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Abstract Anomalies are those deviating significantly from the norm. Thus anomaly detection
amount to finding data points located far away from their neighbors, i.e., those lying in low
density regions. Classic anomaly detection methods are largely designed for single data type
such as continuous or discrete. However, real world data is increasingly heterogeneous, where
a data point can have both discrete and continuous attributes. Mixed data poses multiple
challenges including (a) capturing the inter-type correlation structures and (b) measuring
deviation from the norm under multiple types. These challenges are exaggerated under (c)
high-dimensional regimes. In this paper, we propose a new scalable unsupervised anomaly
detection method for mixed data based on Mixed-variate Restricted Boltzmann Machine
(Mv.RBM). The Mv.RBM is a principled probabilistic method that estimates density of mixed
data. We propose to use free-energy derived from Mv.RBM as anomaly score as it is identical
to data negative log-density up-to an additive constant. We then extend this method to detect
anomalies across multiple levels of data abstraction, an effective approach to deal with
high-dimensional settings. The extension is dubbed MIXMAD, which stands for MIXed data
Multilevel Anomaly Detection. In MIXMAD, we sequentially constructs an ensemble of mixed-
data Deep Belief Nets (DBNs) with varying depths. Each DBN is an energy-based detector
at a predefined abstraction level. Predictions across the ensemble are finally combined via a
simple rank aggregation method. The proposed methods are evaluated on a comprehensive
suit of synthetic and real high-dimensional datasets. The results demonstrate that for anomaly
detection, (a) a proper handling mixed-types is necessary, (b) free-energy is a powerful
anomaly scoring method, (c) multilevel abstraction of data is important for high-dimensional
data, and (d) empirically Mv.RBM and MIXMAD are superior to popular unsupervised detection
methods for both homogeneous and mixed data.
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1 Introduction

A vital skill for living organism is detecting large deviations from the norm. Except for
few deadly instances, we learn to detect anomalies by observing and exploring, without
supervision. Unsupervised anomaly detection does not assume any domain knowledge about
abnormality, and hence is cheap and pervasive. A disciplined approach is to identify instances
lying in low density regions [11]. However, estimating density in realistic settings is difficult,
especially on mixed and high-dimensional data.

Mixed-data is a pervasive but rarely addressed phenomenon: a data attribute can be any
type such as continuous, binary, count or nominal [28]. Most existing anomaly detection
methods, however, assume homogeneous data types. Gaussian mixture models (GMMs), for
instance, require data to be continuous and normally distributed – a strong assumption rarely
met in practice. One approach to mixed-type data is to reuse existing methods. For example,
we can transform multiple types into a single type via a process known as data coding. For
instance, nominal data is often coded as a set of zeros except for one active element. But it
leads to information loss because the derived binary variables are considered independent
in subsequent analysis. Further, binary variables are not naturally supported by numerical
methods such as GMM and PCA. Another way is to modify existing methods to accommodate
multiple types. However, the modifications are often heuristic. For distance-based methods
such as k-NN [4] we need to define type-specific distances, then combine these distances
into a single measure. Because type-specific distances differ in scale and semantics, finding a
suitable combination is non-trivial.

Another pervasive challenge is high dimensionality [11]. Under this condition, non-
parametric methods that define a data cube to estimate relative frequency are likely to fail. It
is because the number of cubes grows exponentially with data dimensions, thus a cube with
only a few or no observed data points needs not be in a low density region. An alternative
is to use distance to k-nearest neighbors, assuming that the larger distance, the less dense
the region [4]. But distance in high dimensional space is sensitive to a small change in each
dimension, and easily distorted by redundant and irrelevant dimensions. This necessitates
data abstraction in which data is transformed into a more abstract form.

To sum up, a disciplined approach to mixed-data and high-dimensional anomaly detection
demands meeting four criteria: (i) capturing between-type correlation structure, (ii) offering
abstraction on raw data and detection on abstracted data, (iii) offering an effective way to
measure the deviation from the norm, and importantly (iv) being efficient to compute.

To this end, we propose a new energy-based approach which models multiple types
simultaneously and provides a fast mechanism for identifying low density regions1. Under
this energy-based framework, anomalies have higher free-energy than the rest. To be more
precise, we adapt and extend a recent method called Mixed-variate Restricted Boltzmann
Machine (Mv.RBM) [44]. Mv.RBM is a generalization of the classic RBM – originally
designed for binary data, and is a building block for many deep learning architectures [6,21]
in recent years. Mv.RBM has been applied for representing regularities in survey analysis
[44], multimedia [32] and healthcare [31], but not for anomaly detection, which searches for
irregularities. Mv.RBM captures the correlation structure between types through factoring –
data types are assumed to be conditionally independent given a generating mechanism.

We contribute to the literature of anomaly detection in several ways. First we extend
Mv.RBM to cover counts, a type often seen in practice, but not previously modeled in
Mv.RBM. We then propose to use free-energy as anomaly score to rank mixed-type instances.

1 A preliminary version of this paper has been published in [16].
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Fig. 1 Left: Mix-variate Restricted Boltzmann machine (Mv.RBM) for mixed-type data [44]. Filled circles
denote visible inputs, empty circles denote hidden units. Multiple choices are modeled as multiple binaries,
denoted by a filled circle in a clear box. Right: Mv.RBM’s free-energy as anomaly scoring method.

In RBMs, free-energy equals the negative log-density up to an additive constant, and thus
offering a principled way for density-based anomaly detection. Importantly, estimation of
Mv.RBM is very efficient, and scalable to massive datasets. Likewise, free-energy is computed
easily through a single matrix projection. Thus Mv.RBM coupled with free-energy meets
three criteria (i,iii, and iv) outlined above for anomaly detection. See Fig. 1 for a graphical
illustration.

