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Abstract. Personalized predictive medicine necessitates modeling of pa-
tient illness and care processes, which inherently have long-term temporal
dependencies. Healthcare observations, recorded in electronic medical
records, are episodic and irregular in time. We introduce DeepCare, a deep
dynamic neural network that reads medical records and predicts future
medical outcomes. At the data level, DeepCare models patient health
state trajectories with explicit memory of illness. Built on Long Short-
Term Memory (LSTM), DeepCare introduces time parameterizations to
handle irregular timing by moderating the forgetting and consolidation
of illness memory. DeepCare also incorporates medical interventions that
change the course of illness and shape future medical risk. Moving up
to the health state level, historical and present health states are then
aggregated through multiscale temporal pooling, before passing through
a neural network that estimates future outcomes. We demonstrate the
efficacy of DeepCare for disease progression modeling and readmission
prediction in diabetes, a chronic disease with large economic burden. The
results show improved modeling and risk prediction accuracy.

1 Introduction

Health care costs are escalating. To deliver cost effective quality care, modern
health systems are turning to data to predict risk and adverse events. For example,
identifying patients with high risk of readmission can help hospitals to tailor
suitable care packages.

Modern electronic medical records (EMRs) offer the base on which to build
prognostic systems [11,15,19]. Such inquiry necessitates modeling patient-level
temporal healthcare processes. But this is challenging. The records are a mixture
of the illness trajectory, and the interventions and complications. Thus medical
records vary in length, are inherently episodic and irregular over time. There
are long-term dependencies in the data - future illness and care may depend
critically on past illness and interventions. Existing methods either ignore long-
term dependencies or do not adequately capture variable length [1,15,19]. Neither
are they able to model temporal irregularity [14,20,22].

Addressing these open problems, we introduce DeepCare, a deep, dynamic
neural network that reads medical records, infers illness states and predicts future



outcomes. DeepCare has several layers. At the bottom, we start by modeling
illness-state trajectories and healthcare processes [2,7] based on Long Short-
Term Memory (LSTM ) [9,5]. LSTM is a recurrent neural network equipped
with memory cells, which store previous experiences. The current medical risk
states are modeled as a combination of illness memory and the current medical
conditions and are moderated by past and current interventions. The illness
memory is partly forgotten or consolidated through a mechanism known as forget
gate. The LSTM can handle variable lengths with long dependencies making it
an ideal model for diverse sequential domains [6,18,17]. Interestingly, LSTM has
never been used in healthcare. This may be because one major difficulty is the
handling irregular time and interventions.

We augment LSTM with several new mechanisms to handle the forgetting and
consolidation of illness through the memory. First, the forgetting and consolida-
tion mechanisms are time moderated. Second, interventions are modeled as a
moderating factor of the current risk states and of the memory carried into the
future. The resulting model is sparse and efficient where only observed records
are incorporated, regardless of the irregular time spacing. At the second layer of
DeepCare, episodic risk states are aggregated through a new time-decayed multi-
scale pooling strategy. This allows further handling of time-modulated memory.
Finally at the top layer, pooled risk states are passed through a neural network
for estimating future prognosis. In short, computation steps in DeepCare can be
summarized as:

P (y | x1:n) = P (nnety (pool {LSTM(x1:n)})) (1)

where x1:n is the input sequence of admission observations, y is the outcome of
interest (e.g., readmission), nnety denotes estimate of the neural network with
respect to outcome y, and P is probabilistic model of outcomes.

We demonstrate our DeepCare in answering a crucial component of the holy
grail question “what happens next?”. In particular, we predict the next stage of
disease progression and the risk of unplanned readmission for diabetic patients
after a discharge from hospital. Our cohort consists of more than 12,000 patients
whose data were collected from a large regional hospital in the period of 2002
to 2013. The forecasting of future events may be considerably harder than the
classical classification of objects into categories due to inherent uncertainty in
unseen interleaved events. We show that DeepCare is well-suited for modeling
disease progression, as well as predicting future risk.

To summarize, our main contributions are: (i) Introducing DeepCare, a deep
dynamic neural network for medical prognosis. DeepCare models irregular timing
and interventions within LSTM – a powerful recurrent neural networks for
sequences and (ii) Demonstrating the effectiveness of DeepCare for disease
progression modeling and medical risk prediction, and showing that it outperforms
baselines.



