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Abstract

There has been a growing interest in stochastic modelling and learning with complex data,

whose elements are structured and interdependent. One of the most successful methods

to model data dependencies isgraphical models, which is a combination of graph theory

and probability theory. This thesis focuses on a special type of graphical models known

as Conditional Random Fields (CRFs) (Laffertyet al., 2001), in which the output state

spaces, when conditioned on some observational input data,are represented byundirected

graphical models. The contributions of thesis involve both(a) broadening the current ap-

plicability of CRFs in the real world and (b) deepening the understanding of theoretical

aspects of CRFs.

On the application side, we empirically investigate the applications of CRFs in two real

world settings. The first application is on a novel domain of Vietnameseaccent restora-

tion, in which we need to restore accents of an accent-less Vietnamese sentence. Exper-

iments on half a million sentences of news articles show thatthe CRF-based approach is

highly accurate. In the second application, we develop a newCRF-basedmovie recommen-

dationsystem calledPreference Network(PN). The PN jointly integrates various sources

of domain knowledge into a large and densely connected Markov network. We obtained

competitive results against well-established methods in the recommendation field.

On the theory side, the thesis addresses three important theoretical issues of CRFs:feature

selection, parameter estimationandmodelling recursive sequential data. These issues are

all addressed under a general setting ofpartial supervisionin that training labels are not

fully available.

For feature selection, we introduce a novel learning algorithm calledAdaBoost.CRFthat

incrementally selects features out of a large feature pool as learning proceeds. AdaBoost.CRF

is an extension of the standard boosting methodology to structured and partially observed

data. We demonstrate that the AdaBoost.CRF is able to eliminate irrelevant features and

as a result, returns a very compact feature set without significant loss of accuracy.

Parameter estimation of CRFs is generally intractable in arbitrary network structures. This

thesis contributes to this area by proposing a learning method calledAdaBoost.MRF(which



xv

stands for AdaBoosted Markov Random Forests). As learning proceeds AdaBoost.MRF

incrementally builds a tree ensemble (a forest) that coversthe original network by selecting

the best spanning tree at a time. As a result, we can approximately learn many rich classes

of CRFs in linear time.

The third theoretical work is on modellingrecursive, sequentialdata in that each level

of resolution is a Markov sequence, where each state in the sequence is also a Markov

sequence at the finer grain. One of the key contributions of this thesis isHierarchical Con-

ditional Random Fields(HCRF), which is an extension to the currently popular sequential

CRF and the recent semi-Markov CRF (Sarawagi and Cohen, 2004). Unlike previous CRF

work, the HCRF does not assume any fixed graphical structures. Rather, it treats structure

as an uncertain aspect and it can estimate the structure automatically from the data. The

HCRF is motivated by Hierarchical Hidden Markov Model (HHMM) (Fineet al., 1998).

Importantly, the thesis shows that the HHMM is a special caseof HCRF with slight modi-

fication, and the semi-Markov CRF is essentially a flat version of the HCRF.

Central to our contribution in HCRF is a polynomial-time algorithm based on the Asym-

metric Inside Outside (AIO) family developed in (Buiet al., 2004) for learning and infer-

ence. Another important contribution is to extend the AIO family to address learning with

missing data and inference under partially observed labels. We also derive methods to deal

with practical concerns associated with the AIO family, including numerical overflow and

cubic-time complexity. Finally, we demonstrate good performance of HCRF against rivals

on two applications: indoor video surveillance and noun-phrase chunking.
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Chapter 1

Introduction

1.1 Motivations

There has been a growing interest in stochastic modellingstructural patternswith wide

spread application in many areas including language processing, bioinformatics, computer

vision and social networks. For example, in Natural Language Processing (NLP) (Manning

and Schütze, 1999) we are often interested in inferring the(partial or full) syntax tree of a

sentence, the hierarchical structure of a document, and thesequence of named entities (e.g.

person name, location) in a sentence. In image understanding, the underlying scene of an

image can be modelled as a 2-D grid in which each node corresponds to the scene of a raw

image pixel. In consumer networks, preferences (e.g. like/dislike) expressed by a set of

users on a set of common products and services are interdependent through user-product

interactions.

These examples share a common setting in that given some observational dataz, which can

be easily observed or obtained, we are more interested in modelling and inferring about the

structural patternsx emerging from the data. In probabilistic modelling, inferring aboutx

involves computing the conditional distributionPr(x|z). There are two general approaches

to this problem. The first approach assumes that the underlying patternx generatesthe

observational dataz in a generative processgiven byPr(z|x). To infer aboutx, we re-

sort to the Bayes rulePr(x|z) ∝ Pr(x) Pr(z|x). Hence, the problem is broken into two

sub-problems: modelling the pattern itself inPr(x) and modelling the data generation in

Pr(z|x).