For criterion (ii) – data abstraction, we leverage recent advances in unsupervised deep
learning to abstract the data into multilevel low-dimensional representations [6]. While
deep learning has revolutionized supervised learning [27], it is rarely used for unsupervised
anomaly detection [41,49]. In particular, we adapt Deep Belief Net (DBN) [21], which is a
deep generalization of RBM, for mixed data. A DBN is built by successively learning a new
RBM based on the output of previous RBMs. A trained DBN is thus a layered model that
allows multiple levels of data abstraction. Due to its stepwise construction, we can use the top
layer of the DBN as an anomaly detector. The anomaly detection procedure is as follows: First
apply multiple layered abstractions to the data, and then estimate the anomalies at each level.
Finally, an anomaly score is aggregated across levels. These together constitute a method
called MIXMAD, which stands for MIXed data Multilevel Anomaly Detection. While MIXMAD

bears some similarity with the recent ensemble approaches [2], the key difference is the we
rely on multiple data abstractions, not data resampling nor random subspaces which are still
on the original data level. In MIXMAD, as the depth increases and the data representation is
more abstract, the energy landscape gets smoother, and thus it may detect different anomalies.
For reaching anomaly consensus across depth-varying DBNs, MIXMAD employs a simple yet
flexible rank aggregation method based on p-norm.

We validate the proposed approach through an extensive set of synthetic and real ex-
periments against well-known baselines, which include classic single-type methods (PCA,
GMM and one-class SVM), as well as state-of-the-art mixed-type methods (ODMAD [26],
Beta mixture model (BMM) [8] and GLM-t [28]). The experiments demonstrate that (a) a
proper handling mixed-types is necessary, (b) free-energy is a powerful and efficient anomaly
scoring method, (c) multilevel abstraction of data is important, and (d) empirically MIXMAD is
superior to popular unsupervised detection methods for both homogeneous and mixed data.

In summary, we claim the following contributions:
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– Introducing a new anomaly detection method for mixed-type data. The method is based on
free-energy derived from a recent method known as Mixed-variate Restricted Boltzmann
Machine (Mv.RBM). The method is theoretically motivated and efficient.

– Extension of Mv.RBM to handle the type of counts.
– Introducing the concept of Multilevel Anomaly Detection (MAD) that argues for reaching

consensus across multiple abstractions of data.
– Deriving MIXMAD, an efficient MAD algorithm to build a sequence Deep Belief Nets, each

of which is an anomaly detector. All detectors are then combined using a flexible p-norm
aggregation that allows tuning along the conservative/optimistic axis.

– A comprehensive evaluation of Mv.RBM and MIXMAD on realistic high-dimensional
single/mixed-type datasets against a large suite of competing methods.

The rest of the paper is organized as follows. Section 2 reviews relevant background on
anomaly detection. Section 3 introduces the problem of anomaly detection using density and
building blocks for MIXMAD. The main contributions of the paper are presented in Section 4
(Mv.RBM) and Section 5 (MIXMAD). Section 6 reports a comprehensive suite of experiments
on various settings, followed by a section for discussion and conclusion.

2 Background

Anomalies are those characterized by irregular characteristics [11]. A wide range of unsu-
pervised methods have been proposed for homogeneous data, for example, distance-based
(e.g., k-NN [4]), density-based (e.g., LOF [9], LOCI [35]), cluster-based (e.g., Gaussian
mixture model or GMM), projection-based (e.g., PCA) and max margin (One-class SVM).
Distance-based and density-based methods model the local behaviors around each data point
while cluster-based methods group similar data points together into clusters. Projection-based
methods, on the other hand, find a data projection that is sensitive to outliers. These popu-
lar methods commonly assume continuous attributes. Categorical data demands separate
treatments as these existing notions of distance metrics, density or projection are not easily
translatable [3,14,22,34,40]. A popular method is pattern mining, in which co-occurrence
statistics of discrete attributes are examined [3,14,34].

Given that continuous and categorical attributes demand separate treatments, it is very
challenging to address both data types in a unified manner [25,28,42,48,50]. The work of
[19] introduces LOADED, which uses frequent pattern mining to define the score of each data
point in the nominal attribute space and links it with a precomputed correlation matrix for
each item set in the continuous attribute space. A more memory-efficient method is RELOAD
[33], which employs a set of Naı̈ve Bayes classifiers with continuous attributes as inputs to
predict abnormality of nominal attributes instead of aggregating over a large number of item
sets. Another method is ODMAD [26], a two--step procedure. First it detects anomalies using
nominal attributes. Then the remaining of the points are examined over continuous attribute
space. In [8], separate scores over nominal data space and numerical data space are calculated
for each data point. The list of two dimensional score vectors of data was then modeled by a
mixture of bivariate beta distributions. Abnormal objects could be detected as having a small
probability of belonging to any components. The work of [50] introduces POD, which stands
for Pattern-based Anomaly Detection. A pattern is a subspace formed by a particular nominal
field and all continuous fields. A logistic classifier is trained for each subspace pattern, in
which continuous and nominal attributes are explanatory and response variables, respectively.
The probability returned by the classifier measures the degree to which an instance deviates
from a specific pattern. This is called Categorical Anomaly Factor (COF). The collection of
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COFs and k-NN distance form the final anomaly score for a data example. Given a nominal
attribute, POD models the functional relationship between continuous variables.

For all the methods mentioned above, their common drawback is that they are only able
to capture intra-type correlation, but not inter-type correlation. The work of [28] introduces a
Generalized Linear Model that uses a latent variable for correlation capturing and an another
latent variable following Student-t distribution as an error buffer. The main advantage of this
method is that it provides strong a statistical foundation for modeling distribution of different
types. However, the inference for detecting outliers is inexact and expensive to compute. We
wish to emphasize that we intend to cover more types than just nominal and continuous. In
particular, our model choices are capable of modeling count [36], preference, and ordinal
data simultaneously [44]. Importantly, the computation complexity is linear in number of
variables.

Another challenge is high-dimensional data [4,51]. This type is sensitive to irrelevant
and redundant attributes, causing failure of low-dimensional techniques [1]. Popular solutions
include feature selection, dimensionality reduction (such as using PCA) and subspace analysis
[51]. Our approach to high-dimensionality is through multiple levels of abstraction. The
abstraction uncovers regularities in data, and consequently helps mitigate noise, redundancy
and irregularity.