2 Long Short-Term Memory

This section briefly reviews Long Short-Term Memory (LSTM), a recurrent neural
network (RNN) for sequences. A LSTM is a sequence of units that share the same
set of parameters. Each LSTM unit has a memory cell that has state ct ∈ RK
at time t. The memory is updated through reading a new input xt ∈ RM and
the previous output ht−1 ∈ RK . Then an output states ht is written based on
the memory ct. There are 3 sigmoid gates that control the reading, writing and
memory updating: input gate it, output gate ot and forget gates ft, respectively.
The gates and states are computed as follows:

it = σ (Wixt + Uiht−1 + bi) (2)

ft = σ (Wfxt + Ufht−1 + bf ) (3)

ot = σ (Woxt + Uoht−1 + bo) (4)

ct = ft ∗ ct−1 + it ∗ tanh (Wcxt + Ucht−1 + bc) (5)

ht = ot ∗ tanh(ct) (6)

where σ denotes sigmoid function, ∗ denotes element-wise product, and Wi,f,o,c,
Ui,f,o,c, bi,f,o,c are parameters. The gates have the values in (0, 1).

The memory cell plays a crucial role in memorizing past experiences. The key
is the additive memory updating in Eq. (5): if ft → 1 then all the past memory
is preserved. Thus memory can potentially grow overtime since new experience is
stilled added through the gate it. If ft → 0 then only new experience is updated
(memoryless). An important property of additivity is that it helps to avoid a classic
problem in standard recurrent neural networks known as vanishing/exploding
gradients when t is large (says, greater than 10).

LSTM for sequence labeling. The output states ht can be used to generate
labels at time t as follows:

P (yt = l | x1:t) = softmax
(
v>l ht

)
(7)

for label specific parameters vl.

LSTM for sequence classification. LSTM can be used for classification using
a simple mean-pooling strategy over all output states coupled with a differentiable
loss function. For example, in the case of binary outcome y ∈ {0, 1}, we have:

P (y = 1 | x1:n) = LR (pool {LSTM(x1:n)}) (8)

where LR denotes probability estimate of the logistic regression, and pool {h1:n} =
1
n

∑n
t=1 ht.
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Fig. 1. DeepCare architecture. The bottom layer is Long Short-Term Memory [9] with
irregular timing and interventions (see also Fig. 2b)

3 DeepCare: A Deep Dynamic Memory Model

In this section we present our contribution named DeepCare for modeling illness
trajectories and predicting future outcomes. As illustrated in Fig. 1, DeepCare is
a deep dynamic neural network that has three main layers. The bottom layer
is built on LSTM whose memory cells are modified to handle irregular timing
and interventions. More specifically, the input is a sequence of admissions. Each
admission t contains a set of diagnosis codes (which is then formulated as a feature
vector xt ∈ RM ), a set of intervention codes (which is then formulated as a feature
vector pt), the admission method mt and the elapsed time ∆t ∈ R+ between the
two admission t and t−1. Denote by u0,u1, ...,un the input sequence, where ut =
[xt,pt,mt, ∆t], the LSTM computes the corresponding sequence of distributed
illness states h0,h1, ...,hn, where ht ∈ RK . The middle layer aggregates illness
states through multiscale weighted pooling z = pool {h0,h1, ...,hn}, where
z ∈ RK×s for s scales.

The top layer is a neural network that takes pooled states and other statis-
tics to estimate the final outcome probability, as summarized in Eq. (1) as
P (y | x1:n) = P (nnety (pool {LSTM(x1:n)})). The probability P (y | x1:n) de-
pends on the nature of outputs and the choice of statistical structure. For example,
for binary outcome, P (y = 1 | x1:n) is a logistic function; for multiclass outcome,
P (y | x1:n) is a softmax function; and for continuous outcome, P (y | x1:n) is
Gaussian. In what follows, we describe the first two layers in more detail.
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Fig. 2. (a) Admission embedding. Discrete diagnoses and interventions are embedded
into 2 vectors xt and pt. (b) Modified LSTM unit as a carrier of illness history. Compared
to the original LSTM unit (Sec. 2), the modified unit models times, admission methods,
diagnoses and intervention

3.1 Admission Embedding

Fig. 2a illustrates the admission embedding. There are two main types of in-
formation recorded in a typical EMR: (i) diagnoses of current condition; and
(ii) interventions. Diagnoses are represented using WHO’s ICD (International
Classification of Diseases) coding schemes1. Interventions include procedures
and medications. The procedures are typically coded in CPT (Current Procedu-
ral Terminology) or ICHI (International Classification of Health Interventions)
schemes. Medication names can be mapped into the ATC (Anatomical Therapeu-
tic Chemical) scheme. These schemes are hierarchical and the vocabularies are of
tens of thousands in size. Thus for a problem, a suitable coding level should be
used for balancing between specificity and robustness.

