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Abstract. Learning preference models from human generated data is an important task in mod-
ern information processing systems. Its popular setting consists of simple input ratings, assigned
with numerical values to indicate their relevancy with respect to a specific query. Since ratings
are often specified within a small range, several objects may have the same ratings, thus creating
ties among objects for a given query. Dealing with this phenomena presents a general problem
of modelling preferences in the presence of ties and being query-specific. To this end, we present
in this paper a novel approach by constructing probabilistic models directly on the collection
of objects exploiting the combinatorial structure induced by the ties among them. The proposed
probabilistic setting allows exploration of a super-exponential combinatorial state space with un-
known numbers of partitions and unknown order among them. Learning and inference in such a
large state space are challenging, and yet we present in this paper efficient algorithms to perform
these tasks. Our approach exploits discrete choice theory, imposing generative process such that
the finite set of objects is partitioned into subsets in a stagewise procedure, and thus reducing the
state-space at each stage significantly. Efficient Markov Chain Monte Carlo (MCMC) algorithms
are then presented for the proposed models. We demonstrate that the model can potentially be
trained in a large-scale setting of hundreds of thousands objects using an ordinary computer. In
fact, in some special cases with appropriate model specification, our models can be learned in
linear time. We evaluate the models on two application areas: (i) document ranking with the data
from the Yahoo! challenge, and (ii) collaborative filtering with movie data. We demonstrate that
the models are competitive against state-of-the-arts.
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1. Introduction

Modelling user preferences is key to success of many modern applications in Web
search, recommended systems and social media. One important task is to rank a set
of objects in a decreasing order of preference with respect to a query submitted by an
user. Objects can be anything of interest (e.g. Web documents, images, shopping items,
friends or banking services) whilst queries can be anything that triggers the object re-
sponse (e.g. keywords, user purchasing history or user profiles). Handcrafting a good
preference model is likely a complex and expensive task which involves a great amount
of domain knowledge. It is therefore desirable that preference models can be automati-
cally learnt from preference data which can be acquired from ordinary users for free or
with much less cost. Ideally, training data would be a collection of ranked sets of objects
where each set contains objects related to a query. Unfortunately, providing a complete
rank over a large set of objects is a mentally intensive task, since users need to simul-
taneously pay attention to all objects. As a result, modern large-scale preference data
frequently consists of object ratings, where each object is rated by a degree of relevance
with respect to the query.

There are two important implications with this practice. The first is that we must
learn a ranking model indirectly from ratings, typically by inferring preference order by
comparing ratings of two objects1. Second, since ratings are usually drawn from a small
set of integers, many objects may share the same rating, or equivalently they must share
a tied rank. Thus, this poses a question of how to model users’ preferences with ties at
query-level. The answer to this question is the focus of this paper.

Previous work on tied preferences is fairly limited and typically considers pairwise
comparisons [13][20][42][55]. Little work has considered modelling at query-level pref-
erences. We take an alternative approach by modelling objects with the same tie with
respect to the same query as a partition, hence translating the original problem into or-
dering these partitions instead. This new formulation results in a combinatorial problem
which involves simultaneous set partitioning and subset ordering. For a given number of
partitions, the order amongst them is a permutation of the partitions being considered,
wherein each partition has objects of the same rank. Although this setting is the most
general and theoretically adequate, we need to explore in a super-exponential combi-
natorial state-space with unknown numbers of partitions and unknown ordering among
them. To be more precise, the size of the state-space of N objects grows exponentially
as N !/(2 (ln 2)

N+1
) [39, pp. 396–397]. Learning and inference in such huge space are

prohibitive, and this calls for efficient solutions which can be implemented in practice.
To this end, we introduce a probabilistic model that captures the generative process

where a query-specific set is partitioned into subsets in a stagewise manner. More specif-
ically, the user first chooses the first partition with elements of rank 1, then chooses the
next partition from the remaining objects with elements ranked 2 and so on. The num-
ber of partitions then does not have to be specified in advance, and can be treated as a
random variable. The joint distribution for each ordered partition can then be composed
using a variant of the Plackett-Luce model [35][41] but at the level of partitions rather
than objects. This approach offers two important benefits: (i) theoretically, it is inter-
pretable in modelling user choices [35] in that users choose an object with probability
proportional to its worth; and (ii) practically, this greatly reduces the size of state-space

1 This rating-to-rank conversion is not reversible since we cannot generally infer ratings from a ranking.
First, the top rating for each query is always converted into rank 1 even if this is not the maximum score in
the rating scale. Second, there are no gaps in ranking, while it is possible that we may rate the best object by
5 stars, but the second best by 3 stars.
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we have to deal with at each stage. While the stagewise state-spaces are still large, we
can practically explore them using standard Markov Chain Monte Carlo (MCMC) tech-
niques. In fact, we can train powerful models over a large-scale setting of hundreds of
thousands objects using an ordinary computer. Another surprising result is that, with ap-
propriate choice of subset-wise worth, we can learn the models in linear time. This is a
great saving, even is more efficient than existing pairwise models, where the time com-
plexity is generally quadratic in query sizes. We specify this model as the Probabilistic
Model over Ordered Partitions (PMOP).

We apply the proposed model for two problems. The first is to rank Web document
objects, where for each query we need to output a ranked list of documents in the de-
creasing order of relevance. In particular, we use a large-scale data supplied by Yahoo!
[8] which consists of approximately 20K queries, and totally 470K documents. It is
generally believed that each query captures user’s intention and information need, and
as a result, by learning a ranking model, we learn collective preferences among users.
We show that our results both in terms of predictive performance and training time are
competitive against other well-known methods such as RankNet [5], (linear) Ranking
SVM [27] and ListMLE [53].

We further present an application of the model for movie recommendation, where
each user has expressed their preferences in term of ratings on a small number of
movies, and the task is to recommend new movies they might like. In particular, we
report our results on the MovieLens 10M data, which has lightly more than 10 millions
ratings submitted by 71K users over a set of 10K movies. Here each user is an implicit
query, and the goal is to discover the hidden traits of each user to effectively rank new
movies for them. For comparison, we evaluate our algorithms against the CoFiRANK
algorithm [52].

Our contribution, to the best our our knowledge, is the first to address the problem of
preference modelling with ties in its most generic form. We contribute by constructing
a probabilistic model over ordered preference partitions and associated efficient infer-
ence and learning techniques. Furthermore, we show how to overcome the challenge
of model complexity through the choice of suitable set functions, yielding learning al-
gorithms with linear time complexity, thus making the algorithm deployable in realis-
tic settings. The novelty lies in the rigorous examination of probabilistic models over
ordered partitions, extending earlier work in discrete choice theory [16][35][41]. The
significance of the model is its potential for use in many recommender applications,
noticeably in ranking and collaborative filtering tasks. We demonstrate here two appli-
cations in learning-to-rank for Web retrieval and collaborative filtering for movie rec-
ommendation. Further, the model opens new potential applications for example, novel
types of clustering, in which the clusters are automatically ordered.

The paper is organised as follows. Section 2 provides background for preference
modelling, learning-to-ranking and collaborative filtering. The main theoretical contri-
bution of this paper is presented in Section 3, whilst the practical contribution with more
detailed implementation is described in Section 4. Section 5 reports the two applications
of the proposed. Further theoretical implication is discussed in Section 6. Finally, Sec-
tion 7 concludes the paper.

2. Background

In this section, we present necessary background related to our problem of preference
modeling with ties, Web document ranking and collaborative filtering.

Preference Modelling. The notion of preference is widely studied in many areas,
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including economics, statistics, artificial intelligence, machine learning and data mining
(e.g., see [18][37]). A typical setting is a collection of observed pairwise preferences,
each indicates an object xi is preferred to another object xj , denoted by xi � xj .
Statistical approach often involves estimating the probability that a particular preference
order occurs, i.e. P (xi � xj). One popular choice is the Bradley-Terry model [3]:

P (xi � xj) = φ(xi)/ (φ(xi) + φ(xj))

where φ(.) ∈ R+ is a function indicating the worth (or importance) or an object. This
expression asserts that the probability of choosing an object over another is proportional
to its worth. Later, this line of reasoning was generalised into the theory of discrete
choice by Luce [35]. Under this assumption, we can extend the model to more than
two objects, for example P (xi � {xj , xk}) = φ(xi)/ (φ(xi) + φ(xj) + φ(xk)) is the
probability that the object xi is preferred over both xj and xk. In fact, the model can be
generalised to obtain probability of an complete ordering x1 � x2 � ... � xN

P (x1 � x2 � ... � xN ) =

N∏
i=1

φ(xi)∑N
j=i φ(xj)

(1)

This model was first studied by Luce in [35], subsequently by Plackett in [41], and hence
we shall refer to as the Plackett-Luce model. The idea of this model is that, we proceed
to select objects in a stagewise manner: Choose the first object among N objects with
probability of φ(x1)/

∑N
j=1 φ(xj), then choose the second object among the remaining

(N − 1) objects with probability of φ(x2)/
∑N
j=2 φ(xj) and so on until all objects are

chosen. It can be verified that the distribution is proper, that is P (x1 � x2 � ... �
xN ) > 0 and the probabilities of all possible orderings will sum to one.

Another approach to modelling complete ordering relies on the concept of rank
distance between two rankings. The assumption is that there exists a modal ranking
over all objects, and what we observe are ranks randomly distributed around the mode.
The most well-known model is perhaps the Mallows [31][36], where the probability of
a rank decreases exponentially with the distance from the mode

P (π) ∝ e−λτ(π,π̄)

where π denotes and ordering, e.g. π = (x1 � x2 � ... � xN ), π̄ is the central
ordering (the mode of the distribution), and τ(., .) is a rank-based distance function.
Depending on the distance measures, the model may differ; and the popular distance
measures include those by Kendall [28] and Spearman [46]. However, there are several
drawbacks of this approach. First, assuming a single mode over all possible rankings is
rather restrictive since in many application areas involving users, there should be at least
a mode per user cluster. Second, finding the mode is a challenging problem itself, since
it would mean searching through a combinatorial space of N ! possibilities. Finally, we
note in passing that there is a third approach which treats an ordering as an element of
a symmetric group in the group theory [14][24]. However, since inference is complex,
there has not been any sizable applications in practice following this approach.