The recent successes of deep neural networks in classification tasks have inspired some
work in anomaly detection. A strategy is to use unsupervised deep networks such as Deep
Belief Nets and Stacked Autoencoders as feature detectors. The features are then fed into
well-established detection algorithms [47]. Another strategy is to use reconstruction errors by
Stacked Autoencoders as anomaly scores [5,18,38,39]. A problem with this approach is that
the final model still operates on raw data, which can be noisy and high-dimensional. Further,
reconstruction error does not necessarily reflect data density [23], making it hard to justify
the method. A better approach is to use deep networks to estimate the energy directly [17,
49]. When data is sequential, there have been several attempts to use a recurrent neural net
known as the Long Short-Term Memory (LSTM) for anomaly detection [7,12,13,29,41,46].
They do not handle mixed data, however.

3 Preliminaries

3.1 Density-Based Anomaly Detection for Mixed Data

Given a data instance x, a principled density-based anomaly detection method is:

− logP (x) ≥ β (1)

for some predefined threshold β. Here − logP (x) serves as the anomaly scoring func-
tion. Gaussian mixture models (GMMs), for example, estimate the density using P (x) =∑

k αkN (x;µk, Σk) where {αk} are mixing coefficients andN (x;µk, Σk) is a multivariate
normal density.

When data is discrete or mixed-type, estimating P (x) is highly challenging for several
reasons. For discrete data, the space is exponentially large and there are usually no closed
form expressions of density. Mixed data poses further challenges because since we need to
model between-type correlation. For example, for two variables of different types x1 and x2,
we need to specify either P (x1, x2) = P (x1)P (x2 | x1) or P (x1, x2) = P (x2)P (x1 | x2).
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With this strategy, the number of pairs grows quadratically with the number of types. Most
existing methods follow this approach and they are designed for a specific pair such as binary
and Gaussian [15]. They neither scale to large-scale problems nor support arbitrary types
such as binary, continuous, nominal, and count.

In Section 4 we will present a scalable solution based on Mixed-variate Restricted
Boltzmann Machines (Mv.RBM) [44]. But first we briefly review its homogeneous version
for binary data – the classic RBM.

3.2 Restricted Boltzmann Machines

Given binary input variables x ∈ {0, 1}N and hidden variables h ∈ {0, 1}K , RBM defines
the joint distribution [21]:

P (x,h) ∝ exp
(
a′x + b′h + h′Wx

)
(2)

where {a, b,W } are model parameters. The posterior P (h | x) and data generative process
P (x | h) in RBM are factorized as:

P (h | x) =
∏
k

P (hk | x) ; P (x | h) =
∏
i

P (xi | h) (3)

Model estimation in RBM amounts to maximize data likelihood with respect to model
parameters. It is typically done by n-step Contrastive Divergence (CD-n) [20], which is
an approximate but fast method. In particular, for each parameter update, CD-n maintains
a very short Mote Carlo Markov chain (MCMC), starting from the data, runs for n steps,
then collects the samples to approximate data statistics. The MCMC is efficient because of
the factorizations in Eq. (3), that is, we can sample all hidden variables in parallel through
ĥ ∼ P (h | x) and all visible variables in parallel through x̂ ∼ P (x | h). For example, for
Gaussian inputs, the parameters are updated as follows:

bk ← bk + η
(
h̄k|x − h̄k|x̂

)
ai ← ai + η (xi − x̂i)

Wik ←Wik + η
(
xih̄k|x − x̂ih̄k|x̂

)
where h̄k|x = P (hk = 1 | x) and η > 0 is the learning rate. This learning procedure scales
linearly with n and data size.

4 Energy-Based Anomaly Detection

In this section, we present a scalable method for mixed-data anomaly detection based on
Mixed-variate Restricted Boltzmann Machine (Mv.RBM) [44]. Mv.RBM estimates the data
density of all types simultaneously. It bypasses the problems with detailed specifications and
quadratic complexity by using latent binary variables, as outlined in Sec. 3.1. Here correlation
between types is not modeled directly but is factored into indirect correlation with latent
variables. As such we need only to model the correlation between a type and the latent binary.
This scales linearly with the number of types.

Mv.RBM was primarily designed for data representation which transforms mixed data
into a homogeneous representation, which serves as input for the next analysis stage. Our
adaptation, on the other hand, proposes to use Mv.RBM as outlier detector directly, without
going through the representation stage.
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Func. Binary Gaussian Nominal Count

Ei(xi) −aixi
x2
i
2
− aixi −

∑
c aicδ(xi, c) log xi!− aixi

Gik(xi) −Wikxi −Wikxi −
∑

cWikcδ(xi, c) −Wikxi

Table 1 Type-specific energy sub-functions. Here δ(xi, c) is the identity function, that is, δ(xi, c) = 1 if
xi = c, and δ(xi, c) = 0 otherwise. For Gaussian, we assume data has unit variance. Multiple choices are
modeled as multiple binaries.

4.1 Multi-Variate Restricted Boltzmann Machine

We first review Mv.RBM for a mixture of binary, Gaussian and nominal types, then extend
to cover counts. See Fig. 1 for a graphical illustration. Mv.RBM is an extension of RBM
for multiple data types. Let us start with classic RBM for binary data. We rewrite the joint
distribution of RBM in Eq. (2) as follows:

P (x,h) ∝ exp (−E(x,h))

where E(x,h) is energy function of the following form:

E(x,h) =

N∑
i=1

Ei(xi) +

K∑
k=1

(
−bk +

N∑
i=1

Gik(xi)

)
hk (4)

where Ei(xi) = −aixi and Gik(xi) = −Wikxi.
Mv.RBM extends RBM by redefining the energy function to fit multiple data types. See

Fig. 1 for a graphical illustration. The energy function of Mv.RBM differs from that of RBM
by the using multiple type-specific energy sub-functions Ei(xi) and Gik(xi) as listed2 in
Table 1. Here we extend the work of [44] to support counts by using Poisson distributions
[36]:

Ei(xi) = log xi!− aixi; Gik(xi) = −Wikxi (5)

The posterior P (hk | x) has the same form across types, that is, the activation probability
P (hk = 1 | x) is sigmoid

(
bk −

∑
iGik(xi)

)
. On the other hand, the generative process

is type-specific. For example, for binary data, the activation probability P (xi = 1 | h) is
sigmoid

(
ai +

∑
kWikhk

)
; and for Gaussian data, the conditional density P (xi | h) is

N
(
ai +

∑
kWikhk;1

)
.