Codes are first embedded into a vector space of size M and embedding is
learnable. Since each admission typically consists of multiple diagnoses, we
average all the present vectors to derive xt ∈ RM . Likewise, we derive the
averaged intervention vector pt ∈ RM . Finally, an admission embedding is a
2M -dim vector [xt,pt].

3.2 Moderating Admission Method and Effect of Interventions

There are two main types of admission: planned and unplanned. Unplanned
admission refers to transfer from emergency attendance, which typically indicate
higher risk. Recall from Eqs. (2,5) that the input gate i control how much new

1 http://apps.who.int/classifications/icd10/browse/2016/en



information is updated into memory c. The gate can be modified to reflect the
risk level of admission type as follows:

it =
1

mt
σ (Wixt + Uiht−1 + bi) (9)

where mt = 1 if emergency admission, mt = 2 if routine admission.

Since interventions are designed to cure diseases or reduce patient’s illness, the
output gate is moderated by the current intervention as follows:

ot = σ (Woxt + Uoht−1 + Popt + bo) (10)

Interventions may have long-term impacts than just reducing the current illness.
This suggests the illness forgetting is moderated by previous intervention

ft = σ (Wfxt + Ufht−1 + Pfpt−1 + bf ) (11)

where pt−1is intervention at time step t− 1.

3.3 Capturing time irregularity

We introduce two mechanisms of forgetting the memory by modified the forget
gate ft in Eq. 11:

Time Decay Recall that the memory cell holds the current illness states, and the
illness memory can be carried on to the future time. There are acute conditions
that naturally reduce their effect through time. This suggests a simple decay

ft ← d(∆t−1:t)ft (12)

where∆t−1:t is the time passed between step t−1 and step t, and d (∆t−1:t) ∈ (0, 1]
is a decay function, i.e., it is monotonically non-increasing in time. One function
we found working well is d(∆t−1:t) = [log(e+∆t−1:t)]

−1
, where e ≈ 2.718 is the

the base of the natural logarithm.

Forgetting through Parametric Time Time decay may not capture all
conditions, since some conditions can get worse, and others can be chronic. This
suggests a more flexible parametric forgetting:

ft = σ
(
Wfxt + Ufht−1 +Qfq∆t−1:t + Pfpt−1 + bf

)
(13)

where q∆t−1:t
is a vector derived from the time difference ∆t=1:t. For example, we

may have: q∆t−1:t
=
(
∆t−1:t, ∆

2
t−1:t, ∆

3
t−1:t

)
to model the third-degree forgetting

dynamics.



3.4 Recency Attention via Multiscale Pooling

Once the illness dynamics have been modeled using the memory LSTM, the
next step is to aggregate the illness states to infer about the future prognosis.
The simplest way is to use mean-pooling, where h̄ = pool {h1:n} = 1

n

∑n
t=1 ht.

However, this does not reflect the attention to recency in healthcare. Here we
introduce a simple attention scheme that weighs recent events more than old
ones: h̄ =

(∑n
t=t0

wtht
)
/
∑n
t=t0

wt, where

wt = [mt + log (1 +∆t:n)]
−1

and ∆t:n is the elapsed time between the step t and the current step n, measured
in months; mt = 1 if emergency admission, mt = 2 if routine admission. The
starting time step t0 is used to control the length of look-back in the pooling, for
example, ∆t0:n ≤ 12 for one year look-back. Since diseases progress at different
rates for different patients, we employ multiple look-backs: 12 months, 24 months,
and all available history. Finally, the three pooled illness states are stacked into a
vector:

[
h̄12, h̄24, h̄all

]
which is then fed to a neural network for inferring about

future prognosis.