Query-Level Preferences and Tie Modelling. We are interested in the setting that
each query is associated with a subset of objects which are more or less related to
it. For example, the query can be a set of keywords which triggers responses from a
typical search engine. Less explicitly, it can be an user with a rating history whose will
implicitly ask for a recommended item list from a shopping site. In machine learning
under the setting of label ranking (e.g. see [50] for a recent survey), on the other hand,
content would play the role of a query and labels the objects to be ranked. Usually
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the subset is smaller than the original set, thus leading to the problem of incomplete
preferences. To deal with this issue, naturally one would think of imputing missing
objects, or integrating out the hidden preferences (e.g. in an Expectation-Maximisation
setting). However, this is only practical when the set of all possible objects is finite and
the data is dense. In Web search and collaborative filtering, however, these conditions
do not hold since theoretically we have an infinite number of Web documents, and
the rating data is often extremely sparse. This rules out the approach based on rank
distances. Plackett-Luce based models, on the other hand, are highly applicable since
we can simply ignore the missing objects for each query. As a result, we may have
multiple preference models, one per query, sharing the same parameters.

Preference with ties has also been studied for several decades, mostly in the statisti-
cal communities [13][20][42][55]. The general idea is to allocate some probability mass
for the event of ties, e.g. when P (xi ∼ xj) 6= 0, where ∼ denotes no preferences. For
example, in the Davidson’s method [13] the probability masses are defined as

P (xi � xj) =
1

Zij
φ(xi); P (xi ∼ xj) =

1

Zij
ν
√
φ(xi)φ(xj)

where Zij = φ(xi) + φ(xj) + ν
√
φ(xi)φ(xj) and ν ≥ 0 is the model parameter con-

trolling the contribution of ties. This model is quite intuitive in the sense that when tie
occurs, both objects contributes equally to the probability. When ν = 0, this reduces to
the standard Bradley-Terry model. In a similar manner, Rao and Kupper [42] proposed
the following model

P (xi � xj) =
φ(xi)

φ(xi) + θφ(xj)
; P (xi ∼ xj) =

(θ2 − 1)φ(xi)φ(xj)

[φ(xi) + θφ(xj)] [θφ(xi) + φ(xj)]

where θ ≥ 1 is the parameter to control the contribution of ties. When θ = 1, this also
reduces to the standard Bradley-Terry model.

For ties among multiple objects, we can create a group of objects, and work directly
on groups. For example, let Xi and Xj be two sport teams, the pairwise team ordering
can be defined using the Bradley-Terry model as P (Xi � Xj) ∝

∑
x∈Xi φ(x). An

extension of the Plackett-Luce model to multiple groups has been discussed in [25].
However, this setting is inflexible since the the partitioning into groups is known in
advance, and the groups behave just like standard super-objects. Another way to deal
with ties is to create an ‘equivalent permutation set’ (e.g. see [34]) from ties and then
train with the full-rank algorithms. The idea is to minimise the min loss over the set in
a fashion similar to multiple-instance learning [15].

To handling ties at the query-level in the general form, our initial work has proposed
a probabilistic framework over ordered partitions (PMOP) in [48]. The framework as-
sumes no prior knowledge of partitioning and ordering. Instead it models a generative
stagewise process where each partition is selected at a stage. As a result, the PMOP
is a Plackett-Luce model at the set level, where sets are automatically selected from
the collection of query-specific objects. The PMOP is learnt by maximising the data
likelihood. However, this may not be optimal with respect to performance metrics for
particular application domains. Second, for domains like Web document ranking, the
feature interaction may have a strong effect on the behaviour of the model. In this pa-
per, we further the study of PMOP by introducing a weighting scheme to bias the data
likelihood towards performance metrics, and investigating the second-order features in-
teractions. For the application in movie recommendation, we evaluate PMOP on a new
data set which is 2-order of magnitude larger than the previous work, and in a more
interesting setting where only movies with minimal agreement among users are kept.
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Web Document Ranking. Web document ranking is the heart of any search engines.
Originally, ranking was typically based on keyword matching, where a similarity mea-
sure between query keywords and the document is computed. Although there have been
some fairly established measures including the tf.idf and Okapi BM25, these are not
necessarily good indicators of document relevancy and quality. Later development ex-
ploited the hyperlink structure of the Web, from which global ranking models such as
PageRank [4] are used to compute the general quality of a Web page. However, this
ranking does not necessarily capture the hidden user preferences. In addition, how to
combine these measures still remains an art rather than science.

A more recent trend is to learn search preference models directly from labelled data.
Typically, based on the query, document content, link structure and user search history,
context and profiles, a set of features is extracted. The goal is to estimate a preference
function that takes the features as input and outputs a real score, from which documents
are ranked. This trend is called learning-to-rank - a subfield of machine learning dealing
with preference modelling. As discussed in [34], machine learning methods extended
to ranking can be divided into:

– Pointwise approach which includes methods such as ordinal regression [10][12].
Each query-object pair is assigned an ordinal label, e.g. from the set {0, 1, 2, ...,M}.
This simplifies the problem as we do not need to worry about the exponential number
of permutations. The complexity is therefore linear in the number of query-object
pairs. The drawback is that the ordering relation between objects is not explicitly
modelled.

– Pairwise approach which spans preference to binary classification [5][11][17][27]
methods, where the goal is to learn a classifier that can separate two objects (per
query). This casts the ranking problem into a standard binary classification frame-
work, wherein many algorithms are readily available, for example, SVM [27], neural
network and logistic regression [5], and boosting [17]. The complexity is quadratic
in number of objects per query and linear in number of queries. Again, this approach
ignores the simultaneous interaction among objects within the same query.

– Listwise approach which models the distribution of permutations [6][51][53]. The ul-
timate goal is to model a full distribution of all permutations, and the prediction phase
outputs the most probable permutation. This approach appears to be most natural for
the ranking problem. In fact, the methods suggested in [6][53] are applications of the
Plackett-Luce model.

Collaborative Filtering. Collaborative filtering [43] is an highly successful approach
to recommendation [1][2][32]. Started in early 1990s, collaborative filtering has been
one of the most active research topics in information systems. The applications range
widely from movie recommendation, shopping item suggestion to financial advise and
drug discovery. Recently, it has appeared from the Netflix challenge2 that the two most
effective methods are the neighbourhood-based (e.g. see [43][44]) and the latent traits
discovery (e.g. see [29]). In neighbourhood-based method, we estimate the similarity
between any two users, or any two items. The premise is that two users who share
interest in the past will continue the sharing in the future. On the other hand, in latent
traits methods, we want to discover the hidden tastes of an user and profiles of an item.
In particular in the matrix factorisation approach to latent traits, a rating is approximated

2 http://www.netflixprize.com/
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Figure 1. Complete ordering (left) versus subset ordering (right). For the subset order-
ing, the bounding boxes represents the subsets of elements of the same rank. Subset
sizes are 4, 3, 1, 2, respectively.

by

rui ≈
D∑
d=1

WudHdi (2)

where Wud and Hdi are the d-th hidden trait of user u and item i, respectively. In this
paper, we follow the latent trait method, but the goal is to estimate the object user-
specific worth rather than rating.

One important issue with current practice in collaborative filtering is that it is largely
based on rate prediction while the real goal is to rank items according to user’s prefer-
ences. Although the rating could be used for ranking, it is better to directly address the
rank problem in the first place [33, 45, 52]. Our work is in preference modelling, and
thus deals with ranking directly.

3. Modelling Sets with Ordered Partitions

In this section, we present our main contribution for solving the problem of modelling,
learning and inference of preferences with ties. We first describe the problem in the
most generic mathematical form, and then introduce a probabilistic framework to ap-
proach the problem. Efficient learning and inference techniques are presented to tackle
the hyper-exponential state-space.

3.1. Problem Description

Let X = {x1, x2, . . . , xN} be a collection of N objects. In a complete ranking setting,
each object xi is further assigned with a ranking index πi, resulting in the ranked list
of {xπ1 , xπ2 , . . . , xπN } where π = (π1, . . . , πN ) is a permutation over {1, 2, . . . , N}.
For example, X might be a set of objects that are related to a query, and π1 is the index
to the first object, π2 is the index to second object and so on. Ideally π should contain
ordering information for all objects in the set; however, this task is not always possible
for any non-trivial size N due to the labor cost involved3. Instead, in many situations,
during training a object is rated4 to indicate the its degree of relevance for the query.
This creates a scenario where more than one object will be assigned to the same rating

3 We are aware that clickthrough data can help to obtain a complete ordering, but the data may be noisy.
4 We caution the confusion between ‘rating’ and ‘ranking’ here. Ranking is the process of sorting a set of
objects in an increasing or decreasing order, whereas in ‘rating’ each object is given with a value indicating
its preference.
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– a situation known as ‘ties’ in preference modelling. When we enumerate over each
object xi and putting those with the same rating together, the set of N objects X can
now be viewed as being divided into K partitions with each partition is assigned with
a number to indicate the its unique rank k ∈ {1, 2, ..,K}. The ranks are obtained by
sorting ratings associated with each partition in the decreasing order.

