or more advanced
methods such as those in (Robert, 1995).

4.2. Inference under Inequality Constraints

For general inequality constraints (Section 3.2), the
input variables are interdependent due to the linear
transform A. However, we can specify the conditional
distribution P (xi | x¬i,h, e) (here x¬i = x\xi) by
realising that

bm −
∑
j 6=i

Amjxj ≤ Amixi ≤ cm −
∑
j 6=i

Amjxj

where Ami 6= 0 for m = 1, 2, ...,M . In other words, xi
is conditionally box-constrained given other variables.

This suggests a Gibbs procedure by looping
through x1, x2, ..., xN . With some abuse of nota-

tion, let b̃mi =
(
bm −

∑
j 6=iAmjxj

)
/Ami and c̃mi =(

cm −
∑
j 6=iAmjxj

)
/Ami. The constraints can be

summarised as

xi ∈ ∩Mm=1

[
min

{
b̃mi, c̃mi

}
,max

{
b̃mi, c̃mi

}]
=

[
max
m

min
{
b̃mi, c̃mi

}
,min
m

max
{
b̃mi, c̃mi

}]
The min and max operators are needed to handle
change in inequality direction with the sign of Ami,
and the join operator is due to multiple constraints.

For more sophisticated Gibbs procedures, we refer
to the work in (Geweke, 1991).

4.3. Estimating the Binary Posteriors

We are often interested in the posteriors P (h |
e), e.g., for further processing. Unlike the stan-
dard RBMs, the binary latent variables here are cou-
pled through the unknown Gaussians and thus there
are no exact solutions unless the evidences are all
point assignments. The MCMC-based techniques de-
scribed above offer an approximate estimation by av-

eraging the samples
{
h(s)

}S
s=1

. For the case of boxed

constraints, mean-field offers an alternative approach
which may be numerically faster. In particular, the
mean-field updates are recursive:

Qk ← 1

1 + exp {−γk −
∑
iWikµ̂i}

µi ← αi +
∑
k

WikQk

µ̂i = µi +
φ(bi − µi)− φ(ci − µi)
Φ(ci − µi)− Φ(bi − µi)

where Qk is the probability of the unit k being acti-
vated, µ̂i is the mean of the normal distribution trun-
cated in the interval [bi, ci], φ(z) is the probability den-
sity function, and Φ(z) is normal cumulative distribu-
tion function. Interested readers are referred to the
Supplement6 for more details.

4.4. Estimating Probability of Evidence
Generation

Given the hidden states h we want to estimate the
probability that hidden states generate a particular
evidence e

P (e | h) =

ˆ
Ω(e)

P (x | h)dx

For boxed constraints, analytic solution is available
since the Gaussian variables are decoupled, i.e., P (ei |
h) = Φ(ci−µi)−Φ(bi−µi), where µi = αi+

∑
kWikhk.

For general inequality constraints, however, these vari-
ables are coupled by the inequalities. The general
strategy is to sample from P (x | h) and compute the
portion of samples falling into the constrained domain
Ω(e). For certain classes of inequalities we can approx-
imate the Gaussian by appropriate distributions from
which the integration has the closed form. In particu-
lar, those inequalities imposed by the categorical and
rank evidences can be dealt with by using the extreme
value distributions. The integration will give the logit
form on distribution of categories and Plackett-Luce
distribution of ranks. For details, we refer to the Sup-
plement.

5. Stochastic Gradient Learning with
Persistent Markov Chains

Learning is based on maximising the evidence like-
lihood

L = logP (e) = log
∑
h

ˆ
Ω(e)

P (h,x)dx

where P (h,x) is defined in Eq. (1). Let Z(e) =∑
h

´
Ω(e)

exp {−E(x,h)} dx, then L = logZ(e) −
logZ. The gradient w.r.t. the mapping parameter
reads

∂Wik
L = EP (xi,hk|e) [xihk]− EP (xi,hk) [xihk] (7)

6Supplement material will be available at:
http://truyen.vietlabs.com
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The derivation is left to the Supplement.