3.5 Learning

Learning is carried out through minimizing cross-entropy: L = − logP (y | x1:n),
where P (y | x1:n) is given in Eq. (1). For example, in the case of binary classifi-
cation, y ∈ {0, 1}, we use logistic regression to represent P (y | x1:n), i.e.,

P (y = 1 | x1:n) = σ (by + nnet (pool {LSTM(x1:n)}))

where the structure inside the sigmoid is given in Eq. (1). The cross-entropy
becomes: L = −y log σ − (1− y) log(1− σ). Despite having a complex structure,
DeepCare’s loss function is fully differentiable, and thus can be minimized using
standard back-propagation. The details are omitted due to space constraint.

4 Experiments

4.1 Data

The dataset is a diabetes cohort of more than 12,000 patients (55.5% males,
median age 73) collected in a 12 year period 2002-2013 from a large regional
Australian hospital. Data statistics are summarized in Fig. 3. The diagnoses are
coded using ICD-10 scheme. For example, E10 is diabetes Type I, and E11 is
diabetes Type II. Procedures are coded using the ACHI (Australian Classification
of Health Interventions) scheme, and medications are mapped in ATC codes.
We preprocessed by removing (i) admissions with missing key information; and
(ii) patients with less than 2 admissions. This leaves 7,191 patients with 53,208
admissions. To reduce the vocabulary, we collapse diagnoses that share the first 2
characters into one diagnosis. Likewise, the first digits in the procedure block are
used. In total, there are 243 diagnosis, 773 procedure and 353 medication codes.
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Fig. 3. Top row: Data statistics (y axis: number of patients; x axis: (a) age, (b) number
of admissions, (c) number of days); Bottom row: Progression from pre-diabetes (upper
diag. cloud) to post-diabetes (lower diag. cloud).

4.2 Implementation

The training, validation and test sets are created by randomly picking 2/3, 1/6,
1/6 data points, respectively. We vary the embedding and hidden dimensions
from 5 to 50 but the results are rather robust. We report results for M = 30
embedding dimensions and K = 40 hidden units. Learning is by SGD with
mini-batch of 16. Learning rate starts at 0.01. After nwaiting epochs, if the
model cannot find smaller training cost since the epoch with smallest training
cost, the learning rate is divided by 2. At first, nwaiting = 5, then updated as
nwaiting = min {15, nwaiting + 2} for each halving. Learning is terminated after
nepoch = 200 or after learning rate smaller than ε = 0.0001.

4.3 Modeling Disease Progression

We first verify that the recurrent memory embedded in DeepCare is a realistic
model of disease progression. We use the bottom layer of DeepCare (Secs. 3.1–3.3)
to predict the next npred diagnoses at each discharge using Eq. (7).

Table 1 reports the Precision@npred. The Markov model has memoryless disease

transition probabilities P
(
dit | d

j
t+1

)
from disease dj to di at time t. Given an

admission with disease subset Dt, the next disease probability is estimated as

Q
(
di; t

)
= 1
|Dt|

∑
j∈Dt

P
(
dit | d

j
t+1

)
. Using plain RNN improves over memoryless

Markov model by 8.8% with npred = 1 and by 27.7% with npred = 3. Modeling
irregular timing and interventions in DeepCare gains a further 2% improvement.



Model npred = 1 npred = 2 npred = 3

Markov 55.1 34.1 24.3

Plain RNN 63.9 58.0 52.0

DeepCare (interven. + param. time) 66.0 59.7 54.1
Table 1. Precision@npred diagnoses prediction.

4.4 Predicting Unplanned Readmission

Next we demonstrate DeepCare on risk prediction. For each patient, a discharge
is randomly chosen as prediction point, from which unplanned readmission after
12 months will be predicted. Baselines are SVM and Random Forests running
on standard non-temporal features engineering using one-hop representation of
diagnoses and intervention codes. Then pooling is applied to aggregate over all
existing admissions for each patient. Two pooling strategies are tested: max
and sum. Max-pooling is equivalent to the presence-only strategy in [1], and
sum-pooling is akin to an uniform convolutional kernel in [20]. This feature
engineering strategy is equivalent to zeros-forgetting – any risk factor occurring
in the past is memorized.
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Fig. 4. (Left) 40 channels of forgetting due to time elapsed. (Right) The forget gates of
a patient in the course of their illness.