Consider a more generic setting in which we know that objects will be rated against
an ordinal value from 1 to K but do not know individual ratings. This means that we
have to consider all possible ways to split the set X into exactly K partitions, and then
each time, rank those partitions from 1 to K wherein the k-th partition contains all
objects rated with the same value k. Formally, for a given K and the order among the
partitions σ, we write the set X = {x1, . . . , xN} as a union of K partitions

X =

K⋃
j=1

Xσj (3)

where σ = (σ1, . . . , σK) is a permutation over {1, 2, ..,K} and each partition Xk is
a non-empty subset5 of objects with the same rating k. These partitions are pairwise
disjoint and having cardinality6 range from 1 to N . It is easy to see that when K =
N , each Xk is a singleton, σ is now a complete permutation over {1, . . . , N} and the
problem reduces exactly to the complete ranking setting mentioned earlier. To get an

idea of the state space, it is not hard to see that there are
∣∣∣∣ NK

∣∣∣∣K! ways to partition and

order X where
∣∣∣∣ NK

∣∣∣∣ is the number of possible ways to divide a set of N objects into

K partitions, otherwise known as Stirling numbers of second kind [49, p. 105]. If we
consider all the possible values of K, the size of our state space is

N∑
k=1

∣∣∣∣ Nk
∣∣∣∣ k! = Fubini (N) =

∞∑
j=1

jN

2j+1
(4)

which is also known in combinatorics as the Fubini’s number [39, pp. 396–397]. This
is a super-exponential growth number. For instance, Fubini (1) = 1, Fubini (3) = 13,
Fubini (5) = 541 and Fubini (10) = 102, 247, 563. Its asymptotic behaviour can also
be shown [39, pp. 396–397] to approach N !/(2 (ln 2)

N+1
) as N → ∞ where we note

that ln (2) < 1, and thus it grows much faster than N !. Clearly, for unknown K this
presents a very challenging problem to inference and learning. In this paper, we shall
present a generic MCMC-based approach to tackle this state-space explosion in super-
vised learning settings, and a specific parameterisation which leads to linear time.

3.2. Probabilistic Model over Ordered Partitions

Return to our problem, our task is now to model a distribution over the ordered partition-
ing of set X into K partitions and the ordering σ = (σ1, . . . , σK) among K partitions

5 Strictly speaking, a partition can be an empty set but we deliberately left out this case, because empty
sets do not contribute to the probability mass of the model, and it does not match the real-world intuition of
object’s worth.
6 More precisely, when the number of partitions K is given, the cardinality ranges from 1 to N − K + 1
since partitions are non-empty
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given in Eq. (3):

P (X ) = P (Xσ1
, . . . ,XσK ) (5)

A two-step approach has been given thus far: first X is partitioned in any arbitrary way
so long as it createsK partitions and then these partitions are ranked, result in a ranking
index vector σ. This description is generic and one can proceed in different ways to
further characterise Eq. (5). We present here a generative, multistage view to this same
problem so that it lends naturally to the specification of the distribution in Eq. (6): First,
we construct a subset X1 from X by collecting all objects which have the largest ratings.
If there are more elements in the remainder set {X \X1} to be selected, we construct a
subset X2 from {X \X1} whose elements have the second largest ratings. This process
continues until there is no more object to be selected.7 An advantage of this view is that
the resulting total number of partitions Kσ is automatically generated, no need to be
specified in advance and can be treated as a random variable. If our data truly contains
K partitions then Kσ should be equal to K. Using the chain rule, we write the joint
distribution over Kσ ranked partitions as

P (X1, . . . ,XKσ ) = P (X1)

Kσ∏
k=2

P (Xk | X1, . . . ,Xk−1)

= P (X1)

Kσ∏
k=2

P (Xk | X1:k−1) (6)

where we have used X1:k−1 = {X1, . . . ,Xk−1} for brevity.
It remains to specify the local distribution P (Xk | X1:k−1). Let us first consider

what choices we have after the first (k − 1) partitions have been selected. It is clear that
we can select any objects from the remainder set {X \X1:k−1} for our next partition k.
If we denote this remainder set by Rk = {X \X1:k−1} and Nk = |Rk| is the number
of remaining objects, then our next partition Xk is a subset of Rk; furthermore, there
is precisely

(
2Nk − 1

)
such non-empty subsets. Using the notation 2Rk to denote the

power set of the set Rk, i.e, 2Rk contains all possible non-empty subsets8 of R, we are
ready to specify each local conditional distribution in Eq. (6) as:

P (Xk | X1:k−1) =
1

Zk
Φk (Xk) (7)

where Φk (S) ∈ R+ is an order-invariant9 set function defined over a subset or partition
S, and Zk = Σ

S∈2Rk
Φk(S) is the normalising constant to ensure a proper distribution.

We term our model Probabilistic Model over Ordered Partition (PMOP). See Figure 1
for a graphical illustration.

Using Eqs. (7) and (6), the log-likelihood function and its gradient, without explicit

7 This process resembles the generative process of Plackett-Luce discrete choice model [35][41], except we
apply on partitions rather than single element. It clear from here that Plackett-Luce model is a special case of
ours wherein each partition Xk reduces to a singleton.
8 The usual understanding would also contain the empty set, but we exclude it in this paper.
9 i.e., the function value does not depend on the order of elements within the partition.
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mention of the model parameter, are:

L = logP (X1) +

Kσ∑
k=2

logP (Xk | X1:k−1) (8)

∂L =

Kσ∑
k=1

∂ log Φk (Xk)−
Kσ∑
k=1

 ∑
S∈2Rk

P (S | X1:k−1) ∂ log Φk (S)

 (9)

Clearly for learning, we need to compute both the L (for monitoring) and ∂L (for
gradient-based optimisation). Computing the data log-likelihood reduces to evaluating
P (Xk | X1:k−1), which depends on Zk as in Eq. (7). Likewise, the gradient of the log-
likelihood depends on model expectation

∑
S∈2Rk P (S | X1:k−1) ∂ log Φk (S). Unfor-

tunately, without any assumption about the form of Φk (.), these two quantities cannot
be evaluated exactly except for trivial cases where the set X contains just few objects.

In the rest of this section, we will concentrate our effort on solving this problem.
In Section 3.3, we describe specific forms of Φk (.) that have exact evaluation in linear
time. For general cases, we present a MCMC-based sampling methods for approximate
evaluation in manageable time in Section 3.4.

3.3. Special Cases: Set Functions and Their Decomposition

We first discuss some desirable properties of the set function Φk (.) and then present
special cases that lead to very efficient computation of data likelihood and its gradient.

3.3.1. Set Functions as Aggregation

Although it is necessary to correctly model the partitioning and ordering process at
training time, it is more practical to obtain a complete ranking of objects at prediction
time. This is because a complete rank is more interpretable to users so that they may
decide to select only a few top ranked objects. Another practical benefit is that this helps
to reduce the size of the state space significantly, from Fubini (N) (simultaneous parti-
tioning and ordering) to N ! (ordering only). One of the most efficient way is perhaps to
assign a worth value to each object, and then rank the objects accordingly using stan-
dard sort algorithms in N logN on average. The question is now how to estimate the
object worth during the training phase. Denote by φ(x) ∈ R+ the worth of object x, the
set function arising from Eq. (7) can then be rewritten as

Φk (Xk) = h {φ(x) | x ∈ Xk}

where h{·} denotes the aggregation of a set of individual functions.

Regularising the set size. We can impose our prior knowledge about a set size. For
example, we know that in the Web search setting, there are far more irrelevant docu-
ments than highly relevant ones. Thus, we can further introduce a bias on the set size in
to Φk (·). The case of lacking specific knowledge, however, it is important to regularise
its dependency on the set size. One way to achieve this is to enforce the constraint:

min
x∈Xk

φ(x) ≤ Φk (Xk) ≤ max
x∈Xk

φ(x)
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In fact, there are many common aggregation functions satisfying this condition, for
example the following are arranged in the decreasing order (Max≥ Arithmetic mean≥
Geometric mean ≥ Harmonic mean ≥Min):

– Maximum Φk (Xk) = maxx∈Xk φ(x)

– Arithmetic mean Φk (Xk) =
1

|Xk|
∑
x∈Xk φ(x)

– Geometric mean Φk (Xk) =
{∏

x∈Xk φ(x)
} 1

|Xk|

– Harmonic mean Φk (Xk) = |Xk|
[∑

x∈Xk
1

φ(x)

]−1

– Minimum Φk (Xk) = minx∈Xk φ(x)

Monotonic property. Naturally, we would expect that if Xk contains worthy objects,
then Φk (Xk) should return a large value, mathematically put:

Φk (S ∪ xi) ≥ Φk (S ∪ xj) if φ(xi) ≥ φ(xj)

for any {S, xi, xj}, where S can be an empty set. It can be verified that the five types of
aggregation function listed above satisfy this condition.

