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Abstract
Understanding the latent processes from Electronic Medical Records could be a
game changer in modern healthcare. However, the processes are complex due
to the interaction between at least three dynamic components: the illness, the
care and the recording practice. Existing methods are inadequate in capturing the
dynamic structure of care. We propose an end-to-end model that reads medical
record and predicts future risk. The model adopts the algebraic view in that discrete
medical objects are embedded into continuous vectors lying in the same space.
The bag of disease and comorbidities recorded at each hospital visit are modeled
as function of sets. The same holds for the bag of treatments. The interaction
between diseases and treatments at a visit is modeled as the residual of the diseases
minus the treatments. Finally, the health trajectory, which is a sequence of visits, is
modeled using a recurrent neural network. We report preliminary results on chronic
diseases – diabetes and mental health – for predicting unplanned readmission.

1 Introduction
An ultimate goal of AI in healthcare is to reason about the past (historical illness), present (diagnosis)
and future (prognosis). The learning path through recorded medical data necessitates the modeling of
the dynamic interaction between the three processes: the illness, the care and the data recording [15].
For this paper, we assume that a hospital visit at a time manifests through a set of discrete diseases
and treatments. A healthcare trajectory is therefore a sequence of time-stamped records.
Here we adopt the notion of reasoning as “algebraically manipulating previously acquired knowledge
in order to answer a new question” [1]. For that we learn to embed discrete medical objects into
continuous vectors, which lend themselves to a wide host of powerful algebraic and statistical
operators [3, 17]. For example, with diseases represented as vectors, computing disease-disease
correlation is simply a cosine similarity between the two corresponding vectors. Illness – recorded as a
bag of discrete diseases – can then be a function of set of vectors. The same holds for care. Importantly,
if diseases, treatments (or even doctors) are embedded in the same space then recommendation of
treatments (or doctors) for a given disease will be as simple as finding the nearest vectors.
The algebraic view makes it easily to adapt powerful tools from the recent deep learning advances
[12] for healthcare. In particular, we can build end-to-end models for risk prediction without manual
feature engineering [2, 14, 15, 16]. As the models are fully differentiable, credit assignment to distant
risk factors can be carried out [14], making the models more transparent than commonly thought.
One important aspect still remains, however, that is the dynamic interaction between illness and care.
Although care is supposed to lessen the illness, it is often designed through highly controlled trials
where one treatment is targeted at one disease, on a specific cohort, at a specific time. Much less is
known for the effect of multiple treatments on multiple diseases, in general hospitalized patients,
over time. A recent model known as DeepCare [15] partly addresses this problem by considering the
moderation effect of treatments on illness state transition between visits, but not multi-disease–multi-
treatment interaction within visits.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



This paper reports preliminary results on an investigation into finding the algebraic structure of
care hidden in the Electronic Medical Records. The task is to predict future risk such as unplanned
readmission or death at discharge. We focus on chronic diseases (diabetes and mental health) as
they are highly complex with multiple causes, often associated with multiple cormobidities, and the
treatments are not always effective.

2 Methods
We consider the problem of modeling Electronic Medical Records (EMR) for predicting future risk at
the time of hospital discharge. Each medical record is a sequence of hospital visits by a patient. For
simplicity, we consider a visit as consisting of diseases and treatments. While we might expect that
the disease subset together with the treatment subset reflect the illness state at the time of discharge,
it is not necessarily the case. This is because of several reasons. First, the coding of those diseases
and treatments is often optimized for billing purposes, not all diseases are included. Second, errors
do occur sometimes. And third, the treatments usually take time to get the full intended effect.
For this reason, we include historical visits to assess the current state as well as to predict future risk.
An efficient way is to model the visit sequences as a Recurrent Neural Network (RNN) [6]. In this
paper, we choose Long Short-Term Memory (LSTM) since it can remember distant events [9].