The second approach is more direct as we model the required conditional distribution

Pr(x|z) directly without worrying aboutPr(x). This is particularly important when the

data generation distributionPr(z|x) is complex, whilstPr(x|z) can be quite simple. It also

eliminates the potential danger of the generative assumption, which we do not really know
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in practice. This approach is often referred to asdiscriminative modelling1.

Given the discriminative setting the next important question is how can the structural pat-

terns be represented? The main requirements are that the presentation should be both

expressive to incorporate various data aspects (e.g. visible and hidden variables), to cap-

ture the inherent relationship between the dataz and the patternx, and formal enough to

characterise the nature of model estimation and inference.

Graphical models(Pearl, 1988; Lauritzen, 1996) are an important class of probabilistic

methods that successfully meet these requirements. They combine the probabilistic the-

ory and the graph theory in a seamless manner. Patterns are represented by a network in

which each pattern element is encoded by a node or a subset of nodes, and interactions

between pattern elements are materialised by edges betweennodes. There are two main

types of interaction:causality is encoded indirectedmodels (also known as Bayesian

Networks (BNs)), andcorrelation in undirectedmodels (also known as Markov Random

Fields (MRFs)). Corresponding to the interaction types, the interaction strength is mate-

rialised by local conditional distributions in the directed cases and clique potentials in the

undirected cases.

This thesis focuses on a recently introduced sub-class of undirected graphical models that

support discriminative modelling known as Conditional Random Field (CRF) (Lafferty

et al., 2001). More specifically, given each observational dataz, in CRF, the patternx

is represented as a standard MRF. Thus, given multiple data instances, we have multiple

graphical models and these models generally share the same set of parameters. CRFs

are often parameterised as conditional exponential distributions, which are also known as

multi-class logistic regression.

Given these properties, the CRF is at the conjunction between two major areas: proba-

bilistic data structure modelling and statistical machinelearning. As standard undirected

graphical models, inference in sequential CRFs is very efficient. Equipped with recent ad-

vances in numerical optimisation, this enables learning large-scale CRFs with millions of

parameters and millions of data instances. Its unique position is perhaps the reason beside

the success of the CRF in various areas, including bioinformatics, computer vision and

computational linguistics.

However, this position also poses many theoretical challenges for the CRF as a structure

modelling and learning machinery. In what follows, we limitto those issues that will be

addressed in this thesis.

An issue which has received limited attention in the discriminative setting ismissing pat-

1There is a popular technique to discriminatively estimatePr(x|z) from the generative modelling using
the Bayes rule. (Minka, 2005a) has made clear that this isnot discriminative modelling butdiscriminative
training.
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tern variablesin the data (e.g. see (Quattoniet al., 2005)). In learning of standard discrim-

inative models, pattern labels are assumed to be fully available. This style of learning is

often calledsupervised learningin the statistical machine learning literature. This contrasts

with the other extreme known asunsupervised learning, where patterns of interest are to-

tally missing. In this thesis, we are interested in the situation where partial pattern labels

are available, and thus we term it bypartially supervised learning. Typically, this issue

arises when there are intrinsic latent variables that are not shown in the data, or there are

missing or damaged parts of the patterns due to environmental noise or manual processing.

Another important issue isfeature selection. Features in the CRF framework are some as-

pects extracted from observational dataz, and often each feature is associated with a free

parameter. As we have mentioned, many domains involves millions of features (and there-

fore parameters), and this is very computationally demanding. Besides, since we do not

have to modelz, it can be tempting to generate as many features as possible where many of

them can be irrelevant for the purpose of modelling the pattern x. In those cases, selecting

a compact subset of features is very critical to the success of the CRF implementation.

Perhaps one of the biggest obstacles to adopt CRFs isparameter estimation in networks

with arbitrary structuresbut there has been limited work in this area (e.g. see (Sutton

and McCallum, 2005, 2007b)). It is well-known that inference in graphical models is only

efficient when the structures are chains or trees, but it is intractable in general. It is even

worse in learning which typically involves many inference steps in an iterative manner.

Typically, one resorts to approximate inference methods (Pearl, 1988; Geman and Geman,

1984; Jordanet al., 1999; Wainwrightet al., 2003a, 2005b), but these may corrupt the

parameter update steps because we generally assume that theinference steps are exact.