3.3.2. Arithmetic Mean Aggregation

Now we focus on a specific type of aggregation function – the arithmetic mean – as it
leads to linear computation:

Φk(Xk) =
1

|Xk|
∑
x∈Xk

φ(x) (10)

Given this form, the local normalisation factor represented in the denominator of Eq. (7)
can now efficiently represented as the sum of all weighted sums of objects, exploiting
the symmetry. Since each object x in the remainder set Rk participates in the same
additive manner towards the construction of the denominator in Eq. (7), it must admit
the following form10:

Zk =
∑
S∈2Rk

Φk(S) =
∑
S∈2Rk

1

|S|
∑
x∈S

φ (x) = Ck
∑
x∈Rk

φ(x) (11)

where Ck is some constant and its exact value is not essential under a maximum likeli-
hood parameter learning treatment (readers are referred to Appendix A.1 for the com-
putation of Ck, which happens to be 2Nk−1

Nk
). To see this, substitute Eqs. (10) and (11)

into Eq. (7):

10 To illustrate this intuition, suppose the remainder set is Rk = {a, b}, hence its power set, excluding
∅, contains 3 subsets {a} , {b} , {a, b}. Under the arithmetic mean assumption, the denominator in Eq. (7)
becomes φ (ra)+φ (rb)+

1
2
{φ (ra) + φ (rb)} = (1+ 1

2
)
∑

x∈{a,b} φ (rx). The constant term isC = 3
2

in this case.
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logP (Xk | X1:k−1) = log
Φk (Xk)

Σ
S∈2Rk

Φk(S)
= log

1

Ck |Xk|

∑
x∈Xk φ(x)∑
x∈Rk φ(x)

(12)

= log

∑
x∈Xk φ(x)∑
x∈Rk φ(x)

− logCk |Xk|

Since logCk |Xk| is a constant w.r.t the parameters used to parameterise the potential
functions φk(·), it does not affect the gradient of the log-likelihood. It is also clear
that maximising the likelihood given in Eq. (6) is equivalent to maximising each local
log-likelihood function given in Eq. (12) for each k. Discarding the constant term in
Eq. (12), we re-write it in this simpler form:

logP (Xk | X1:k−1) = log
∑
x∈Xk

gk (x | X1:k−1) (13)

where gk (x | X1:k−1) =
φ(x)∑

x∈Rk φ(x)

Evaluation of data log-likelihood and its gradient using dynamic programming

We now show that the gradient-based learning complexity can be linear in N . To see
how, let us introduce an auxiliary array

{
ak =

∑
x∈Rk φ (x)

}Kσ
k=1

. We start from the
last subset, where aKσ =

∑
x∈XKσ

φ (x), and proceed backward as ak = ak+1 +∑
x∈Xk φ (x) for k < Kσ . Clearly {a1, a2, .., aKσ} can be computed in N time. Thus,

gk (·) in Eq. (13) can also be computed linearly via the relation gk (x) = φ (x) /ak.
This also implies that the total log-likelihood can also computed linearly in N .

Furthermore, the gradient of log-likelihood function can also be computed linearly
in N . Given the likelihood function in Eq. (6), using Eq. (13), the log-likelihood func-
tion and its gradient, without explicit mention of the parameters, can be shown to be11

L = logP (X1, . . . ,XKσ ) (14)

=

Kσ∑
k=1

log
∑
x∈Xk

gk (x | X1:k−1) =

Kσ∑
k=1

log
∑
x∈Xk

φ(x)

ak

∂L =
∑
k

∂ log
∑
x∈Xk

φ (x)−
∑
k

∂ log ak (15)

=
∑
k

∑
x∈Xk ∂φ (x)∑
x∈Xk φ (x)

−
∑
k

1

ak

∑
x∈Rk

∂φ (x) (16)

It is clear that the first summation over k in the RHS of the last equation takes exactly
N time since

∑K
k=1 |Xk| = N . For the second summation over k, it is more involved

because both k and Rk can possibly range from 1 to N , so direct computation will cost
at most N(N − 1)/2 time. Similar to the case of ak, we now maintain an 2-D auxiliary
array12

{
bk =

∑
x∈Rk ∂φ(x)

}Kσ
k=1

. Again, we start from the last subset, where bKσ =

11 To be more precise, for k = 1 we define X1:0 to be ∅.
12 This is 2-D because we also need to index the parameters as well as the subsets.
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x∈XKσ

∂φ (x), and proceed backward as bk = bk+1 +
∑
x∈Xk ∂φ (x) for k < Kσ .

Thus, {b1,b2, ..,bKσ} and therefore the gradient ∂L, can be computed in NF time,
where F is the number of parameters.

3.3.3. Maximum Aggregation

We now show that it is also efficient to compute for the cases of minimum and maxi-
mum aggregation functions13. We present here the case for maximum aggregation (the
minimum case is similar):

Φk (Xk) = max
x∈Xk

φ(x)

The local normalisation factor in Eq. (7) reads:∑
S∈2Rk

Φk(S) =
∑
S∈2Rk

max
x∈S

φ(x) =
∑
x∈Rk

Mk(x)φ(x) (17)

where Mk(x) is the number of times the object x is the largest member of a subset of
Rk. More precisely, Mk(x) = 2Nk−n for the n-th largest object of the set Rk. Clearly,
for the smallest object Mk(x) = 1 – it is the member of the subset containing only
itself. The details of calculating Mk(x) are left in Appendix A.2.

Evaluation of data log-likelihood and its gradient

The data log-likelihood requires computing the sequence
{
Zk =

∑
S∈2Rk Φk(S)

}
for

all k. Each element costsNk logNk steps for sorting. Totally, the cost is
∑Kσ
k=1Nk logNk.

We show that the gradient of the data log-likelihood ∂L can also be evaluated effi-
ciently. Recall from in Eq. (9), we need to compute the following expectation:

∑
S∈2Rk

P (S | X1:k−1) ∂ log Φk (S) =
1

Zk

∑
S∈2Rk

[
max
x∈S

φ(x)

]
∂

[
max
x∈S

log φ(x)

]
=

1

Zk

∑
x∈Rk

Mk(x)φ(x)∂φ(x)

=
∑
x∈Rk

gk(x)∂φ(x)

where

gk(x) =
Mk(x)φ(x)∑

x∈RkMk(x)φ(x)

The time complexity for the gradient ∂L is then F ×
∑Kσ
k=1Nk logNk.

3.3.4. Summary

Table 1 summarises the complexity of the PMOP in comparison with pairwise models
(see also Appendix A.3 for details).

13 We especially thank the reviewer who pointed out that the computation could be efficient for this case.
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Pairwise models PMOP

max{O(N2),O(NF )} O(NF )

Table 1. Learning complexity of models, where F is the number of unique features. For
pairwise models, see Appendix A.3 for the details.

3.4. General Case of PMOP: MCMC-based Learning

In this subsection, we first discuss how random samples can be used in (i) evaluating the
normalisation constant (e.g. used in computing the data log-likelihood), (ii) estimating
model expectation (e.g. used in computing log-likelihood gradient), and (iii) learning
with stochastic gradient. Then we describe the details of two MCMC-based sampling
procedures in our setting: Gibbs sampling and Metropolis-Hastings sampling.

3.4.1. Inference and Learning Tasks

Let us first assume for now that there exists a sampling procedure that draws set samples
from P (S | X1:k−1). There following inference tasks are usually needed for learning:

Normalising constant. To estimate the normalisation constant Zk, we employ an ef-
ficient procedure called Annealed Importance Sampling (AIS) proposed recently [40].
More specifically, AIS introduces the notion of inverse-temperature τ ∈ [0, 1] into the
model, that is

Pτ (S | X1:k−1) =
1

Zk(τ)
Φk (S)

τ

where Zk = Σ
S∈2Rk

Φk(S)τ . Let {τt}Tt=0 be the sequence of (slowly) increasing tem-

perature 0 = τ0 < τ1... < τT = 1. At τ0 = 0, the model distribution is uniform and
Zk(0) = 2|Nk| − 1 which is simply the number of all possible non-empty subsets from
|Nk| remaining objects. At τT = 1, the desired distribution is obtained.

At each step t, a sample St is drawn from the distribution Pτt−1 (S | X1:k−1). The
final weight after the (inverse) annealing process is computed as

ω =

T∏
t=1

Φk
(
St
)τt−τt−1

The above procedure is repeated R times. Finally, the normalisation constant at τ = 1

is computed as Zk(1) ≈ Zk(0)
(∑R

r=1 ω
(r)/R

)
.

Model expectation. The model expectation can be approximated by∑
S∈2Rk

P (S | X1:k−1) ∂ log Φk (S) ≈ 1

n

n∑
l=1

∂ log Φk

(
S(l)

)
where {S(l)}nl=1 are set samples returned by the sampling procedure.

Stochastic gradient learning. Given an approximate model expectation, the gradient
is not stochastic. Fortunately, it has been shown that stochastic gradient ascent can still
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maximise the data likelihood if the learning rate is sufficiently small [22, 54]. There
are two general ways to combine the sampling procedure and parameter update. One
method, called Contrastive Divergence (CD) [22], maintains multiple short Markov
chains, one per data instance. At each updating, the chains are restarted from the data
samples and run for ∆ steps then the sample is collected. This is often referred to as
CD-∆ in the recent machine learning literature, where ∆ can be as small as 1. The idea
is that the Markov chains need only to depart from the data samples a little towards the
true model distribution, and that is enough for moving the model parameters along the
gradient.

The other method, also known as Persistent Contrastive Divergence (PCD), main-
tains a fixed number of Markov chains in parallel [54, 47]. Unlike the PCD, the Markov
chains are not restarted but persistent for the entire sampling/updating cycles. The as-
sumption is that The parameter update is likely to change the model quite little and the
sampler can still run as if the model is still the same. However, unlike the standard ap-
plication of PCD, here the models are query-specific, and thus we need to address each
query separately, that is, one set of chain per query/stage. For this reason we follow
the CD-1 since it is easier to implement and we do not have to maintain the chains in
memory.

3.4.2. Gibbs Sampling

We first note that the problem of sampling sets can be viewed as exploring a fully-
connected Markov random field with binary variables [19]. At stage k, each remain-
ing object in {X \X1:k−1} is attached with binary variable whose states14 are either
selected or notselected at k-th stage. There will be 2Nk − 1 joint states in the ran-
dom field, where we recall thatNk is the total number of remaining objects after (k−1)-
th stage. The set function Φk(Xk) is now the potential function of all selected variables.
The operation is fairly simple - we cyclically pick an object from {X \X1:k−1} and
then randomly select it with probability of

Pk(selected | x) =
Φk(X+x

k )

Φk(X+x
k ) + Φk(X−xk )

where Φk(X+x
k ) is the potential of the currently selected subset Xk if x is included and

Φk(X−xk ) is when x is not. Since samples collected in this way are highly correlated,
we need only to retain a sample after every fixed number of passes though all remaining
objects. Other samples are discarded.