Learning in Mv.RBM is almost identical to that of RBM, as described in Sec. 3.2.
The only difference is the generative distribution P (x | h) is the product of mixed-type
distributions, i.e., P (x | h) =

∏
i Pi (xi | h) for Pi (xi | h) is type-specific.

4.2 Mv.RBM for Anomaly Detection

In Mv.RBM, types are not correlated directly but through the common hidden layer. Here
types are conditionally independent given h, but since h are hidden, types are dependent as
in P (x) =

∑
h P (x,h). Since h is discrete, Mv.RBM can be considered as a mixture model

of 2K components that shared the same parameter. This suggests that Mv.RBM can be used
for outlier detection in the same way that GMM does (e.g., see Sec. 3.1), but it may fit data
much better. Data density can be rewritten as:

2 The original Mv.RBM also covers rank, but we do not consider in this paper.
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P (x) ∝
∑
h

exp (−E(x,h)) = exp (−F (x))

Here F (x) = − log
∑

h exp (−E(x,h)) is known as free-energy, which can be estimated as

F (x) =
∑
i

Ei(xi)−
∑
k

log

(
1 + exp

(
bk −

∑
i

Gik(xi)

))
(6)

Notice that the free-energy equals the negative log-density up to an additive constant:

F (x) = − logP (x) + constant

Thus we can use the free-energy as the anomaly score to rank data instances, following the
detection rule in Eq. (1). Importantly, the free-energy can be computed in linear time.

4.2.1 Remark

To sum up, Mv.RBM, coupled with free-energy, offers a disciplined approach to mixed-type
anomaly detection that meet three desirable criteria:

– capturing correlation structure between types by factoring via a binary hidden layer,
– measuring deviation from the norm using free-energy in Eq. (6), and
– anomaly scores are efficient to compute with just linear complexity in Eq. (6).

A major challenge of unsupervised outlier detection is the phenomenon of swamping effect,
where an inlier is misclassified as outlier, possibly due a large number of true outliers in the
data [37]. When data models are highly expressive – such as large RBMs and Mv.RBMs –
outliers are included by the models as if they have patterns themselves, even if these patterns
are weak and differ significantly from the regularities of the inliers. One way to control the
model expressiveness is to limit the number of hidden layers K (hence the number of mixing
components 2K ).

5 Detecting Anomalies Across Data Abstraction Levels

Real world data may be high-dimensional, noisy and redundant. Low level data may also
hide anomalies. For example, two images may have similar intensity histograms at the
pixel level, but have very different semantics. These challenges suggest data abstraction as a
preprocessing step. Indeed, abstraction is a powerful tool for several reasons. First, abstraction
may uncover the inherent low-dimensional manifold, and thus eliminating redundancy and
reducing noises in the raw data. Second, abstraction may reveal regular patterns, making it
easier to single out irregularities.

In the previous sections, we have shown that the RBM family models the mechanism to
generate data through the hidden layer. The posterior P (h | x) serves as data abstraction. We
can abstract the data further by using samples from the posterior ĥ ∼ P (h | x) as input for
the next RBM. This process can be repeated to uncover multilevels of data abstraction. This
is essentially the procedure of producing Deep Belief Networks (DBNs) [21].

With Mv.RBM at the first level to model mixed data, mixed-variate DBNs (Mv.DBNs)
can be built in the same way. In this section, we present a solution of using Mv.DBNs
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F1(x1)
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Rank 3

Rank aggregation

Mv.RBM Mv.DBN-L2 Mv.DBN-L3

WA1 WA1
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Fig. 2 MIXMAD: MIXed data Multilevel Anomaly Detection based on Mixed-variate RBM (Mv.RBM) and
successive Mix-variate DBNs (Mv.DBN). Mv.DBNs are “grown” sequentially (left to right), with abstraction
layer inserted. Filled boxes represent data input, empty boxes represent abstraction layers, and shaded boxes
represent the hidden layer of the detection Mv.RBM/RBM.

for anomaly detection called MIXMAD, which stands for MIXed data Multilevel Anomaly
Detection. MIXMAD consists of (a) Mv.RBM [44], and (b) several Mixed-variate DBNs of
different depths built on top of Mv.RBM. The Mv.RBM converts mixed data into homoge-
neous representation of binary variables. The subsequent RBMs operate on binary variables.
Subsequent Mv.DBNs reuse parameters learnt by the previous Mv.DBNs. The Mv.RBM and
Mv.DBNs are all density-based anomaly detectors following Eq. (1). Each detector assigns
an anomaly score for each data instance. The score is used to rank data instances. All rank
lists are then aggregated to produce a single rank list of anomalies. See Fig. 2 for a graphical
illustration. For each Mv.DBN, lower Mv.RBMs/RBMs are feature extractors and the top
RBM is used as anomaly detector. In subsequent subsections, we describe the components of
MIXMAD in more detail.