5.1. Estimating Data Statistics

The data-dependent statistics EP (xi,hk|e) [xihk] and
the data-independent statistics EP (xi,hk) [xihk] are not
tractable to compute in general, and thus approxima-
tions are needed.

Data-dependent statistics. Under the box con-
straints, the mean-field technique (Section 4.3) can be
employed as follows

EP (xi,hk|e) [xihk] ≈ µ̂iQk

For general cases, sampling methods are applicable. In
particular, we maintain one persistent Markov chain
(Younes, 1989; Tieleman, 2008) per data instance and
estimate the statistics after a very short run. This
would explore the space of the data-dependent distri-
bution P (x,h | e) by alternating between P (h | x)
and P (x | h, e) using techniques described in Sec-
tion 4.

Data-independent statistics. Mean-field distri-
butions are not appropriate for exploring the entire
state space because they tend to fit into one mode.
One practical solution is based on the idea of Hinton’s
Contrastive Divergence (CD), where we create another
Markov chain on-the-fly starting from the latest state
of the clamped chain. This chain will be discarded af-
ter each parameter update. This is particular useful
when the models are instance-specific, e.g., in collabo-
rative filtering, it is much cheaper to build one model
per user, all share the same parameters. If it is not
the case, then we can maintain a moderate set of par-
allel chains and collect the samples after a short run at
every updating step (Younes, 1989; Tieleman, 2008).

5.2. Learning the Box Boundaries
In the case of boxed constraints, sometimes it is

helpful to learn the boundaries 〈bi, ci〉 themselves. The
gradient of the log-likelihood w.r.t. the lower bound-
aries reads

∂biL =
1

Z(e)

∑
h

∂bi

ˆ
Ω(e)

exp {−E(x,h)} dx

=
∑
h

∂bi

ˆ
Ω(e)

P (x,h | e) dx

≈ 1

S
∂bi

ˆ ci

bi

ˆ
Ω(e)\[bi,ci]

P
(
x | h(s), e

)
dx¬idxi

= − 1

S

∑
h

P
(
xi = bi | h(s), e

)

where
{
h(s)

}S
s=1

are samples collected during the

MCMC procedure running on the data-dependent dis-
tribution P (x,h | e). Similarly we would have the

gradient w.r.t. the upper boundaries:

∂ciL =
1

S

∑
h

P
(
x = ci | h(s), e

)
.

6. Applications
In this section, we describe applications of the TBM

for three realistic domains, namely handwritten digit
recognition, collaborative filtering and worldwide sur-
vey analysis. Before going to the details, let us first
address key implementation issues (see Supplement for
more details).

One observed difficulty in training the TBM is that
the hidden samples can get stuck in one of the two ends
and thus learning cannot progress. The reasons might
be the large mapping parameters or the unbounded na-
ture of the underlying Gaussian variables, which can
saturate the hidden units. We can control the norm
of the mapping parameters, either by using the stan-
dard `2-norm regularisation, or by rescaling the norm
of the parameter vector for each hidden unit. To deal
with the non-boundedness of the Gaussian variables,
then we can restrict their range, making the model
bounded.

Another effective solution is to impose a constraint
on the posteriors by adding the regularising term to
the log-likelihood, e.g.,

λ

{∑
k

[
ρ logP (h1k | e) + (1− ρ) log

(
1− P (h1k | e)

)]}

where ρ ∈ (0, 1) is the expected probability that a hid-
den unit will turn on given the evidence and λ > 0 is
the regularisation weight. Maximising this quantity is
essentially minimising the Kullback-Leibler divergence
between the expected posteriors and the true posteri-
ors. In our experiments, we found ρ ∈ (0.1, 0.3) and
λ ∈ (0.1, 1) gave satisfying results.

The main technical issue is that P (h1k | e) does not
have a simple form due to the integration over all the
constrained Gaussian variables. Approximation is thus
needed. The use of mean-field methods will lead to
the simple sigmoid form, but it is only applicable for
boxed constraints since it breaks down deterministic
constraints among variables (Section 4.3). However,
we can estimate the “mean” truncated Gaussian µ̂i by
averaging the recent samples of the Gaussian variables
in the data-dependent phase.