The main advantage of this method is its simplicity with no tuning parameters, but
it may be slow to achieve independent samples. The pseudo code for the Gibbs routine
performed at k-th stage is summarised in Algorithm 1.

3.4.3. Metropolis-Hastings Sampling

The idea is to consider a subset S ∈ 2Rk itself as a sampling state [21], and randomly
move from one sample state to another. The move from S to S′ is accepted with the
following probability

min

(
1,
P (S′ | X1:k−1)

P (S | X1:k−1)

Q(S|S′)
Q(S′|S)

)
= min

(
1,

Φk(S′)

Φk(S)

Q(S|S′)
Q(S′|S)

)
14 Please note that these states are defined for the Markov random field under study only.
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Algorithm 1 Gibbs sampling for PMOP in general case.
Input: input parameters, sample collection schedule
* Randomly choose an initial subset Xk.
Repeat
* For each remaining object x at stage k, randomly select the object with the probability:

Φk(X+x
k )

Φk(X+x
k ) + Φk(X−xk )

where Φk(X+x
k ) is the potential of the currently selected subset Xk if x is included and

Φk(X−xk ) is when x is not.
* Collect samples according to schedule.
Until stopping criteria met
Output: output set samples

Algorithm 2 Metropolis-Hastings sampling for PMOP in general case.
Input: input parameters, sample collection schedule
* Randomly choose an initial subset Xk.
Repeat
* Randomly choose number of objects m, subject to 1 ≤ m ≤ Nk.
* Randomly choose m distinct objects from the remaining set Rk = X \X1:1:k−1 to
construct a new partition denoted by S.
* Set Xk ← S with the probability of

min

(
1,

Φk(S)

Φk(Xk)

)
Collect samples according to schedule.

Until stopping criteria met
Output: output set samples

whereQ(S′|S) is the proposal transition probability which depends on specific proposal
design, and we have cancelled the normalising constant Zk using Eq (7). For simplicity,
assume that all the sets are uniformly randomly selected from {X \X1:k−1}, then this
acceptance rate is simplified to

min

(
1,

Φk(S′)

Φk(S)

)
Again, to reduce correlation, we need only to retain a set sample after a number of steps
and discard others. The pseudo code for the Metropolis-Hastings routine is summarised
in Algorithm 2.

3.4.4. Complexity Analysis

In learning using the Contrastive Divergence (CD) (described at the end of Section
3.3.1), the Markov chain needs not be converged, even though its convergence is guar-
anteed in the long-run [7, 22]. Rather, we need only to relax the samples away from the
observed values. The CD is a proven technique and it is widely used in Markov random
fields and restricted Boltzmann machines, which are a building block for deep architec-
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tures [23, 38]. The time complexity is linear with a constant factor depending on the
sampling (Gibbs or Metropolis-Hastings).

3.5. Enhancing Learning by Rank Weighting

One drawback of Plackett-Luce style models is that they treat all objects in an equal
manner. However, in many practical settings such as Web search, most objects are ir-
relevant, and incorporating them all would be sub-optimal. Here we propose a way to
reduce the impact of lowly ranked objects through scaling. In particular, we modify
Equation 6 as

P ∗ (X1, . . . ,XKσ ) = Pα1 (X1)

Kσ∏
k=2

Pαk (Xk | X1:k−1) (18)

where P ∗ (X1, . . . ,XKσ ) is the unnormalised probability and α1 ≥ α2 ≥ ... ≥ αKσ ≥
0 are scaling parameters. Thus, learning can be carried out by maximising the unnor-
malised probability

L∗ = logP ∗ (X1, . . . ,XKσ )

= α1 logP (X1) +

Kσ∑
k=2

αk logP (Xk | X1:k−1)

4. Applications with PMOP

In this section, we describe the more specific model specifications of our proposed prob-
abilistic ordered partition models in two applications, namely Web document ranking
and collaborative filtering.

4.1. Web Document Ranking

The ultimate goal of learning-to-rank is that, for each query the learnt system needs to
return a list of related objects and their ranking15. Suppose for an unseen query q a list
of X q =

{
xq1, . . . , x

q
Nq

}
objects related to q is given16, and for each query-object pair

(q, x), a feature vector xq ∈ RF is extracted. The task is then to rank these objects in
decreasing order of relevance w.r.t q. Enumerating over all possible rankings take an
order of Nq! time. Instead we would like to establish a scoring function f(xq, w) ∈ R
for the query q and each object x returned where w is now introduced as the param-
eter. Sorting can then be carried out much more efficiently in the complexity order of
Nq logNq instead ofNq!. The function specification can be a simple linear combination
of features or more complicated form, such as a multilayer neural network.

15 We note a confusion that may arise here is that, although during training each training query q is supplied
with a list of related objects and their ratings, during the ranking phase the system still needs to return a
ranking over the list of related objects for an unseen query.
16 In document querying, for example, the list may consist of all documents which contain one or more query
words



18 Tran et al

In the practice of learning-to-rank, the dimensionality of feature vector xq often
remains the same across all queries, and since it is observed, we use PMOP described
before to specify conditional model specific to q over the set of returned objects X q as
follows.

P (X q|w) = P (X q
1 ,X

q
2 , ...,X

q
Kσ
| w) = P (X q

1 | w)

Kσ∏
k=2

P (X q
k | X

q
1:k−1, w) (19)

We can see that Eq (19) has exactly the same form of Eq (6) specified for PMOP,
but applied instead on the query-specific set of objects X q and additional parameter
w. During training, each query-object pair is labelled by a relevance score, which is
typically an integer from the set {0, ..,M} where 0 means the object is irrelevant w.r.t
the query q, and M means the object is highly relevant17. The value of M is typically
much smaller than Nq , thus, the issue of ties, described at the beginning of this section,
occur frequently. In a nutshell, for each training query q and its rated associated list
of objects a PMOP is created. The important parameterisation to note here is that the
parameter w is shared across all queries; and thus, enabling ranking for unseen queries
in the future.

Using the scoring function f (x,w) we specify the individual potential function φ (·)
in the exponential form: φ (x,w) = exp {f (x,w)}. For simplicity, assume further that
the scoring function has the linear form f(xq, w) = w>xq . In what follows we choose
two specific forms of Φk (X q

k ): as a geometric mean or as a arithmetic mean of individ-
ual potentials (Subsection 3.3). The geometric mean setting illustrates a particular case
where we need to employ MCMC-techniques while the arithmetic mean setting leads
to efficient computation.

For learning we need to compute the gradient of the log-likelihood function:

∂ logP
(
X q
k | X

q
1:k−1

)
=∂ log Φk (Xq

k)−
∑

Sk∈2R
q
k

P
(
Sk | X q

1:k−1

)
∂ log Φk (Sk)

(20)

Clearly the gradient depends on the specification of the set function Φk (Xq
k). In what

follows, we detail five special cases mentioned earlier in Section 3.3.

4.1.1. Exact Cases: Maximum and Arithmetic Mean Set Functions

Maximum Set Functions

Recall from Subsection 3.3 that the set function is the max of local potentials:

Φk (X q
k ) = max

x∈X q
k

{exp (f(x,w))} (21)

The gradient of the log-likelihood function can be computed efficiently:

∂ logP
(
X q
k | X

q
1:k−1

)
∂w

= arg max
x∈X q

k

φ(x)−
∑
x∈Rqk

Mk(x)φ(x)x∑
x∈RkMk(x)φ(x)

17 Note that generally K ≤M + 1 because there may be gaps in rating scales for a specific query.
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Arithmetic Mean Set Functions

The set function is simply the mean of local potentials:

Φk (X q
k ) =

1

|X q
k |
∑
x∈X q

k

exp {f(x,w)} (22)

The gradient of the log-likelihood function has the following form:

∂ logP
(
X q
k | X

q
1:k−1

)
∂w

=
∑
x∈X q

k

φk(x,w)x∑
x∈X q

k
φk(x,w)

−
∑
x∈Rqk

φk(x,w)x∑
x∈Rqk

φk(x,w)

4.1.2. Approximate Cases: Geometric Mean and Harmonic Mean Set
Functions

We now consider two cases of the set functions Φk (Xq
k): geometric mean and harmonic

mean.

Geometric mean:

Recall from Subsection 3.3 that the geometric mean set function has the following form

Φk (X q
k ) =

 ∏
x∈X q

k

φ (x)

 1

|Xqk |
= exp

 1

|X q
k |
∑
x∈X q

k

f (x,w)

 = exp
{
w>x̄qk

}
(23)

where x̄qk = 1

|X q
k |
∑
x∈Xk x

q is simply the geometric mean feature vector over the set

Xk. This leads to a simple gradient of the log set function:

∂ log Φk (Xq
k)

∂w
= x̄qk

Harmonic mean:

Recall from Subsection 3.3 that the harmonic mean set function has the following form

Φk (Xq
k) = |Xq

k |

 ∑
x∈X q

k

1

φ(x)

−1

= exp

log |Xq
k | − log

 ∑
x∈X q

k

exp (−f (x,w))


Hence its gradient reads

∂ log Φk (Xq
k)

∂w
=

 ∑
x∈X q

k

exp (−f (x,w))

−1 ∑
x∈X q

k

exp (−f (x,w))x

= x̄qk
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where

x̄qk =
∑
x∈X q

k

Qk(x)x; Qk(x) =
exp (−f (x,w))∑

x′∈X q
k

exp (−f (x′, w))

Updating rule:

For both the geometric and harmonic means, we need to compute the the expectation∑
Sk
P (Sk | X q

1:k−1)s̄k in Eq. (20). This expectation is expensive to evaluate, since
there are 2Nk − 1 possible subsets. Thus, we resort to MCMC techniques (see Sec-
tion 3.4) and the parameter is updated as follows

w ← w + η
1

|D|

|D|∑
q=1

∑
k

(
x̄qk −

1

n

n∑
l=1

s̄
(l)
k

)

where |D| is the number of training queries, s̄(l)
k is the centre of the subset sampled at

iteration l, and η > 0 is the learning rate, and n is number of samples. Typically we
choose n to be small, e.g. n = 1, 2, 3.