5.1 Multilevel Detection Procedure With Mv.RBM/DBN Ensemble

The main idea is to recognize that the RBM at the top of the Mv.DBN operates on data
abstraction xL, and the RBM’s prior density PL (xL) can replace P (x) in Eq. (1). Recall
that the input xl to the intermediate RBM at level l is the abstraction of the lower level data
as:

xl ∼ Bernoulli (σ (bl−1 + W l−1xl−1)) (7)
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The prior density PL (xL) can be rewritten as:

P (xL) ∝ exp (−FL(xL)) (8)

where

FL (xL) = −b
′

LxL −
∑
k

(1 + log (aLk + WLkxL)) (9)

This free energy, like the case of Mv.RBM in Eq. (6) can also be used as an anomaly score of
abstracted data, and the anomaly region is defined as:

R ∈ {x | FL (xL) ≥ β}

Once the Mv.DBN has been trained, the free-energy can be approximated by a determin-
istic function, where the intermediate input xl in Eq. (7) is replaced by:

xl = σ (bl−1 + W l−1xl−1) (10)

Given that we can have multiple free-energies across levels of the Mv.DBNs, there are
multiple anomaly scores per data instance. Each score reflects the nature of abnormality at
the corresponding level of abstraction. This suggests that we can combine anomaly detection
across levels. This appears to resemble the idea of ensemble approach [2], but differing from
how the ensemble is constructed. Since free-energies differ across levels, direct combination
of free-energies is not possible. A sensible approach is through rank aggregation, that is,
the free-energies at each level are first used to rank instances from the lowest to the highest
energy. The rank now serves as an anomaly score. The decision threshold is determined by
the percentile α ∈ (0, 100), which is user-defined.

5.1.1 p-norm Rank Aggregation

Ideally optimal rank aggregation minimizes the disagreement with all ranks. The minimization
requires searching through a permutation space of size n! for n instances, which is intractable.
However, we need not to care about optimal rank of all instances. In our application, we pay
more attention to the a small portion of data at the top. Denote by sli ≥ 0 the anomaly score
of instance i at level l. We propose to use the following p-norm aggregation:

s̄i(p) =

(
L∑

l=1

spli

)1/p

(11)

where p > 0 is a tuning parameter.
There are two detection regimes under this aggregation scheme. The detection at p < 1 is

conservative, that is, individual high outlier scores are suppressed in favor of a consensus.
The other regime is optimistic at p > 1, where the top anomaly scores tend to dominate the
aggregation. This aggregation subsumes several methods as special cases: p = 1 reduces to the
classic Borda count when sli is rank position; p =∞ reduces to the max: limp→∞ s̄i(p) =

maxl {sli}.
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Input: data D = {x}; Output: Anomaly rank.
User-defined parameters: depth L, hidden sizes {K1,K2, ..KL}, and p.

1. Set x1 ← x.
2. For each level l = 1, 2, ..., L:

(a) Train a detection RBM (or Mv.RBM if l = 1) on xl with KL hidden units;
(b) Estimate free-energy Fl(xl) using Eqs. (9,10);
(c) Rank data according to Fl(xl);
(d) If l < L

i. Train an abstraction RBM on xl with Kl hidden units;
ii. Abstracting data using Eq. (7) to generate xl+1;

3. Aggregate ranks using p-norm in Eq. (11).

Fig. 3 Multilevel anomaly detection algorithm.

5.1.2 Separation of Abstraction and Detection

Recall from that we use RBMs for both abstraction (Eq. (7)) and anomaly detection (Eq. (9)).
Note that data abstraction and anomaly detection are different goals – abstraction typically
requires more bits to adequately disentangle multiple factors of variation [6], while detection
may require less bits to estimate a rank score. Fig. 3 presents the multilevel anomaly detection
algorithm. It trains one RBM and (L − 1) Mv.DBNs of increasing depths – from 2 to L –
with time complexity linear in L. They produces L rank lists, which are then aggregated
using Eq. (11).

5.2 Complexity analysis

MIXMAD offers not only a principled method for anomaly detection but also computation
advantage. Recall that in the case of single-layer Mv.RBM described in Sec. 3.1, the com-
putational complexity is linear in number of dimensions N , number of hidden units K, and
number of data points n, i.e., O(nNK). The MIXMAD is a stack of Mv.RBM at the bottom
and several binary RBMs at the upper layers. In practice, we choose K1 � N (to prevent
the swamping effect as discussed in Sec. 4.2.1) for the bottom layer, and Kl+1 ≤ Kl for
upper layers l = 1, .., L; and thus adding more layers only introduces a small multiplicative
constant in computational complexity.

Training typically stops at 100 epochs, regardless of the data model and data size. To
estimate the cut-off threshold, the rank operations add O(n logn) computation steps. These
are scalable to high dimensional settings and large datasets. For example, the training over
KDD data matrix of size 75, 669 × 41 costs about 0.3s/epoch for Mv.RBM and about
4.2s/epoch for MIXMAD with L = 3 on one GPU GeForce GTX 980Ti 12GB. Testing on
32, 417 data points only take several seconds.

6 Experiments

This section reports experiments and results of the proposed energy-based methods on a
comprehensive suite of datasets. We first present the cases for single data type in Section 6.1,
then for mixed data in Section 6.2.
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Dims #train #test %anomaly

MNIST 784 3,000 1,023 4.9
InternetAds 174 1,682 1,682 5.0
Preterm (37wks) 369 3,000 5,104 10.9
Preterm (34wks) 369 3,000 5,104 6.5

Table 2 Data statistics.

6.1 Homogeneous Data

6.1.1 Data

We use three high-dimensional real-world datasets with very different characteristics: hand-
written digits (MNIST), Internet ads and clinical records of birth episodes.

– The MNIST has 60, 000 gray images of size 28 × 28 for training and 10, 000 images
for testing3. The raw pixels are used as features (784 dimensions). Due to ease of
visualization and complex data topology, this is an excellent data for testing anomaly
detection algorithms. We use digit ’8’ as normal and a small portion (˜5%) of other digits
as anomalies. This proves to be a challenging digit compared to other digits – see Fig. 4
(left) for failure of pixel-based k-nearest neighbor methods. We randomly pick 3,000
training images and keep all the test set.

– The second dataset is InternetAds with 5% anomaly injection as described in [10]. As the
data size is moderate (1,682 instances, 174 features), no train/test splitting is used.

– The third dataset consists of birth episodes collected from an urban hospital in Sydney,
Australia in the period of 2011–2015 [45]. Preterm births are anomalies that have a
critical impact on the survival and development of the babies. In general, births occurring
within 37 weeks of gestation are considered preterm. We are also interested in early
preterm births, e.g., those occurring with 34 weeks of gestation. This is because the
earlier the birth, the more severe the case, leading to more intensive care. Features include
369 clinically relevant facts collected in the first few visits to hospital before 25 weeks of
gestation. The data is randomly split into a training set of 3,000 cases, and a test set of
5,104 cases.