In addition, most applications of the CRFs are limited to flat, sequential structures, possibly

due to the efficiency reason mentioned above. In many areas, however, flat sequential

models are not adequate but ratherhierarchical structuresare required. For example, a

syntactic parsing task in NLP known as noun-phrase chunking(Sang and Buchholz, 2000)

requires joint modelling of both noun-phrases (NPs) and part-of-speech tags (POS) as two

layers of semantics associated with words in the sentence. The joint modelling is important

because on the one hand noun-phrases are often informative to infer the POS tags belonging

to them, and on the other hand, a sub-sequence of POS tags may help identify the nature

of the phrase for that sub-sequence.
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1.2 Aims and Scope

This thesis investigates further into CRFs, which are at theconjunction of the discrimina-

tive modelling framework and undirected graphical models.Our objectives are:

• To apply CRFs to new domains with different settings.

• To extend the theory of CRFs in three aspects: feature selection, learning under

arbitrary structures, and modelling hierarchical data.

In the application line of work we study two specific areas:

• The accent restoration problem, in which given a sequence ofaccent-less words,

we want to restore original accents without external information. We have chosen

Vietnamese as the study subject. We approach the problem by using sequential CRFs

to model and learn the accent space.

• Movie recommendation systems in which viewers are providedwith specific titles

that may interest them. We aim at integrating rich domain knowledge together with

preferences expressed by viewers into a single CRF.

In the theoretical investigation we focus on the common theme of learning and inference

in CRFs with missing variables. More specifically, the following three aspects are studied

in detail:

• The feature selection problem in which we need to select the most discriminative

subset of features. We extend the boosting framework (Freund and Schapire, 1997;

Schapire and Singer, 1999) to embed the feature selection capacity into the learning

process.

• Intractability of parameter estimation of CRFs in arbitrary networks. We exploit the

fact that a network is a superimposition of trees and each tree is efficient to learn and

infer.

• Generalisation of sequential CRFs to support modelling, learning and inference of

hierarchical data. We limit to recursive sequential type ofdata, in that a node in a

sequence at the parent level is a sub-sequence by itself at the child level. We approach

the problem by extending the existing Hierarchical Hidden Markov Models (Fine

et al., 1998).
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1.3 Significance and Contribution

There are two central lines of work that constitute the significance of the thesis: (1) broad-

ening the applicability of CRFs in novel application domains, and (2) deepening the un-

derstanding of theory of CRFs in three sub-areas:feature selection, parameter estimation

with general network structures, andhierarchical data modelling. In particular, our contri-

butions are:

• A demonstration that sequential CRFs, especially second-order chains, are suitable

for restoring lost accents. This is an important problem because accents may be lost

due to formatting or they are not supported by standard keyboards and many display

applications. On the algorithmic side languages like Vietnamese pose significant

challenge because accent-less sentences are highly ambiguous. In our study we are

able to reach high level of accuracy that can be suitable for real world deployment.

• Construction of a novel model calledPreference Networks(PNs), which is a large

and densely-connected CRF for relational databases. PNs are a discriminative re-

lational model that support various queries in recommendersystems - an important

element in current e-commerce sites. Different from most previous studies in the

recommendation field, our model is both formal and expressive in that it supports

probabilistic inference and incorporates rich domain knowledge, such as user pro-

file, product content, and collaborative user preferences.We evaluate this model on

the movie domain and show that it is competitive against well-known techniques.

• A novel algorithm called AdaBoost.CRF that addresses both feature selection and

missing training variables. It is well-known that feature selection is required to elim-

inate irrelevant information, to improve the prediction accuracy, to aid human inter-

pretation of data and to speed up model execution. AdaBoost.CRF is an extension

of the celebrated boosting methodology to the area of structured prediction. It is an

efficient algorithm in that feature selection is integratedinto the learning process pro-

viding a good trade-off between speed and prediction performance. We demonstrate

that it is able to select small amounts of features out of a large feature pool while

maintaining reasonable accuracy.