2.1 Visit Representation
A visit consists of two variable-size bags of discrete elements: a bag of diseases and a bag of
treatments. Among older cohorts, non-singleton bags are prevalent, reflecting the comorbidity picture
of modern healthcare. As a result, treatments must be carefully administered to work with, or at
least not to cancel out, each other. This also calls for a sensible way to model the complexity of
multi-disease–multi-treatment interaction. Most existing biostatistics methods, however, are designed
for simplified treatment effect against just one condition.
We use vector representation of diseases and treatments, following the recent practice in NLP (e.g.,
see [5]). Let ed be the vector representation of disease d, ep the representation of the treatment
p, and the vectors are embedded in a common space. The bags of diseases and bags of treatments
are also represented as vectors in the same space. The representation of a bag is computed using a
differentiable set function fe(S) that receives a bag of vectors S and returns another vector of the
same dimensions. We use the following set function:

fe(S)← ēS

ε + ‖ēS‖
where ēS = max (0,

∑
i∈S

ei) (1)

where ε > 0 is a smoothing factor. This is essentially a linear rectifier [13] of the sum, approximately
normalized to unit vector. The factor ε lets ‖fe(S)‖ → 0 when‖ēS‖ → 0, but ‖fe(S)‖ → 1
when‖ēS‖ � 0.
Denote by Dt the bag of diseases and It the bag of treatments recorded for the visit at time t. Let
dt = fe (Dt) be the representation of the disease bag, and pt = fe (It) the representation of the
treatment bag. We compute the visit vector as:

vt = ρ (∆) where ∆ = dt − pt (2)

where ρ is an element-wise transformation. The difference ∆ reflects the intuition that treatments
are supposed to lessen the illness. We found ρ (∆) = (1 + ∆)2 works well, suggesting that the
disease-treatment interaction is highly nonlinear, and thus warranting a deeper investigation.

2.2 Illness Memory with LSTM
Given a sequence of input vectors, one per visit, the LSTM reads an input vt at a time and estimates
the illness state ht. To connect to the past, LSTM maintains an internal short-term memory ct,
which is updated after seeing the input. Let c̃t be the new candidate memory update after seeing
vt, the memory is updated over time as ct = f t ∗ ct−1 + it ∗ c̃t, where f t ∈ (0, 1) is forget gate
determining how much of past memory to keep; it ∈ (0, 1) is the input gate controlling the amount
of new information to add into the present memory. The input gate is particularly useful when some
recorded information is irrelevant to the final prediction tasks.
The memory gives rise to the state as ht = ot ∗ tanh(ct), where ot ∈ (0, 1) is the output gate,
determining how much external information can be extracted from the internal memory. The candidate
memory and the three gates are parameterized functions of (vt, ht−1).
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(a) Worsening progression (P = 0.70) (b) Improving progression (P = 0.23)
Figure 1: Illness state progression over time, measured as ht for the last 10 visits. Left figure: a
high-risk case with 70% chance of readmission at time T=10. Right figure: a low-risk case with 23%
chance at the end of the sequence. Best viewed in color.

With this long short-term memory system in place, information of the far past is not entirely forgotten,
and credit can be assigned to it. Second, partially recorded information can be integrated to offer a
better picture of current illness.

2.3 Risk Prediction
Once the LSTM is specified, its states are pooled for risk prediction at each discharge, i.e., h̄t =
pool(h1:t). The pooling function can be as simple as the mean()(i.e., h̄t = 1

t

∑t
j=1 hj) or

last()(i.e., h̄t = ht). We also tried exponential smoothing, h̄t = αh̄t−1 + (1 − α)ht, for
h̄1 = h1 and α ∈ [0, 1]. A small α would mean the recent visits have more influence in future risk.
Finally, a differentiable classifier (e.g., a feedforward neural net) is placed on top of the pooled state
to classify the medical records (e.g., those in population stratification) or to predict the future risk
(e.g., unplanned readmissions). The loss function is typically the negative log-likelihood of outcome
given the historical observations, e.g., −

∑
t log P (yt |D1:t, I1:t). We emphasize here is the system

is end-to-end differentiable, starting from the disease and treatment lookup table at the bottom to the
final classifier at the top. No feature engineering is needed.

2.4 Regularizing state transitions
For chronic diseases, it might be beneficial to regularize the state transition. We consider adding
the regularizers β

T

∑T
t=2 (‖ht‖2 − ‖ht−1‖2)2 to the loss function as suggested in [11]. This asks

the amount of information available at each time step, encapsulated in the norm ‖ht‖2, to be
stable over time. This is less aggressive than maintaining state coherence, i.e., by minimizing
β
T

∑T
t=2 ‖ht − ht−1‖2

2.

3 Results
Cohorts Data is previously studied in [15], which consists of two chronic cohorts: diabetes and
mental health. There are over 7000 diabetes patients with a median age of 73 making over 53,000
visits. For mental health cohort, the figures are 6,100, 37 and 52,000 respectively. The number of
disease and treatment codes for each cohort are around 240 and 1100 respectively. Diseases and
treatments are coded using the ICD-10 coding scheme. For diseases, the first two-level in the ICD-10
tree is used. The data was collected between 2002-2013 from a large regional Australian hospital.
Each record contains at least 2 hospital visits.