4.1.3. Second-Order Features

In the case of document ranking, features are often precomputed based on prior knowl-
edge about

– Similarity measures between a query and a related document, e.g. cosine between the
word vectors with tf.idf weighting scheme, and

– Quality measures of a document, e.g. sources, authority, language model, HITS or
PageRank scores.

One aspect still largely ignored is the interaction between those features, and how much
they would contribute to the final estimation of the ranking function. On the other hand,
some interaction can be totally unrelated to ranking task - this begs a question of feature
selection. Since the number of these second-order features can be both large and dense
- we may not afford to run a throughout feature selection procedure. Here we propose a
two-step procedure:

1. Feature generation: We perform a Cartesian product to generate all second-order
features, and

2. Feature selection: We first compute correlation score between a generated feature and
the relevance score given in training data. We then select only those features whose
correlation score is larger than a threshold ρ > 0. In this paper, we use absolute
Pearson’s correlation measure∣∣∣∣∣

∑
d(yad − ȳa)(rd − r̄)√∑

d(yad − ȳa)2
√∑

d(rd − r̄)2

∣∣∣∣∣
where a is the feature index and d is the document index, ȳa is the mean of feature a
and r̄ is the mean of relevance score over training data. Note that

∑
d means summing

over all documents in the training data.
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4.2. Collaborative Filtering

We now present an application of our PMOP in collaborative filtering. Recall that in
collaborative filtering, we are given a set of users, each of whom has expressed prefer-
ences over a set of items. Let A be the number of users and B the number of items. To
facilitate the interaction between an user u and an item i, the item worth can be chosen
as follows

φk (x = i, u) = exp{f(u, i)}, where f(u, i) =

D∑
d=1

WudHdi (24)

where W ∈ RA×D, H ∈ RB×M and D is the hidden dimensionality (typically D <
min{A,B}). This bears some similarity with the matrix factorisation in Eq (2), but the
we do not aim to approximate the rating per se.

Different from the case of document ranking, the feature vector for each item
(H1iH2i, ..,HDi) is not given and must be discovered from the training data. Recall
that each user in the training data has expressed preferences over some seen items.
By maximising data likelihood, we learn the parameter matrices W and H . However,
the log-likelihood function is no longer concave in both W and H , although it is still
concave in either W or H .

Denote by Luk = logP
(
X u
k | X u

1:k−1

)
. For arithmetic mean set functions, the gra-

dient of the log-likelihood reads:

∂Luk
∂Wud

=
∑
i∈Xu

k

φk(i, u)Hdi∑
j∈Xu

k
φk(j, u)

−
∑
i∈Ruk

φk(i, u)Hdi∑
j∈Ruk

φk(j, u)

∂Luk
∂Hdi

= Wudφk(i, u)

[
δ[i ∈ X u

k ]∑
j∈Xu

k
φk(j, u)

− δ[i ∈ Ruk ]∑
j∈Ruk

φk(j, u)

]

where δ[.] is the indicator function.
As the parameters are query-dependent (e.g. the number of rows in W grows with

number of users), and the log-likelihood is not convex, we need to carefully regularise
the learning process. First, notice that since training data is often in the form of ratings,
and converting from rating to ranking is lossy, it may be useful to bias the item worth
toward ratings, and at the same time, to promote ranking with PMOP. Denote by rui the
rating which user u has given to item i. The regularised log-likelihood over all users is

L̂ =
∑
u

{
βLu(W,H) +

1

2
(1− β)

∑
i∈Xu

(rui − f (u, i))
2

}
+ λ1 ‖W‖22 + λ2 ‖H‖22

(25)

where Lu =
∑
k L

u
k ,β ∈ [0, 1] is a parameter to control the bias strength, λ1, λ2 > 0

are regularisation factors, and ‖·‖2 denotes Frobenius norm.
At test time, for each user we are given an unseen set of items, the task is now to

produce a ranked list. Since the parameters W and H have been learnt, we now can
compute the score for every user-item pair using f(u, i) in Eq (24), which then can be
used to sort the items.
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5. Evaluation

In this section we present evaluation results of our proposed PMOP on two tasks: doc-
ument ranking on Web data and collaborative filtering on movie data. We implement
several methods resulted from our framework (see description in Section 4.1):

– Exact learning: PMOP-ArithM and PMOP-MAX, with arithmetic mean and maxi-
mum set functions, respectively.

– Approximate learning: PMOP-GeoM.Gibbs and PMOP-GeoM.MH, with geometric
mean set functions under Gibbs sampling and Metropolis-Hastings sampling, respec-
tively. Similarly, PMOP-HarmM.Gibbs is an approximate model with harmonic mean
set function.

Two performance metrics are reported: the Normalised Discounted Cumulative Gain at
position T (NDCG@T ) [26], and the Expected Reciprocal Rank (ERR) [9]. NDCG@T
metric is defined as

NDCG@T = 1
κ(T )

T∑
i=1

2ri − 1

log2(1 + i)

where ri is the relevance judgment of the object at position i, κ(T ) is a normalisation
constant to make sure that the gain is 1 if the rank is correct. The ERR is defined as

ERR =
∑
i

1

i
V (ri)

i−1∏
j=1

(1− V (rj)) where V (r) =
2r − 1

2rmax
.

Both the metrics emphasize the importance of the top-ranked objects, which is essential
for finding just a few relevant objects from a large collection.

5.1. Document Ranking

Through Web search engines, we are now able to harvest collective information about
user’s information need and behaviours. Through clickthrough or manually labelled
data, we have large collections of annotated data, where each query is associated with
a list of documents, each of which has a score indicating its relevance. Based on the
query and the browsing contexts, we can extract from a query-document pair a rich set
of features, capturing the information need and search behaviour. As the goal of this
paper is to learn a preference model, we assume that the feature sets are given to the
model.

5.1.1. Data and Settings

We employ the dataset from the recently held Yahoo! learning-to-rank challenge18 [8].
The data contains the groundtruth relevance labels for 19, 944 queries with totally 473, 134
documents. The labels are numerical scores from 0 to 4 indicating the relevancy of a
document with respect to a particular query. Since on average, there are 24 documents

18 This is much larger than the commonly used LETOR 3.0 and 4.0 datasets. In the preparation of this
manuscript, we learnt that Microsoft had released two large sets of comparable size with that of Yahoo! but
due to time constraint, we do not report the results here.
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per query, the occurrences of ties are frequent. As we are mainly concerned about mod-
elling the preferences, we use the features for each document-query pairs supplied by
Yahoo!, and there are 519 unique features.

Before running algorithms, we first normalised the features across the whole training
set to have mean 0 and standard deviation 1. We split the data into two sets: the train-
ing set contains roughly 90% queries (18, 425 queries, 471, 614 documents), and the
test set is the remaining 10% (1, 520 queries, 47, 313 documents). For comparison, we
implement several well-known methods, including RankNet [5], linear Ranking SVM
[27] and ListMLE [53]. The RankNet and Ranking SVM are pairwise methods, and
they differ on the choice of loss functions, i.e. logistic loss for the RankNet and hinge
loss for the Ranking SVM19. Similarly, choosing quadratic loss gives us a rank regres-
sion method, which we will call Rank Regress (see Appendix A.3 for more details).
From rank modelling point of view, the RankNet is essentially the Bradley-Terry model
[3] applied to learning to rank. Likewise, the ListMLE is essentially the Plackett-Luce
model, which has been argued to be one of the best performing methods [34].

We also implement two variants of the Bradley-Terry model with ties handling, one
by Rao-Kupper [42] (denoted by PairTies-RK; this also appears to be implemented in
[55] under the functional gradient setting) and another by Davidson [13] (denoted by
PairTies-D; and this is the first time the Davidson method is applied to learning to rank).
See Appendix A.4 for implementation details.

For those pairwise methods without ties handling, we simply ignore the tied docu-
ment pairs. For the ListMLE, we simply sort the documents within a query by relevance
scores, and those with ties are ordered according to the sorting algorithm. All methods,
except for approximate PMOPs, are trained using the Limited Memory Newton Method
known as L-BFGS. The L-BFGS is stopped if the relative improvement over the loss is
less than 10−5 or after 100 iterations. For approximate PMOPs, we run the MCMC for
a few steps per query, then update the parameter using the Stochastic Gradient Ascent.
The learning is stopped after 1, 000 iterations.

We also implement enhancements described in Sections 3.5 and 4.1.3. In particular,
for the weight sequence in Equation 18, we useαk = 1+log rk where rk is the relevance
label of the k-th subset in training data. First-orders features are precomputed by Yahoo!
and second-order features are constructed based on first-order features. The selection
threshold ρ is set at 0.15 yielding 14, 425 second-order features as it balances well
between speed and performance.