• A new parameter estimation algorithm called AdaBoost.MRF for CRFs with arbi-

trary network structures under missing variables. This provides an answer to the

intractability problem in maximum likelihood learning. AdaBoost.MRF is efficient

in that it requires only inference in trees, therefore achieving linear complexity in

network size. Its predictive power is comparable with well-known parameter estima-

tion methods.
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• A discriminative framework called Hierarchical Conditional Random Fields (HCRFs)

for modelling, inference and learning recursive sequential data. The data at differ-

ent resolutions can be jointly modelled in a formal fashion.This eliminates some

drawbacks in the popular layered approach by preventing errors to propagate from

the lower layer to the higher. This also enables recursive data to be represented

as graphical models, allowing rich probabilistic inference. The framework is based

on, and is an extension of a generative counterpart known as Hierarchical Hidden

Markov Models (Fineet al., 1998; Buiet al., 2004). As a result, it includes a version

of Asymmetric Inside-Outside (AIO) algorithm (Buiet al., 2004) for learning and a

Generalised Viterbi algorithm for inference.

• A set of techniques to deal with practical issues associatedwith HCRFs. In partic-

ular we have (1) developed a scaling algorithm that is effective in reducing numer-

ical overflow; (2) extended the AIO and the Generalised Viterbi algorithm to cope

with arbitrary partial labels; (3) derived an efficient approximate inference scheme

based on Rao-Blackwellisation (e.g. see (Casella and Robert, 1996)) and Gibbs sam-

pling (Geman and Geman, 1984); (4) proposed an approximate learning algorithm

based on pseudo-likelihood (Besag, 1975); (5) representeda special case of HCRFs

with exponential duration distribution as a factor-graph (Kschischanget al., 2001);

and (6) shown how to convert discriminative HCRFs to the generative counterparts.

• Two applications of HCRFs in human activity recognition andnoun-phrase chunk-

ing. We demonstrate that HCRFs are competitive against rival methods.

1.4 Thesis Structure

This thesis is organised into 10 chapters and a number of appendices, in which 6 chapters

make up the main contribution of the thesis and the rest are supporting materials. The rest

of the thesis is arranged in the following order:

• Chapter 2 selectively reviews background materials that are essential for further de-

velopment of the thesis. These include general statisticalmachine learning with

structured output spaces, the Maximum Entropy principle and graphical models.

The formulation of the principle of Maximum Entropy (MaxEnt) (Shannon, 1948;

Jaynes, 1957; Cover and Thomas, 1991) supports the log-linear model utilised in

the multi-class logistic classifiers and CRFs. Background on graphical modelling in

general, and undirected graphical models in particular, are presented to support the

understanding of the theory of CRFs. Finally, we provide a closer look at hierarchical

modelling of data, the area that covers a major contributionof the thesis.
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• Chapter 3 describes in more detail the main subject of this thesis: the Conditional

Random Field. We present common aspects such as modelling, feature selection and

parameter estimation and review the most important applications of CRFs. More

advanced developments and issues are also discussed.

• Chapter 4 presents a novel application of CRFs in Vietnameseaccent restoration.

We propose to use sequential CRFs to model and learn the output space of the Viet-

namese accent sequences. We apply the stochastic gradient ascent for parameter

estimation and compare the performance of CRFs with severalrival methods on a

large Vietnamese newswire dataset.

• Chapter 5 details the construction of Preference Networks (PNs) for recommenda-

tion systems. PNs are large-scale and very densely connected networks that require

fast local learning algorithms such aspseudo-likelihoodof Besag (1975). We show

that the PNs are capable of representing the whole rating database provided by a

set of users on a set of products or services, and of encompassing varieties of do-

main knowledge to improve system performance. The chapter also evaluates the

PNs against several well-known methods in the area.

• Feature selection is covered in Chapter 6. The chapter presents an extension of boost-

ing called AdaBoost.CRF for parameter estimation of structured models with miss-

ing training labels. The chapter documents experimental evidence that suggests the

proposed algorithm is effective in selecting a small subsetof features from a large

feature pool.

• Chapter 7 addresses the problem of parameter estimation in CRFs with arbitrary

network structures. We introduce a novel algorithm called AdaBoost.MRF, which is

efficient and capable of handling missing labels.

• Hierarchical extensions to the modelling theory of CRFs is given in Chapter 8, and

is continued through Chapter 9. Chapter 8 introduces Hierarchical CRF (HCRF)

for recursive sequential data. Model definition, representation, and an efficient al-

gorithm for learning and inference in HCRFs are included in the chapter. Chapter 9

addresses practical issues associated with the HCRFs. These include numerical over-

flow, approximate learning and inference. The chapter also describes experimental

evaluations on two different problems: human activity recognition and noun-phrase

chunking.

• Chapter 10 summarises the main content of the thesis and outlines future work.