All data are normalized into the range [0,1], which is known to work best in [10]. Data
statistics are reported in Table 2.

6.1.2 Baselines

We compare the proposed method against four popular unsupervised baselines – k-NN, PCA,
Gaussian mixture model (GMM), and one-class SVM (OCSVM) [11]. (a) The k-NN uses the
mean distance from a test case to the k nearest instances as anomaly score [4]. We set k = 10

with Euclidean distance. (b) For PCA, α% total energy is discarded, where α is the estimated
anomaly rate in training data. The reconstruction error using the remaining eigenvectors is
used as the anomaly score. (c) The GMMs have four clusters and are regularized to work
with high dimensional data. The negative log-likelihood serves as anomaly score. (d) The
OCVSMs have RBF kernels with automatic scaling. We also consider RBM [17] as baseline,
which is a special case of Mv.RBM when data is all binary.

3 http://yann.lecun.com/exdb/mnist/
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Param. MNIST InternetAds Preterm

KD 10 10 10
KA 70 50 70
N 784 174 369

Table 3 Settings of the MAD. KD is the number of hidden units in the detection RBM, KA in the abstraction
RBMs, and N is data dimensions..

We use the following evaluation measures: Area Under ROC Curve (AUC), and NDCG@T.
The AUC reflects the average discrimination power across the entire dataset, while the
NDCG@T places more emphasis on the top retrieved cases.

6.1.3 MAD Implementation

Abstraction RBMs have the same number of hidden units while detection RBM usually have
smaller number of hidden units. All RBMs are trained using CD-1 [20] with batch size of 64,
learning rate of 0.3 and 50 epochs. Table 3 list model parameters used in experimentation.

6.1.4 Results

To see how MAD (Multilevel Anomaly Detection) combines evidences from detectors in the
ensemble, we run the algorithms (RBM, the DBN with 2 layers, and the MAD that combines
RBM and DBN results). Fig. 4 plots detection by the RBM/DBN/MAD against the classic
k-NN on the MNIST dataset. k-NN fails 15 out of 20 cases, mostly due to the variation
in stroke thickness, which is expected for matching based on raw pixels. RBM and DBN
have different errors, confirming that anomalies differ among abstraction levels. Finally, the
ensemble of RBM/DBN, then MAD improves the detection significantly. The error is mostly
due to the high variation in styles (e.g., and 8 with open loops).

Table 4 reports the Area Under the ROC Curve (AUC) for all methods and datasets.
Overall MAD with 2 or 3 hidden layers works well. The difference between the baselines
and MAD is amplified in the NDCG measure, as shown in Table 5. One possible explanation
is that the MAD is an ensemble – an anomaly is considered anomaly if it is detected by all
detectors at different abstraction levels. One exception is the max-aggregation (where p→∞
in Eq. (11)), where the detection is over-optimistic.

6.2 Mixed Data

We now present experiments on synthetic and real-world mixed data. For comparison, we
implement well-known single-type anomaly detection methods including Gaussian mixture
model (GMM), Probabilistic Principal Component Analysis (PPCA) and one-class SVM
(OCSVM). The number of components of PPCA model is set so that the discarded energy is
the same as the anomaly rate in training data. For OCSVM, we use radial basis kernel with
ν = 0.7. GMM and PPCA are probabilistic, and thus data log-likelihood can be computed
for anomaly detection.

Since all of these single-type methods assume numerical data, we code nominal types
using dummy binaries. For example, a A in the nominal set {A,B,C} is coded as (1,0,0) and
B as (0,1,0). This coding causes some nominal information loss, since the coding does not
ensure that only one value is allowed in nominal variables. For all methods, the detection
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(k-NN, errors = 15/20) (RBM, errors = 10/20)

(DBN-L2, errors = 12/20) (MAD-L2p2, errors = 8/20)

Fig. 4 Anomaly detection on MNIST test set for the top 20 digits. Normal digit is “8”. MAD stands for
Multilevel Anomaly Detection.

Method MNIST InternetAds Preterm (37wks) Preterm (34wks)

k-NN 0.804 0.573 0.596 0.624
PCA 0.809 0.664 0.641 0.673
GMM 0.839 0.725 0.636 0.658
OCSVM 0.838 0.667 0.646 0.676
RBM 0.789 0.712 0.648 0.677
MAD-L2p.5 0.867 0.829 0.627 0.729
MAD-L2p1 0.880 0.827 0.645 0.748
MAD-L2p2 0.897 0.816 0.661 0.761
MAD-L2p∞ 0.892 0.765 0.660 0.745
MAD-L3p.5 0.787 0.789 0.674 0.757
MAD-L3p1 0.814 0.775 0.689 0.765
MAD-L3p2 0.847 0.758 0.685 0.759
MAD-L3p∞ 0.876 0.734 0.668 0.742

Table 4 The Area Under the ROC Curve (AUC). L is the number of hidden layers, p is the aggregation
parameter in Eq. (11), bold indicate better performance than baselines. Note that RBM is the limiting case of
MAD with L = 1.
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Method MNIST InternetAds Preterm (37wks) Preterm (34wks)

k-NN 0.218 0.413 0.362 0.188
PCA 0.488 0.225 0.505 0.356
GMM 0.458 0.415 0.438 0.223
OCSVM 0.423 0.094 0.471 0.172
RBM 0.498 0.421 0.429 0.216

MAD-L2p.5 0.666 0.859 0.945 0.831
MAD-L2p1 0.667 0.859 0.945 0.831
MAD-L2p2 0.666 0.859 0.945 0.831
MAD-L2p∞ 0.536 0.271 0.741 0.576
MAD-L3p.5 0.732 0.908 0.798 0.625
MAD-L3p1 0.732 0.908 0.798 0.626
MAD-L3p2 0.732 0.902 0.769 0.597
MAD-L3p∞ 0.360 0.598 0.370 0.113

Table 5 The NDCG@20. L is the number of hidden layers, p is the aggregation parameter in Eq. (11), bold
indicate better performance than baselines. Note that RBM is the limiting case of MAD with L = 1.

threshold is based on the α percentile of the training anomaly scores. Whenever possible,
we also include results from other recent mixed-type papers, ODMAD [26], Beta mixture
model (BMM) [8] and GLM-t [28]. We followed the same mechanism they used to generate
anomalies.