5.1.2. Results

The results are reported in Table 2. It can be seen that modelling ties are beneficial, as
PairTies-D and PairTies-RK perform better than the RankNet (without ties handling),
and our PMOP variants improve over ListMLE, despite of the simplicity in the poten-
tial function choices in Eqs (23) and (22). The PMOP-GeoM.MH wins over the best
performing baseline, ListMLE, by 2% according to the ERR metric. In our view, this is
a significant improvement given the scope of the dataset20. We note that the difference in
the top 20 in the leaderboard21 of the Yahoo! challenge was just 1.56%. Overall, second-

19 Strictly speaking, RankNet makes use of neural networks as the scoring function, but the overall loss is
still logistic, and for simplicity, we use simple perceptron.
20 We are aware that the results should be associated with the error bars, however, since the data is huge,
running the experiments repeatedly is extremely time-consuming.
21 Our result using second-order features was submitted to the Yahoo! challenge and obtained a position in
the top 4% over 1055 teams, given that our main purpose was to propose a new theoretical and useful model.
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First-order features Second-order features
ERR NG@1 NG@5 ERR NG@1 NG@5

Rank Regress 0.4882 0.683 0.6672 0.4971 0.7021 0.6752
RankNet 0.4919 0.6903 0.6698 0.5049 0.7183 0.6836
Ranking SVM 0.4868 0.6797 0.6662 0.4970 0.7009 0.6733
ListMLE 0.4955 0.6993 0.6705 0.5030 0.7172 0.6810
PairTies-D 0.4941 0.6944 0.6725 0.5013 0.7131 0.6786
PairTies-RK 0.4946 0.6970 0.6716 0.5030 0.7136 0.6793
PMOP-ArithM 0.5038 0.7137 0.6762 0.5086 0.7272 0.6858
PMOP-ArithM(*) 0.5054 0.7115 0.6763 0.5099 0.7243 0.6835
PMOP-MAX 0.5034 0.7118 0.6707 0.5037 0.7143 0.6704
PMOP-HarmM.Gibbs 0.5018 0.7029 0.6663 0.5013 0.7026 0.6749
PMOP-GeoM.Gibbs 0.5037 0.7105 0.6792 0.5040 0.7124 0.6706
PMOP-GeoM.MH 0.5045 0.7139 0.6790 0.5053 0.7122 0.6713

Table 2. Performance measured in ERR and NDCG@T. PairTies-D and PairTies-RK are
the Davidson method and Rao-Kupper method for ties handling, respectively. PMOP-
ArithM is the PMOP with arithmetic mean set functions; MAX = maximum; GeoM =
Geometric mean; HarmM = Harmonic mean; MH = Metropolis-Hastings; (*) indicates
that likelihood weighting in Equation 18 has been used. See Section 4.1 for detailed
description.

order features help to improve performance of exact models. The PMOP-ArithM and
PMOP-MAX are highly competitive against approximate methods.

This is highly significant because their time complexity is linear and the convergence
is guaranteed. The numerical training time also confirmed that the PMOP-ArithM and
PMOP-MAX are the fastest. All other pairwise methods are quadratic in query size, and
thus numerically slower (Table 1). Complexity for approximate cases are also linear in
the query size, by a constant factor that is determined by the number of iterations.

5.2. Collaborative Filtering for Movie Recommendation

In this experiment, we study the applicability of our proposed models on the task of
recommending movies to user.

5.2.1. Data and Settings

We use the MovieLens 10M data22, which has slightly over 10 million ratings applied
to 10, 681 movies by 71, 567 users. The ratings are from 0.5 to 5 with 0.5 increments.
To facilitate ties, we round ratings to nearest integers. In this setting, the user plays the
role of the query, and the movies the role of documents. However, different from the
document ranking setting, the user tastes need to be discovered from the data rather
than being given. This would mean that a recommendation for a particular user relies
on the information captured from the preferences expressed by the other users.

One property of movie data is that, there are movies whose quality is inherently
bad or good, and thus the general audience generally agree about their ratings. To make
the data more challenging, we first remove about half of movies with low diversity in
rating among all users. To estimate the rating diversity, we use the entropy measure for
each movie i: −

∑rmax
r=1 P̂ (r) log P̂ (r) where rmax = 5 is the rating scale, and P̂ (r)

is the portion of users who have rated the movie by r. The low entropy means that the

22 http://grouplens.org/node/73
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Figure 2. Log-likelihood on test movies. The ordering for Plackett-Luce is based on a
sort algorithm, where ties may be broken arbitrarily. The higher likelihood, the better
fitting.

distribution P̂ (r) is peaked around a particular rating, or equivalently the less diversity
among users. On the other hand, the high entropy indicates that the distribution is closer
to uniform, or equivalently minimum agreement among users.

Further, for each user, we randomly select 50 movies for training, and the rest for
testing. To ensure that there are at least 10 test movies for each user, we remove those
users with less than 60 ratings. This leaves us 21, 649 users on 5, 247 movies.

For comparison we run the CoFiRANK-NDCG algorithm of [52] on the data with
the code provided by the authors23. In Eq (25), matrices W (user-based parameters)
and H (movie-based parameters) are initialised randomly in the range [0, 1

2

√
rmax/D]

where D is the hidden dimensionality, and β = 0.01. For this problem, we use only the
PMOP-ArithM for efficiency, where parameters are learnt using gradient ascent. For all
algorithms, we set the feature dimensionality to D = 100.

5.2.2. Results

We first study the ability to fit the data of PMOP-ArithM (with tie handling) com-
pared with the standard Plackett-Luce (without tie handling) in terms of data likelihood.
For remaining movies for each user, we randomly picked M ∈ {5, 10, 20, 30, 40, 50}
movies for model fitting evaluation (those who number of remaining movies is less than
M is not included). Figure 2 shows that PMOP-ArithM fits the data better than the
Plackett-Luce. The difference is more dramatic when M is large. This is expected since
the Plackett-Luce does not account for the ties, which occur more frequently with large
number of movies.

We then compare the predictive performance of the PMOP-ArithM for recommen-
dation of unseen movies to users. Table 3 reports results against three variants of the
CofiRANK , which is perhaps the best-known algorithm in this class of problems. It

23 The code is available at: http://www.cofirank.org/downloads. We implement a simple wrapper to compute
the ERR and NDCG scores (at various positions), which are not available in the code.
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ERR NDCG@1 NDCG@5

CoFiRANK .Regress 0.683 0.574 0.592

CoFiRANK .Ordinal 0.631 0.504 0.528

CoFiRANK .NDCG@10 0.598 0.471 0.487

PMOP-ArithM 0.684 0.576 0.602

Table 3. Results for movie recommendation.

can be seen that our PMOP-ArithM is competitive as it is as good as or better than
CofiRANK .

6. Discussion

In our specific choice of the local distribution in Eq (7), we share the same idea with
that of Plackett-Luce, in which the probability of choosing the subset is proportional to
the subset’s worth, which is realised by the subset potential. In fact, when we limit the
subset size to 1, i.e. there are no ties, the proposed model reduces to the well-known
Plackett-Luce models.

The distribution of the case of arithmetic mean set functions has an interesting in-
terpretation. From Eq (12) the local partition distribution can be rewritten as

P (Xk | X1:k−1) =
1

C |Xk|
∑
x∈Xk

φk(x)∑
x′∈Rk φk(x′)

Since φk(x)/
∑
x′∈Rk φk(x′) is the probability of choosing x as the top object at stage

k, P (Xk | X1:k−1) can be interpreted as the probability of choosing any member in the
subset Xk as the top object, up to a multiplicative constant. Thus, the this model offers a
simple way to model the inherent uncertainty in the choices when ties occur. This bears
some similarity with the multiple-instance learning setting [15], where we know that at
least one of the objects in the subset must have a given label (e.g. being chosen in our
case).

It is worth mentioning that the factorisation in Eq (6) and the choice of local distri-
bution in Eq (7) are not unique. In fact, the chain-rule can be applied to any sequence
of choices. For example, we can factorise in a backward manner

P (X1, . . . ,XKσ ) = P (XKσ )

Kσ−1∏
k=1

P (Xk | Xk+1:Kσ ) (26)

where Xk+1:Kσ is a shorthand for {Xk+1, Xk+2, ..., XKσ}. Interestingly, we can inter-
pret this reverse process as subset elimination: First we choose to eliminate the worst
subset, then the second worst, and so on. This line of reasoning has been discussed in
[16] but it is limited to 1-element subsets. However, if we are free to choose the parame-
terisation of P (Xk | Xk+1:Kσ ) as we have done for P (Xk | X1:k−1) in Eq (7), there is
no guarantee that the forward and backward factorisations admit the same distribution.

Our model can be placed into the framework of probabilistic graphical models (e.g.
see [30]). Recall that in standard probabilistic graphical models, we have a set of vari-
ables, each of which receives values from a fixed set of states. Generally, variables and
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states are orthogonal concepts, and the state space of a variable do not explicitly de-
pends on the states of other variables24. In our setting, the objects play the role of the
variables, and their memberships in the subsets are their states. However, since there
are exponentially many subsets, enumerating the state spaces as in standard graphi-
cal models is not possible. Instead, we can consider the ranks of the subsets in the
list as the states, since the ranks only range from 1 to N . Different from the standard
graphical models, the variables and the states are not always independent, e.g. when the
subset sizes are limited to 1, then the state assignments of variables are mutually exclu-
sive, since for each position, there is only one object. Probabilistic graphical models are
generally directed (such as Bayesian networks) or undirected (such as Markov random
fields), and our PMOP can be thought as a directed model. The undirected setting is also
of great interest, but it is beyond the scope of this paper, leaving out an open research
topic.

7. Conclusions

In this paper, we have addressed the problem of modelling human preferences with ties.
Our first contribution is the casting of this problem into a more generic probabilistic
formulation of set partitioning and ordering. This resulted in a hyper-exponential state-
space which grows as quick as N !/(2 (ln 2)

N+1
) for a set of N objects. Addressing

this complexity, we proposed a stagewise approach in which a partition are chosen at
each stage, thus reducing the state-space significantly to 2Nk − 1 where Nk is the num-
ber of remaining objects after k − 1 steps. Inference in this reduced space can then be
performed using MCMC techniques - we offered a Gibbs sampling and a Metropolis-
Hastings procedure. We demonstrated that with these techniques, we can proceed to
train powerful models on hundreds of thousand objects. We also proved that there exists
highly interpretable cases where learning can be carried out in linear time. We evaluated
the proposed models on two problems: the first is document ranking with the large-scale
data from the recently held Yahoo! challenge and the second is collaborative filtering
with the MovieLens 10M dataset. The experimental results demonstrated that our pro-
posed models are competitive against state-of-the-arts which are designed specifically
for the problems.