Chapter 2

Related Background

In this chapter, we provide the background on which the thesis is built. As the material is

somewhat mathematical, we provide a list of notations in Table 2.1.

2.1 Statistical Machine Learning

2.1.1 Common Setting

Statistical Machine Learning (e.g. see (Hastieet al., 2001)), an intersection of Computer

Science and Statistics, aims to build systems that ‘learn’ from training examples to perform

tasks on unseen data. When the training example includes theoutcome patternx ∈ X of a

given inputz ∈ Z, the learning is said to besupervised. The goal is to estimate a classifier

h(z)

h(z) : Z → X (2.1)

that outputs the prediction̂x for a future inputz, i.e. x̂ = h(z). Another learning type is

unsupervisedin that no outcomes are available for a given input. This section is limited to

reviewing supervised learning algorithms that are applicable to the thesis’s focus.

Assuming that the data is randomly drawn from a fixed but unknown distributionPr(x, z).

Learning searches forh(z) that minimises theexpected risk

R(h) =

∫
L(x, h(z)) Pr(x, z)dxdz (2.2)

whereL(x, h(z)) is the measure of mismatch between true outputx and the prediction̂x
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Notation Description
x (Joint) state variables
X Space of state variables, or output space

x\xc State variables other thanxc

e Ending indicators
z Observables

Pr(x) Model probability
Z The partition function
F Free energy

H [P ] Shannon’s entropy of distributionP
EP [F ] Expectation of a functionF with respect to distributionP

i, j Index of the graph vertex
d Level, counting from the root as1 down to bottom
t Time index

D, T Model depth and length
c Index of the cliques in graph
N Graph size
k Index of feature and parameter
K Feature size
l Index of data instance
n Data size

(ϑ, h) Visible and hidden components of the joint state variablex, respectively
D The data set
G The graph

(V, E) Set of vertices and edges of the graph, respectively
N (i) Neighbourhood of nodei

w Parameter vector
f(.) Local feature vector
F(.) Global feature vector (sum of all activef(.)) in the configuration

φ(.), ψ(.) Potential functions.
µj→i(xi) Message from nodej to nodei

δ[.] Return1 is the predicate[.] is true,0 otherwise

Table 2.1: Notations used in this chapter.

returned byh(z). For example, we may be interested in the error measure

L(x, h(z)) = δ[x 6= h(z)] (2.3)

whereδ[x 6= h(z)] returns 1 ifx 6= h(z) and 0 otherwise.

However, sincePr(x, z) is unknown, one resorts to minimise theempirical risk (or the

loss) on the training dataD = {(x(l), z(l))}nl=1

R̂(h) =
1

n

n∑

l=1

L(x(l), h(z(l))) (2.4)
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Depending on the loss we can roughly classify the statistical machine learning methods

into probabilisticandnon-probabilisticmethods. Probabilistic methods aim at arriving at

the conditional distributionPr(x|z) for prediction. Typically, minimising the empirical

loss is converted into maximising the conditional likelihood

L =
1

n

n∑

l=1

log Pr(x(l)|z(l)) (2.5)

Non-probabilistic methods, on the other hand, employ several different loss functions such

as quadratic loss, exponential loss (as in boosting (Freundand Schapire, 1996)), or hinge

loss (as in Support Vector Machines - SVMs (Burges, 1998)).

In this thesis we are interested in theparametricsetting1, in whichh is parameterised by

some parameterw. In particular, we will study the linear classification problem in that we

want to estimate the following functional

G(x, z) = w
>
F(x, z) (2.6)

whereF is the vector of features that encode dependency between input z and outputx.

The prediction of a new input is given as

x̂ = h(z) = arg max
x∈X

G(x, z) (2.7)

The type of probabilistic models we are studying in this thesis is themulti-class logistic2,

whose distribution is given as

Pr(x|z;w) =
exp(w>

F(x, z))∑
x′ exp(w>F(x′, z))

(2.8)

In Section 2.2 we will present a theoretical justification for choosing this type of model.

2.1.2 Learning in Structured Output Spaces

Until recent years the field of statistical learning had focused only on unstructured output

spaces, in that, there are no direct relations between output variables. However, most

of the real world domains involve interdependent variables, in that the output spaces of

interest arestructured. Learning and predicting structured patterns pose new challenges

and opportunities that have attracted much interest recently, as evidenced in past workshops

(Table 2.2). In fact, structured prediction is now considered as one of the top challenges in

1This is opposed to thenon-parametricsetting where no underlying models with specific parameterisation
are assumed.