6.2.1 Synthetic Data

We first evaluate the behaviors of Mv.RBM on synthetic data with controllable complexity.
We simulate mixed-type data using a generalized Thurstonian theory, where Gaussians serve
as underlying latent variables for observed discrete values. Readers are referred to [43] for a
complete account of the theory. For this study, the underlying data is generated from a GMM
of 3 mixing components with equal mixing probability. Each component is a multivariate
Gaussian distributions of 15 dimensions with random mean and positive-definite covariance
matrix. From each distribution, we simulate 1,000 samples, creating a data set size 3,000. To
generate anomalies, we randomly pick 5% of data, and add uniform noise to each dimension,
i.e., xi ← xi +ei where ei ∼ U . For visualization, we use t-SNE to reduce the dimensionality
to 2 and plot the data in Fig. 5.

Out of 15 variables, 3 are kept as Gaussian and the rest are used to create mixed-type
variables. More specifically, 3 variables are transformed into binaries using random thresholds,
i.e., x̃i = δ(xi ≥ θi). The other 9 variables are used to generate 3 nominal variables of size 3
using the rule: x̃i = arg max (xi1, xi2, xi3).

Models are trained on 70% data and tested on the remaining 30%. This testing scheme is
to validate the generalizability of models on unseen data. The learning curves of Mv.RBM
are plotted in Fig. 6. With the learning rate of 0.05, learning converges after 10 epochs. No
overfitting occurs.

The decision threshold β in Eq. (1) is set at 5 percentile of the training set. Fig. 7 plots the
anomaly detection performance of Mv.RBM (in F-score) on test data as a function of model
size (number of hidden units). To account for random initialization, we run Mv.RBM 10
times and average the F-scores. It is apparent that the performance of Mv.RBM is competitive
against that of GMM. The best F-score achieved by GMM is only about 0.35, lower than the
worst F-score by Mv.RBM, which is 0.50. The PCA performs poorly, with F-score of 0.11,
possibly because the anomalies does not conform to the notion of residual subspace assumed
by PCA.
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Fig. 5 Synthetic data with 3 normal clusters (cluster IDs 0,1,2) and 1 set of scattered anomalies (ID: -1,
colored in red). Best viewed in color.
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Fig. 6 Learning curves of Mv.RBM (50 hidden units) on synthetic data for different learning rates. The
training and test curves almost overlap, suggesting no overfitting. Best viewed in color.
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Fig. 7 Performance of Mv.RBM in F-score on synthetic data as a function of number of hidden units.
Horizontal lines are performance measures of PCA (in green) and GMM (best result in red; and with 3
components in yellow). Best viewed in color.

The performance difference between Mv.RBM and GMM is significant considering the
fact that the underlying data distribution is drawn from a GMM. It suggests that when the
correlation between mixed attributes is complex like this case, using GMM even with the
same number of mixture components cannot learn well. Meanwhile, Mv.RBM can handle the
mixed-type properly, without knowing the underlying data assumption. Importantly, varying
the number of hidden units does not affect the result much, suggesting the stability of the
model and it can free users from carefully crafting this hyper-parameter.

6.2.2 Real Data

For real-world applications, we use a wide range of mixed-type datasets. From the UCI
repository4, we select 7 datasets which were previously used as benchmarks for mixed-type
anomaly detection [8,19,28]. Data statistics are reported in Table 6. We generate anomalies
by either using rare classes whenever possible, or by randomly injecting a small proportion
of anomalies, as follows:

– Using rare classes: For the KDD99 10 percent dataset (KDD99-10), intrusions (anoma-
lies) account for 70% of all data, and thus it is not possible to use full data because
anomalies will be treated as normal in unsupervised learning. Thus, we consider all
normal instances from the original data as inliers, which accounts for 90% of the new
data. The remaining 10% anomalies are randomly selected from the original intrusions.

– Anomalies injection: For the other datasets, we treat data points as normal objects and
generate anomalies based on a contamination procedure described in [8,28]. anomalies
are created by randomly selecting 10% of instances and modifying their default values.
For numerical attributes (Gaussian, Poisson), values are shifted by 2.0 to 3.0 times
standard deviation. For discrete attributes (binary, categorical), the values are switched to
alternatives.

4 https://archive.ics.uci.edu/ml/datasets.html
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Dataset No. Instances No. Attributes
Train Test Bin. Gauss. Nominal Poisson Total

KDD99-10 75,669 32,417 4 15 3 19 41
Australian Credit 533 266 3 6 5 0 14
German Credit 770 330 2 7 11 0 20
Heart 208 89 3 6 4 0 13
Thoracic Surgery 362 155 10 3 3 0 16
Auto MPG 303 128 0 5 3 0 8
Contraceptive 1136 484 3 0 4 1 8

Table 6 Characteristics of mixed-type datasets. The proportion of anomalies are 10%.
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Fig. 8 anomaly detection on the KDD99-10 dataset. (a) Histogram of free-energies. The vertical line separates
data classified as inliers (left) from those classified as anomalies (right). The color of majority (light blue) is
inlier. Best viewed in color. (b) ROC curve (AUC = 0.914).

Numerical attributes are standardized to zero means and unit variance. For evaluation, we
randomly select 30% data for testing, and 70% data for training. Note that since learning is
unsupervised, anomalies must also be detected in the training set since there are no ground-
truths. The anomalies in the test set is to test the generalizability of the models to unseen
data.