Once these safeguards are in place, learning can
greatly benefit from quite large learning rate and small
batches as it appears to quickly get the samples out
off the local energy traps by significantly distorting the
energy landscape. Depending on the problem sizes, we
vary the batch sizes in the range [100, 1000].
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Figure 1. 100 MNIST feature weights (one image per hid-
den unit) learned by Probit RBM (left) and RBM with
CD-1 (right).

Figure 2. t-SNE visualisation of the learned representa-
tions on MNIST (left) and random samples of two confused
digits (4,9) (right). Best viewed in colours.

6.1. Probit RBM for Handwritten Digits

We use the name Probit RBM to denote the special
case of TBM where the observations are binary (i.e.,
boxed constraints, see Section 3.1). The threshold θi
for each visible unit i is chosen so that under the zero
mean, the probability of generating a binary evidence
equals the empirical probability, i.e., 1 − Φ(θi) = ēi,
and thus θi = Φ−1(1 − ēi). Since any mismatch in
thresholds can be corrected by shifting the correspond-
ing biases, we do not need to update the thresholds
further.

We report here the result of the mean-field method
for computing data-dependent statistics, which are av-
eraged over a random batch of 500 images. For the
data-independent statistics, 500 persistent chains are
run in parallel with samples collected after every 5
Gibbs steps. The sparsity level ρ is set to 0.3 and the
sparseness weight λ is set to 0.5. Once the model has
been learned, mean-field is used to estimate the hid-
den posteriors. Typically this mean-field is quite fast
as it converges in a few steps.

We take the data from MNIST and binarize the im-

Figure 3. Samples generated from the Probit RBM (left)
and RBM with CD-1 (right) by mode seeking procedures
(see Supplement).

ages using a mid-intensity threshold. The learned rep-
resentation is shown in Figure 2. Most digits are well
separated in 2D except for digits 4 and 9. The learned
representation can be used for classifications, e.g., by
feeding to the multiclass logistic classifier. For 500 hid-
den units, the Probit RBM achieves the error rate of
3.28%, comparable with those obtained by the RBM
trained with CD-1 (3.02%), and much better than the
raw pixels (8.46%). The features discovered by the
Probit RBM and RBM with CD-1 are very different
(Figure 1), and this is expected because they operate
on different input representations. The energy surface
learned by the Probit RBM is smooth enough to allow
efficient exploration of modes, as shown in Figure 3.

6.2. Rank Evidences for Collaborative
Filtering

In collaborative filtering, one of the main goals is to
produce a personalized ranked list of items. Until very
recently, the majority in the area, on the other hand,
focused on predicting the ratings, which are then used
for ranking items. It can be arguably more efficient to
learn a rank model directly instead of going through
the intermediate steps.

We build one TBM for ranking with ties (i.e., in-
equality constraints, see Section 3.2) per user due to
the variation in item choices but all the TBMs share
the same parameter set. The handling of ties is nec-
essary because during training, many items share the
same rating. Unseen items are simply not accounted
for in each model: We only need to compare the utili-
ties between the items seen by each person. The result
is that the models are very sparse and fast to run. For
the data-dependent statistics, we maintain one Markov
chain per user. Since there is no single model for all
data instances, the data-independent statistics can-
not be estimated from a small set of Markov chains.
Rather we also maintain a data-independent chain per
data instance, which can be persistent on their own, or
restarted from the data-dependent chains after every
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ERR N@1 N@5 N@10
Item popularity 0.587 0.560 0.680 0.835

ListRank.MF 0.653 0.673 0.751 0.873
PMOP 0.648 0.664 0.747 0.871

TBM 0.678 0.722 0.792 0.893

Table 1. Item ranking results on MovieLens – the higher
the better (K = 50). Here N@T is a shorthand for
NDCG@T.

parameter updating step. The latter case, which is re-
ported here, is in the spirit of the Hinton’s Contrastive
Divergence, where the data-independent chain is just
a few steps away from the data-dependent chain.