2This is also known as (conditional) softmax, exponential family, Gibbs distribution and log-linear model.
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statistical machine learning (Lafferty and Wasserman, 2006).

Remarkable work in this area includes (McCallumet al., 2000; Laffertyet al., 2001;

Collins, 2002; Taskaret al., 2002) (Altunet al., 2003a, 2004; Taskaret al., 2004; Tsochan-

taridiset al., 2005), and (Richardson and Domingos, 2006). These works exploit the fact

that structured prediction is a multi-class problem so standard machine learning algorithms

such as logistic regression, boosting, and SVMs can be applied. The major challenge lies in

the size of the output space, which is often exponentially large in the number of variables.

For example, if we haveN discrete variables, each of which takesS possible values, then

the total number of classes that these variables can jointlyrepresent isSN . Therefore, the

main problem is how to efficiently represent and perform learning and inference in these

spaces.

To date, the most successful modelling tools for structuredspaces aregraphical mod-

els (Lauritzen, 1996). This is a unified framework that includesvarious previous models

such as Markov random fields (MRFs) (Lauritzen, 1996), Bayesian networks (BNs) (Pearl,

1988), hidden Markov models (HMMs) (Rabiner, 1989), Kalmanfilters and several neural

network architectures (Saulet al., 1996; Hinton and Salakhutdinov, 2006), and the recent

factor graphs (FGs) (Kschischanget al., 2001). Generally, graphical models represent

variables as vertices in a network and probabilistic interdependencies between variables as

edges. The global property of the whole network is achieved through local interactions.

We will provide more details about these models in Section 2.3.

Previous machine learning in structured output spaces has exploited a rich set of graphical

models. For example, the Maximum Entropy Markov model (MEMM) introduced in (Mc-

Callumet al., 2000) makes use of directed Markov chains for modelling sequential output

data in conjunction with local multi-class logistic classifiers. Similarly, the conditional ran-

dom field (CRF) (Laffertyet al., 2001) represents output spaces using undirected Markov

random fields (also known as Markov networks) and utilises multi-class logistic for learn-

ing the input-output mapping. When the CRF is applied to relational domains it becomes

the relational Markov network (RMN) (Taskaret al., 2002). These methods are generally

probabilistic, in that they estimate the conditional distribution of the output pattern given

the inputPr(x|z).

Non-probabilistic methods have also been applied for structured domains. The work in

(Collins, 2002) is an extension of the Perceptron algorithm(Rosenblatt, 1958; Freund and

Schapire, 1999). Similarly, work in (Altunet al., 2003a) utilises boosting, (Altunet al.,

2004) extends Gaussian processes, and (Taskaret al., 2004; Tsochantaridiset al., 2005)

generalises SVMs.

Although much progress in learning with structured output spaces has been made with im-

pressive applications, the field is still in an early stage. There are many remaining issues



2.2 The Maximum Entropy Principle 12

to be addressed. These issues come from three sources: thoseassociated with the standard

machine learning techniques being employed, those with theunderlying graphical models,

and those with the interaction between learning algorithmsand graphical models. From the

statistical machine learning point of view, the main concerns are estimation bias, variance,

consistency, generalisation errors and speed3. On the graphical models side, exact infer-

ence in arbitrary networks is unfortunately intractable. The interaction between the two

sides makes some of these issues more challenging. For example, errors made during ap-

proximate inference on graphical models may corrupt the execution of the learning process

and, as a result, hurt the generalisation power of the classifier. Since statistical properties

of these errors are hard to characterise, generalisation errors of learning algorithms may

not be estimated. As remarked by Lafferty and Wasserman (2006), the SVM techniques

when applied to Markov networks are indeed inconsistent. The only known consistent esti-

mation is based on maximum conditional likelihood, like those used in CRFs. Fortunately,

inconsistent estimation in graphical models using a certain class of approximate methods

may still be very valuable (Wainwright, 2006).

Year Workshop
2004 NIPS Learning With Structured Outputs Workshop
2004 NIPS Graphical Models and Kernels
2005 NIPS Kernel Methods and Structured Domains
2006 ICML Workshop on Learning in Structured Output Spaces
2007 ICML Workshop on Constrained Optimisation and Structured Output Spaces

Table 2.2: Some recent workshop on learning in structured output spaces.

In the next subsection, we provide a justification of using multi-class logistical distribu-

tions through the principle of Maximum Entropy in Section 2.2 and a detailed account of

graphical models.