There are rooms for future advancement of the current work. First, we have relied
on explicit expression of preferences and trained the models in a supervised manner.
Discovering implicit preferences would enhance our understanding of users and offer
better personalised experience. There are also a wide range of important applications
that fit into the framework we have just presented, for example, multimedia retrieval,
answer rankings and advertisements placement.
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24 Note that, this is different from saying the states of variables are independent.
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A. Appendix

A.1. Computing Ck

We here calculate the constant Ck in Eq (11). Let us rewrite the equation for ease of
comprehension

∑
S∈2Rk

1

|S|
∑
x∈S

φk (x) = Ck ×
∑
x∈Rk

φk(x)

where 2Rk is the power set with respect to the setRk, or the set of all non-empty subsets
of Rk. Equivalently

Ck =
∑
S∈2Rk

1

|S|
∑
x∈S

φk (x)∑
x∈Rk φk(x)

If all objects are the same, then this can be simplified to

Ck =
∑
S∈2Rk

1

|S|
∑
x∈S

1

Nk
=

1

Nk

∑
S∈2Rk

1 =
2Nk − 1

Nk

where Nk = |Rk|. In the last equation, we have made use of the fact that
∑
S∈2Rk 1 is

the number of all possible non-empty subsets, or equivalently, the size of the power set,
which is known to be 2Nk − 1. One way to derive this result is the imagine a collection
of Nk variables, each has two states: selected and notselected, where selected
means the object belongs to a subset. Since there are 2Nk such configurations over all
states, the number of non-empty subsets must be 2Nk − 1.

For arbitrary objects, let us examine the the probability that the object x belongs to
a subset of size m, which is m

Nk
. Recall from standard combinatorics that the number

of m-element subsets is the binomial coefficient
(
Nk
m

)
, where 1 ≤ m ≤ Nk. Thus

the number of times an object appears in any m-subset is
(
Nk
m

)
m
Nk

. Taking into ac-
count that this number is weighted down by m (i.e. |S| in Eq (11)), the the contribution
towards Ck is then

(
Nk
m

)
1
Nk

. Finally, we can compute the constant Ck, which is the
weighted number of times an object belongs to any subset of any size, as follows

Ck =

Nk∑
m=1

(
Nk
m

)
1

Nk
=

1

Nk

Nk∑
m=1

(
Nk
m

)
=

2Nk − 1

Nk

We have made use of the known identity
∑Nk
m=1

(
Nk
m

)
= 2Nk − 1.

A.2. Computing Mk(x)

We now calculate the constant Mk(x) in Eq. (17), which is reproduced here for clarity:∑
S∈2Rk

max
x∈S

φ(x) =
∑
x∈Rk

Mk(x)φ(x) (27)
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First we arrange the objects in the decreasing order of worth φ(x). For notation
convenience we assume that the order is 1, 2, 3, ..., Nk. The largest object will appear in
a subset consisting of only itself, and 2Nk−1 − 1 other subsets. Thus Mk(1) = 2Nk−1

since for all subsets to which the largest object belong, the maximum aggregation is
the worth of the object, as per definition. Now removing the largest object, consider the
second largest one. With the same argument as before, Mk(2) = 2Nk−2. Continuing
the same line of reasoning, we end up Mk(n) = 2Nk−n.

A.3. Pairwise Losses

Let f(xi, w) be the scoring function parameterised by w that takes the input vector xi
and outputs a real value indicating the relevancy of the object i. Let δij(w) = f(xi, w)−
f(xj , w). Pairwise models are quite similar in their general setting. The only difference
is the specific loss function:

`(xi � xj ;w) =


log(1 + exp{−δij(w)}) (RankNet)
max{0, 1− δij(w)} (Ranking SVM)
(1− δij(w))2 (Rank Regress)
exp{−δij(w)} (Rank Boost)

However, these losses behave quite different from each other. For the RankNet and
Rank Boost, minimising the loss would widen the margin between the score for xi and
xj as much as possible. The difference is that the RankNet is less sensitive to noise due
to the log-scale. The Ranking SVM, however, aims just about to achieve the margin of
1, and the Rank Regress, attempts to bound the margin by 1.

At the first sight, the cost for gradient evaluation in pairwise losses would be
O(0.5N(N − 1)F ) where F is the number of parameters. However, we can achieve
max{O(0.5N(N − 1)),O(NF )} as follows. The overall loss for a particular query is

L =
∑

i,j|xi�xj

`(xi � xj ;w)

Taking derivative with respect to w yields

∂L

∂w
=

∑
i,j|xi�xj

∂`(xi � xj ;w)

∂δij

(
−∂fi
∂w

+
∂fj
∂w

)

= −
∑
i

∂fi
∂w

∑
j|xi�xj

∂`(xi � xj ;w)

∂δij
+
∑
j

∂fj
∂w

∑
i|xi�xj

∂`(xi � xj ;w)

∂δij

As
{
∂`(xi�xj ;w)

∂δij

}
i,j|xi�xj

can be computed in O(0.5N(N − 1)) time, and
{
∂fi
∂w

}
i

in

O(NF ) time, the overall cost would be max{O(0.5N(N − 1)),O(NF )}.

A.4. Learning the Pairwise Ties Models

This subsection describes the details of learning the paired ties models discussed in
Section 6.
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A.4.1. Davidson method

Recall from Section 2 that in the Davidson method the probability masses are defined
as

P (xi � xj ;w) =
1

Zij
φ(xi); P (xi ∼ xj ;w) =

1

Zij
ν
√
φ(xi)φ(xj)

whereZij = φ(xi)+φ(xj)+ν
√
φ(xi)φ(xj) and ν ≥ 0. For simplicity of unconstrained

optimisation, let ν = eβ for β ∈ R. Let Pi = P (xi � xj ;w), Pj = P (xj � xi;w) and
Pij = P (xi ∼ xj ;w).

Taking derivatives of the log-likelihood gives

∂ logP (xi � xj ;w)

∂w
= (1− Pi − 0.5Pij)

∂ log φ(xi, w)

∂w
− (Pi + 0.5Pij)

∂ log φ(xj , w)

∂w
∂ logP (xi � xj ;w)

∂β
= −Pij

∂ logP (xi ∼ xj ;w)

∂w
= (0.5− Pi − 0.5Pij)

∂ log φ(xi, w)

∂w

+(0.5− Pj − 0.5Pij)
∂ log φ(xj , w)

∂w
∂ logP (xi ∼ xj ;w)

∂β
= 1− Pij .

A.4.2. Rao-Kupper method

Recall from Section 2 that the Rao-Kupper model defines the following probability
masses

P (xi � xj ;w) =
φ(xi)

φ(xi) + θφ(xj)

P (xi ∼ xj ;w) =
(θ2 − 1)φ(xi)φ(xj)

[φ(xi) + θφ(xj)] [θφ(xi) + φ(xj)]

where θ ≥ 1 is the ties factor and w is the model parameter. Note that φ(.) is also a
function of w, which we omit here for clarity. For ease of unconstrained optimisation,
let θ = 1 + eα for α ∈ R. In learning, we want to estimate both α and w. Let

Pi =
φ(xi)

φ(xi) + (1 + eα)φ(xj)
; P ∗j =

φ(xj)

φ(xi) + (1 + eα)φ(xj)
;

P ∗i =
φ(xi)

(1 + eα)φ(xi) + φ(xj)
; Pj =

φ(xj)

(1 + eα)φ(xi) + φ(xj)
.
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Taking partial derivatives of the log-likelihood gives

∂ logP (xi � xj ;w)

∂w
= (1− Pi)

∂ log φ(xi, w)

∂w
− (1 + eα)Pj

∂ log φ(xj , w)

∂w
∂ logP (xi � xj ;w)

∂α
= −Pjeα

∂ logP (xi ∼ xj ;w)

∂w
= (1− Pi − (1 + eα)P ∗i )

∂ log φ(xi, w)

∂w

+ (1− Pj − (1 + eα)P ∗j )
∂ log φ(xj , w)

∂w
∂ logP (xi ∼ xj ;w)

∂α
=

(
2(1 + eα)

(1 + eα)2 − 1
− P ∗i − P ∗j

)
eα.
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[7] M. A. Carreira-Perpiñán and Geoffrey E. Hinton. On contrastive divergence learning. In Robert G.
Cowell and Zoubin Ghahramani, editors, Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (AISTATS), pages 33–40, Barbados, Jan 6-8 2005. Society for Artificial Intelli-
gence and Statistics.

[8] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. In JMLR Workshop and Confer-
ence Proceedings, volume 14, pages 1–24, 2011.

[9] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In
CIKM, pages 621–630. ACM, 2009.

[10]W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Journal of Machine Learning
Research, 6(1):1019, 2006.

[11]W. Chu and S.S. Keerthi. Support vector ordinal regression. Neural computation, 19(3):792–815, 2007.
[12]D. Cossock and T. Zhang. Statistical analysis of Bayes optimal subset ranking. IEEE Transactions on

Information Theory, 54(11):5140–5154, 2008.
[13]R.R. Davidson. On extending the Bradley-Terry model to accommodate ties in paired comparison exper-

iments. Journal of the American Statistical Association, 65(329):317–328, 1970.
[14]P. Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics

Hayward, CA, 1988.
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