Implementation Models are implemented in Julia using the Knet.jl package [18]. Optimizer is
Adam [10] with learning rate of 0.01 and other default parameters. Two baselines are implemented.
One is bag-of-words trained using regularized logistic regression (BoW+LR), where diseases and
treatments are considered as words, and the medical history as document. No temporal information
is modeled. Although this is a simplistic treatment, prior research has indicated that BoW works
surprisingly well [14, 15]. The other is a recent model known as Deepr [14], which is based on
convolutional net for sequence classification. Unlike the BoW, which are unordered, in Deepr words
are sequenced by their temporal order. Words of the same visit are randomly sequenced. However,
the Deepr does not model the temporal transition between illness states.

Visualization The progression of illness states and probability of readmission over time is visual-
ized in Fig. 1 for two typical patients. The high-risk case is shown in Fig. 1(a) – it seems that the
illness gets worse over time. In contrast, the low-risk case is depicted in Fig. 1(b), where the illness is
rather stable over time.

Prediction accuracy Table 1 reports the Area Under the ROC Curve (AUC) for all methods in
predicting unplanned readmission. The proposed methods shows a competitive performance against
the baselines. The Multi-Disease–Multi-Treatment method shows better prediction rate in the mental
health data while the Multi-Disease–Multi-Treatment with Progression method information seems
better in the diabetes data. It suggests that a proper modeling of care over time is needed, not only for
understanding the underlying processes, but also to achieve a competitive predictive performance.
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Method Diabetes Mental health
BoW+LR 0.673 0.705
Deepr [14] 0.680 0.714
MDMTP+LTSM 0.718 0.726
MDMT+LSTM 0.701 0.730

Table 1: Area Under the ROC Curve averaged over 5 folds in predicting unplanned readmission.
BoW = bag-of-words, LR = logistic regression, MDMT = Multi-Disease–Multi-Treatment, MDMTP
= Multi-Disease–Multi-Treatment with Progression information.

4 Related Work

The past few years have witnessed an intense interest in applying recent deep learning advances
to healthcare [16]. The most ready area is perhaps medical imaging [8]. Thanks to the record-
breaking successes in convolutional nets in computer vision, we now can achieve diagnosis accuracy
comparable with experts in certain sub-areas such as skin-cancer [7]. However, it is largely open to
see if deep learning succeeds in other areas where data are less well-structured and of lower quality
such as electronic medical records (EMR) [15].
Within EMRs, three set of techniques have been employed. The first is finding distributed repre-
sentation of medical objects such as diseases, treatments and visits [3, 17]. The techniques are not
strictly deep but they offer a compelling algebraic view of healthcare. The second group of techniques
involve 1D convolutional nets, which are designed for detecting short translation invariant motifs
over time [2, 14]. The third group, to which this paper belongs, employs recurrent neural nets to
capture the temporal structure of care [4, 15].
Predictive healthcare begs the question of modeling treatment effects over time. This has traditionally
been in the realm of randomized controlled trials. Our work here is, on the other hand, based entirely
on observational administrative data stored in Electronic Medical Records.

5 Discussion

The continuous representation of diseases make it easy to study the disease space, that is, which
diseases are related and may be interacting. The same holds for the treatments. The interaction
between diseases and treatments can be modelled easily.

5.1 Conclusion

In summary, we have introduced a temporal model of care, where the emphasis is to build a con-
tinuous representation of discrete medical entities such as diseases, treatments and hospital visits.
Representing disease comorbidity is via simple algebraic manipulation of disease vectors. The same
holds for the care package, which is a bag of treatments targeted at multiple diseases present in the
patient. Multi-disease–multi-treatment interaction is a function of difference between the comorbid-
ity vector and the care package vector. A healthcare trajectory is then modelled using a recurrent
neural network known as Long Short-Term Memory, which is capable of memorizing distant events.
Importantly, the entire system is end-to-end: the model reads the Electronic Medical Record and
predicts future risks without any manual feature engineering. Inititial results on two chronic cohorts,
the diabetes and the metal health, demonstrate the usefulness of the model.
Future work will include investigation into (a) interaction models between diseases and treatments,
(b) disease progression, where we conjecture that simple linear albegra operators such as matrix
multiplications can be used.
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