2.2 The Maximum Entropy Principle

Maximum Entropy (MaxEnt) (Jaynes, 1957) is a method for density estimation. To be

consistent with the statistical machine learning setting we present here theconditional

MaxEnt instead.

Suppose we are given an observed data distributionP̃r(x, z) of the random variablesx and

z, and some measurement of dataF(x, z) = (F1(x, z), F2(x, z), ..., FK(x, z))> that we

3The efficiency issue is now recognised as one of the main problem in machine learning, as evidenced in
one of NIPS 2007 Workshops.
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will call ‘features’. A distributionPr(x|z) is consistent with the data if

Ẽ[F(x, z)] = E[F(x, z)] (2.9)

where

Ẽ[F(x, z)] =
∑

x,z

P̃r(x, z)F(x, z) (2.10)

is the empirical feature expectation and

E[F(x, z)] =
∑

z

P̃r(z)
∑

x

Pr(x|z)F(x, z) (2.11)

is the model feature expectation.

TheMaximum Entropy Principlestates thatamong all consistent distributions, if nothing

else is known about the data, we should choose the density that is the least biased, i.e.

the one closest to the uniform distribution. The distance betweenPr(x|z) and the uniform

distributionU(x|z) = 1/|X | can be measured by the Kullback-Leibler divergence (Cover

and Thomas, 1991):

KL(Pr||U) =
∑

z

P̃r(z)
∑

x

Pr(x|z) log
Pr(x|z)

U(x|z)

= −H [Pr] + log |X | (2.12)

where

H [Pr] = −
∑

z

P̃r(z)
∑

x

Pr(x|z) log Pr(x|z) (2.13)

is Shannon’s entropy (Shannon, 1948). The MaxEnt density estimator minimises the

Kullback-Leibler divergence, which is equivalent to maximising the entropy, under the

constraints of Equation 2.9.

By using Lagrange multipliers and maximising the entropy inEquation 2.13 with respect to

the distributionPr(x|z), one arrives at the multi-class logistic (or log-linear) distribution in

Equation 2.8. Given this log-linear form, maximising the entropy with respect toPr(x|z) is

equivalent to maximising the likelihood with respect to parameters associated with features

ŵ = arg max
w

L(w); where (2.14)

L(w) =
∑

x,z

P̃r(x, z) log Pr(x|z;w) (2.15)

A nice property of the MaxEnt is thatL(w) is concave and thuŝw is unique. Maximising
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the likelihood is equivalent to solving the equation where the gradient is equated to zero:

∇L(w) =
∑

x,z

P̃r(x, z)F(x, z) −
∑

z

P̃r(z)
∑

x

Pr(x|z)F(x, z)

= Ẽ[F(x, z)] − E[F(x, z)]

= 0 (2.16)

Thus, solving Equation 2.16 is equivalent to finding the distribution Pr(x|z) that satisfies

the constraints in Equation 2.9. In other words, theMaxEnt provides a theoretical justifi-

cation for using multi-class logistical distributions whose parameters are estimated by the

maximum likelihood method.

Algorithmic parameter estimation of MaxEnt models has beenaddressed in statistics and

computer science for past decades. Notable algorithms include the Generalised Iterative

Scaling (GIS) introduced in (Darroch and Ratcliff, 1972), and the Improved Iterative Scal-

ing (IIS) in (Bergeret al., 1996; Pietraet al., 1997). However, recent empirical evidence

(Minka, 2001b; Malouf, 2002; Sha and Pereira, 2003) has suggested that these specialised

algorithms are generally outperformed by recently advanced numerical optimisation al-

ternatives such as Conjugate Gradients (Hestenes and Stiefel, 1952) and quasi-Newton

methods such as L-BFGS (Liu and Nocedal, 1989; Byrdet al., 1994).

The MaxEnt is particularly popular in computer science in recent years (Zhuet al., 1998;

Nigamet al., 1999; Zitnick and Kanade, 2004), especially in the field of NLP after the pio-

neering work of Bergeret al.(1996) and Ratnaparkhi (1996). It often achieves competitive

performances with state-of-the-art rivals in the domains in which it is applied. The strength

of this method comes with the ability to incorporate arbitrary and overlapping features.

The work in (Kazama and Tsujii, 2003) relaxes the equality inthe original consistency

constraints in Equation 2.9 in the way that the difference between the model feature expec-

tation and the empirical expectation is bounded in a given interval

Lk ≤ E[Fk(x, z)]− Ẽ[Fk(x, z)] ≤ Uk, for k = 1, 2, ..., K (2.17)

whereLk < 0 < Uk. A more comprehensive study of the constraints is describedin (Dudı́k

et al., 2007).