6.2.3 Models setup

The number of hidden units in Mv.RBM is set to K = 2 for the KDD99-10 dataset, and to
K = 5 for other datasets. The parameters of Mv. RBM are updated using stochastic gradient
descent, that is, update occurs after every mini-batch of data points. For small datasets, the
mini-batch size is equal to the size of the entire datasets while for KDD99-10, the mini-batch
size is set to 500. The learning rate is set to 0.01 for all small datasets, and to 0.001 for
KDD99-10. Small datasets are trained using momentum of 0.8. For KDD99-10, we use Adam
[24], with β1 = 0.85 and β2 = 0.995. For small datasets, the number of mixture components
in GMM is chosen using grid search in the range from 1 to 30 with a step size of 5. For
KDD99-10, the number of mixture components is set to 4.



19

KDD AuCredit GeCredit Heart ThSurgery AMPG Contra.

GMM (*) 0.42 0.74 0.86 0.89 0.71 1.00 0.62
OCSVM (*) 0.54 0.84 0.86 0.76 0.71 1.00 0.84
PPCA (*) 0.55 0.38 0.02 0.64 0.70 0.67 0.02

BMM – 0.97 0.93 0.87 0.94 0.62 0.67
ODMAD – 0.94 0.81 0.63 0.88 0.57 0.52
GLM-t – – – 0.72 – 0.64 –

Mv.RBM 0.71 0.90 0.95 0.94 0.90 1.00 0.91

MIXMAD-L2p0.5 0.72 0.93 0.97 0.94 0.97 1.00 0.95
MIXMAD-L2p1 0.72 0.93 0.95 0.94 0.97 1.00 0.95
MIXMAD-L2p2 0.69 0.93 0.97 0.94 0.97 1.00 0.95
MIXMAD-L2p∞ 0.69 0.73 0.97 1.00 0.97 1.00 0.95
MIXMAD-L3p0.5 0.73 0.98 0.97 0.94 0.97 0.70 0.95
MIXMAD-L3p1 0.72 0.98 0.97 0.94 0.97 0.70 0.95
MIXMAD-L3p2 0.71 0.98 0.97 0.94 0.97 0.70 0.95
MIXMAD-L3p∞ 0.50 0.78 0.97 0.94 0.97 0.57 0.95

Table 7 Anomaly detection F-score on mixed data. (*) baseline single-type methods worked on coded data.

6.2.4 Results

Fig. 8(a) shows a histogram of free-energies computed using Eq. (6) on the KDD99-10 dataset.
The inliers/anomalies are well-separated into the low/high energy regions, respectively. This
is also reflected in an Area Under the ROC Curve (AUC) of 0.914 (see Fig. 8(b)).

The detection performance in term of F-score on test data is reported in Tables 7. The
mean of all single type scores is 0.66, of all competing mixed-type scores is 0.77, and
of Mv.RBM scores is 0.91. These demonstrate that (a) a proper handling of mixed-types
is required, and (b) Mv.RBM is highly competitive against other mixed-type methods for
anomaly detection. Point (a) can also be strengthened by looking deeper: On average, the best
competing mixed-type method (BMM) is better than the best single-type method (OCSVM).
For point (b), the gaps between Mv.RBM and other methods are significant: On average,
Mv.RBM is better than the best competing method – the BMM (mixed-type) – by 8.3%, and
better than the worst method – the PPCA (single type), by 111.6%. On the largest dataset –
the KDD99-10 – Mv.RBM exhibits a significant improvement of 29.1% over the best single
type method (PPCA).

7 Discussion

As an evidence to the argument in Section 4.2.1 about separating the abstraction and detection
RBMs, we found that the sizes of the RBMs that work well on the MNIST do not resemble
those often found in the literature (e.g., see [21]). For example, typical numbers of hidden
units range from 500 to 1,000 for a good generative model of digits. However, we observe
that 10 to 20 units for detection RBMs and 50-100 units for abstraction RBMs work well in
our experiments, regardless of the training size. This suggests that the number of bits required
for data generation is higher than those required for anomaly detection. This is plausible
since accurate data generation model needs to account for all factors of variation and a huge
number of density modes. On the other hand, anomaly detection model needs only to identify
low density regions regardless of density modes. An alternative explanation is that since the
CD-1 procedure used to train RBMs (see Section 3.2) creates deep energy wells around each
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data points, an expressive model may lead to more false alarms. Thus, the smoothness of
the energy surface may play an important role in anomaly detection. Our MIXMAD algorithm
offers a consensus among multiple energy surface, and thus can be considered as a way to
mitigate the energy wells issue.

The construction procedure of DBN has been proved to be equivalent to the variational
renomarlization groups in physics [30]. In particular, with layerwise construction, the data is
rescaled – the higher layer operates on a coarser data representation. This agrees with our
initial motivation for the MIXMAD. Finally, although not implemented here, the MIXMAD lends
itself naturally to detecting anomalies in multimodal data with diverse modal semantics. For
example, an image can be equipped with high-level tags and several visual representations.
Each data representation can be modelled as a Mv.RBM at the right level of abstraction. The
upper RBMs then integrate all information into coherent representations.

Conclusion

This paper has introduced a new energy-based method for mixed-data anomaly detection
based on Mixed-variate Restricted Boltzmann Machine (Mv.RBM) and Deep Belief Networks.
Mv.RBM avoids direct modeling of correlation between types by using binary latent variables,
and in effect, models the correlation between each type and the binary type. We derived
free-energy, which equals the negative log of density up-to a constant, and use it as the
anomaly score. We then generalized the idea to detecting anomalies via multilevel abstraction.
We introduced MIXMAD, a procedure to train a sequence of Deep Belief Networks, each of
which provides a ranking of anomalies. All rankings are then aggregated through a simple
p-norm trick. Overall, the method is highly scalable – the computational complexity grows
linearly with number of types. Our experiments on mixed-type datasets of various types and
characteristics demonstrate that the proposed method is competitive against the well-known
baselines designed for single types, and recent models designed for mixed-types. These
results (a) support the hypothesis that in mixed-data, proper modeling of types should be in
place for anomaly detection, and (b) show Mv.RBM is a powerful density-based anomaly
detection method, and (c) learning data representation through multilevel abstraction is a
sensible strategy for high-dimensional settings; and (d) MIXMAD is a competitive method.
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