Once the model has been trained, the hidden poste-

rior vector ĥ =
(
ĥ1, ĥ2, ..., ĥK

)
, where ĥk = P (hk =

1 | eu), is used as the new representation of the tastes
of user u. The rank of unseen movies is the mode of the
distribution P (e∗ | ĥ), where e∗ are the rank-based
evidences (see Section 4.4). For fast computation of

P (e∗ | ĥ), we approximate the Gaussian by a Gumbel
distribution, which leads to a simple way of ranking
movies using the mean “utility” µui = αi +Wi•ĥu for
user u (see the Supplement for more details).

The data used in this experiment is the MovieLens,
which contains 1M ratings by approximately 6K users
on 4K movies. To encourage diversity in the rank lists,
we remove the top 10% most popular movies. We then
remove users with less than 30 ratings on the remain-
ing movies. The most recently rated 10 movies per
user are held out for testing, the next most recent 5
movies are used for tuning hyper-parameters, and the
rest for training.

For comparison, we implement a simple baseline us-
ing item popularity for ranking, and thus offering a
naive non-personalized solution. For personalized al-
ternatives, we implement two recent rank-based ma-
trix factorisation methods, namely ListRank.MF (Shi
et al., 2010) and PMOP (Truyen et al., 2011). Two
ranking metrics from the information retrieval liter-
ature are used: the ERR (Chapelle et al., 2009) and
the NDCG@T (Järvelin and Kekäläinen, 2002). These
metrics place more emphasis on the top-ranked items.
Table 1 reports the movie ranking results on test sub-
set (each user is presented with a ranked list of unseen
movies), demonstrating that the TBM is a clear win-
ner in all metrics.

6.3. Mixed Evidences for World Attitude
Analysis

Finally, we demonstrate the TBM on mixed evi-
dences. The data is from the survey analysis domain,
which mostly consists of multiple questions of different
natures such as basic facts (e.g., ages and genders) and
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Figure 4. Distribution of global attitudes obtained by pro-
jecting the hidden posteriors (100 hidden units) on 2D us-
ing t-SNE. A dot represents one respondent. Best viewed
in colours.

opinions (e.g., binary choices, single choices, multi-
ple choices, ordinal judgments, preferences and ranks).
The standard approach to deal with such heterogene-
ity is to perform the so-called “coding”, which converts
types into some numerical representations (e.g., ordi-
nal scales into stars, ranks into multiple pairwise com-
parisons) so that standard processing tools can handle.
However, this coding process breaks the structure in
the data and thus significant information will be lost.
Thus our TBM offers a scalable and generic machin-
ery to process the data in its native format and then
convert the mixed types into a more homogeneous pos-
terior vector.

We use the global attitude survey dataset collected
by the PewResearch Centre7. The survey was con-
ducted on 24, 717 people from 24 countries during the
period of March 17 – April 21, 2008 on a variety of
topics concerning people’s life, opinions on issues in
their countries and around the world as well as future
expectations. There are 52 binary, 124 categorical (of
variable category sizes), 3 continuous, 165 ordinal (of
variable level sizes) question types.

Like the case of collaborative filtering, we build one
TBM per respondent due to the variation in questions
and answers but all the TBMs share the same pa-
rameter set. Unanswered/inappropriate questions are
ignored. For each respondent, we maintain 2 persis-
tent and non-interacting Markov chains for the data-
dependent statistics and the data-independent statis-
tics, respectively.

Figure 4 shows the 2D distribution of respondents
from 24 countries obtained by feeding the posteriors to

7The datasets are publicly available from
http://pewresearch.org/
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the t-SNE (van der Maaten and Hinton, 2008) (here no
explicit information of countries is used). It is interest-
ing to see the cultural/social clustering and gaps be-
tween countries as opposed to the geographical distri-
bution (e.g., between Indonesia and Egypt, Australia
and UK and the relative separation of the China, Pak-
istan, Turkey and the US from the rest). To predict
the 24 countries, we feed the posteriors into the stan-
dard multiclass logistic regression and achieve an error
rate of 0.49%, suggesting that the TBM has captured
the intrastate regularities and separated the interstate
variations well.