Dynamics of forgetting. Fig. 4(left) plots the contribution of time into the
forget gate. The contributions for all 40 states are computed using Qfq∆t

as
in Eq. (13). There are two distinct patterns: decay and growing. This suggests
that the time-based forgetting has a very small dimensionality, and we will
under-parameterize time using decay only as in Eq. (12), and over-parameterize
time using full parameterization as in Eq. (13). A right balance is interesting to
warrant a further investigation. Fig. 4(right) shows the evolution of the forget
gates through the course of illness (2000 days) for a patient.



Model F-score (%)

1 SVM (max-pooling) 64.0
2 SVM (sum-pooling) 66.7

3 Random Forests (max-pooling) 68.3
4 Random Forests (sum-pooling) 71.4

5 LSTM (mean-pooling+logit. regress.) 75.9

6 DeepCare (mean-pooling+nnets) 76.5
7 DeepCare ( [interven.+time decay ]+recent.multi.pool.+nnets) 77.1
8 DeepCare ([interven.+param. time]+recent.multi.pool.+nnets) 79.1

Table 2. Results of unplanned readmission prediction within 12 months.

Prediction results. Table 2 reports the F-scores. The best baseline (non-
temporal) is Random Forests with sum pooling has a F-score of 71.4% [Row 4].
Using LSTM with simple mean-pooling and logistic regression already improves
over best non-temporal methods by a 4.5% difference in 12-months prediction
[Row 5, ref: Sec. 2]. Moving to deep models by using a neural network as
classifier helps with a gain of 5.1% improvement [Row 6, ref: Eq. (1)]. By carefully
modelling the irregular timing, interventions and recency+multiscale pooling,
we gain 5.7% improvement [Row 7, ref: Secs. (3.2,3.3)]. Finally, with parametric
time we arrive at 79.1% F-score, a 7.7% improvement over the best baselines
[Row 8, ref: Secs. (3.2,3.3)].

5 Related Work and Discussion

Electronic medical records (EMRs) are the results of interleaving between the
illness processes and care processes. Using EMRs for prediction has attracted a
significant interest in recent year [11,19]. However, most existing methods are
either based on manual feature engineering [15], simplistic extraction [20], or
assuming regular timing as in dynamic Bayesian networks [16]. Irregular timing
and interventions have not been adequately modeled. Nursing illness trajectory
model was popularized by Strauss and Corbin [2,4], but the model is qualitative
but imprecise in time [7]. Thus its predictive power is very limited. Capturing
disease progression has been of great interest [10,14], and much effort has been
spent on Markov models [8,22]. However, healthcare is inherently non-Markovian
due to the long-term dependencies. For example, a routine admission with
irrelevant medical information would destroy the illness memory [1], especially
for chronic conditions.

Deep learning is currently at the center of a new revolution in making sense
of a large volume of data. It has achieved great successes in cognitive domains
such as vision and NLP [12]. To date, deep learning approach to healthcare has
been an unrealized promise, except for several very recent work [13,3,21], where
irregular timing is not property modeled. We observe that there is a considerable
similarity between NLP and EMR, where diagnoses and interventions play the



role of nouns and modifiers, and an EMR is akin to a sentence. A major difference
is the presence of precise timing in EMR, as well as the episodic nature. Our
DeepCare contributes along that line.

DeepCare is generic and it can be implemented on existing EMR systems. For
that more extensive evaluations on a variety of cohorts, sites and outcomes will
be necessary. This offers opportunities for domain adaptations through parameter
sharing among multiple cohorts and hospitals.

6 Conclusion

In this paper we have introduced DeepCare, a deep dynamic memory neural
network for personalized healthcare. In particular, DeepCare supports prognosis
from electronic medical records. DeepCare contributes to the healthcare model
literature introducing the concept of illness memory into the nursing model of
illness trajectories. To achieve precision and predictive power, DeepCare extends
the classic Long Short-Term Memory by (i) parameterizing time to enable irregular
timing, (ii) incorporating interventions to reflect their targeted influence in the
course of illness and disease progression; (iii) using multiscale pooling over time;
and finally (iv) augmenting a neural network to infer about future outcomes. We
have demonstrated DeepCare on predicting next disease stages and unplanned
readmission among diabetic patients. The results are competitive against current
state-of-the-arts. DeepCare opens up a new principled approach to predictive
medicine.
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