7. Related Work
Latent multivariate Gaussian variables have been

widely studied in statistical analysis, initially to model
correlated binary data8 (Ashford and Sowden, 1970;
Chib and Greenberg, 1998) then now used for a va-
riety of data types such as ordered categories (Kot-
tas et al., 2005), unordered categories (Zhang et al.,
2008), and the mixture of types (Dunson and Her-
ring, 2005). Learning with the underlying Gaussian
model is notoriously difficult for large-scale setting: in-
dependent sampling costs cubic time due to the need
of inverting the covariance matrix, while MCMC tech-
niques such as Gibbs sampling can be very slow if the
graph is dense and the interactions between variables
are strong. This can be partly overcome by adding
one more layer of latent variables as in factor analy-
sis (Wedel and Kamakura, 2001; Khan et al., 2010)
and probabilistic principle component analysis (Tip-
ping and Bishop, 1999). The main difference from our
TBM is that those models are directed with continuous
factors while ours is undirected with binary factors.

Gaussian RBMs have been used for modelling con-
tinuous data such as visual features (Hinton and
Salakhutdinov, 2006), where the evidences are the
value assignments, and thus a limiting case of our ev-
idence system. Some restrictions to the continuous
Boltzmann machines have been studied: In (Downs
et al., 2000), Gaussian variables are assumed to be
non-negative, and in (Yasuda and Tanaka, 2007),
continuous variables are bounded. However, we do
not make these restrictions on the model but rather
placing restrictions during the training phase only.
GRBMs that handle ordinal evidences have been stud-
ied in (Tran et al., 2012), which is an instance of the
boxed-constraints in our TBM.

8. Discussion and Conclusion
Since the underlying variables of the TBM are Gaus-

sian, various extensions can be made without much
difficulty. For example, direct correlations among vari-

8This is often known as multivariate probit models.

ables, regardless of their types, can be readily mod-
elled by introducing the non-identity covariance ma-
trix (Ranzato and Hinton, 2010). This is clearly a
good choice for image modelling since nearby pixels
are strongly correlated. Another situation is when the
input units are associated with their own attributes.
Each unit can be extended naturally by adding a lin-
ear combination of attributes to the mean structure of
the Gaussian.

The additive nature of the mean-structure allows
the natural extension to matrix modelling (e.g., see
(Truyen et al., 2009; Tran et al., 2012)). That is, we
do not distinguish the role of rows and columns, and
thus each row and column can be modelled using their
own hidden units (the row parameters and columns
parameters are different). Conditioned on the row-
based hidden units, we return to the standard TBM for
column vectors. Inversely, conditioned on the column-
based hidden units, we have the TBM for row vectors.

To sum up, we have proposed a generic class of mod-
els called Thurstonian Boltzmann machine (TBM) to
unify many type-specific modelling problems and gen-
eralise them to the general problem of learning from
multiple groups of inequalities. Our framework utilises
the Gaussian restricted Boltzmann machines, but the
Gaussian variables are never observed except for one
limiting case. Rather, those variables are subject to in-
equality constraints whenever an evidence is observed.
Under this representation, the TBM supports a very
wide range of evidences, many of which were not possi-
ble before in the Boltzmann machine literature, with-
out the need to specify type-specific models. In par-
ticular, the TBM supports any combination of the
point assignments, intervals, censored values, binary,
unordered categories, multi-categories, ordered cate-
gories, (in)-complete ranks with and without ties.

We demonstrated the TBM on three applications of
very different natures, namely handwritten digit recog-
nition, collaborative filtering and complex survey anal-
ysis. The results are satisfying and the performance is
competitive with those obtained by type-specific mod-
els.
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