2.3 Structured Data and Graphical modelling

As noted early in Section 2.1.2, it is often the case that variables in real data are interde-

pendent, and it is hard, if not impossible, to isolate any variables that are truly independent
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Figure 2.1: Naı̈ve Bayes assumption: words (filled circles)are conditionally independently
generated by the topic (empty circle).

of others. However, a holistic analysis of all the variable interactions is very expensive. We

have to make some assumption of independence to decompose the complex problem into

solvable pieces. One of the most useful assumptions isconditional independencein that

two sets of variables are independent of each other given some conditions, for example,

the connections between these two sets of variables are blocked. For example, words in a

document are often assumed to be created with a specific intention, i.e. the topic of the sub-

ject being written. The naı̈ve Bayes assumption is that oncethe topic is chosen, words can

be considered as being independently generated (McCallum and Nigam, 1998) (see Fig-

ure 2.1). Put it differently, words are conditionally independent given the topic. Of course,

such an assumption may be adequate for text classification but it is clearly too simplistic

for deeper understanding of text. Words do not just ‘happen’to co-occur in texts, but they

usually follow certain grammatical structures and conventional usage. Thus, depending on

the nature of problem, we may want to vary the level of interdependency, either for ease of

analysis or better understanding. More importantly we wanta representation scheme that

is expressiveenough to integrate prior knowledge about the domain, and atthe same time,

provides us with an analytical framework forefficientlearning, reasoning, interpreting and

predicting the data.

2.3.1 Graphical Modelling

3

5

1 2

4 4

5

1 2

3

(a) (b)

Figure 2.2: Examples of Bayesian Networks (a) and Markov Random Fields (b). (a) is
converted to (b) by marrying parents of nodes and dropping arrows.

Graphical Models (GMs) nicely address the above requirements. GMs seamlessly integrate

graph theory and probability theory. The formulation issemi-formalin the sense that GMs

provide a tool for visualisation of interdependency between variables in the data, and at
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the same time, obey strict mathematical formulations of conditional dependence and prob-

abilistic consistency. GMs offer a separation between whatcan be learned from data (in

the learningphase) and what can be inferred from the model (in theinference phase).

Denote byG = (V, E) a graph that has a set of verticesV and a set of edgesE . Each vertex

i ∈ V represents a random variablexi, wherei = 1, 2, ..., N andN = |V|. Letx = (xi)
N
i=1

denote the joint set of all random variables represented by the graph. In this thesis we are

interested in discrete models in which each variable admitsvalues from a finite set of states,

i.e. xi ∈ Si, whereSi = {1, 2, ..., |Si|}. For example, in computer vision, it is common to

have the same small setS of possible scenes for all nodes. In language processing, how-

ever, the set can be a subset or the whole vocabulary of a language. Continuous variables

are also of interest, but their use is beyond the scope of thisthesis.

Imposed on the graphG is a joint distribution of all variablesPr(x1, x2, ...xN). Reasoning

about a particular variablexi given some evidencexc can be given as

Pr(xi|xc) =
Pr(xi, xc)

Pr(xc)
(2.18)

wherec is the set of indices. Denote byx−c the set of all variables except the subsetc, i.e.

x−c = x\xc andx = (xc, x−c). We have

Pr(xc) =
∑

x−c

Pr(x) =
∑

x−c

Pr(xc, x−c) (2.19)

There are two types of GMs:directed(Figure 2.2a) andundirected(Figure 2.2b). Directed

graphical models (also known as Bayesian Networks (Pearl, 1988) and Belief Networks)

provide a graphical representation ofcausalitiesandinfluences. The direction of influence

is denoted by an arrow in Figure 2.2a. Undirected graphical models (also known as Markov

Random Fields and Markov Networks), on the other hand, encode thecorrelationsbetween

variables. Below we describe the directed case and leave theundirected case, which is the

focus of this thesis, until Section 2.4.

The main consistency requirement of Bayesian Networks (BNs) is that the graph must be

acyclicin that there must be no directed cycles in the graph. The direction and the degree of

influence are encoded in a conditional distributionPr(xi|pa(i)) of the influenced variable

xi given the influencing subset of variablespa(i). In the Bayesian Networks,xi is often

called the child andpa(i) the parents. For instance, in Figure 2.2a,pa(3) = {1, 2, 4}. The

joint distributionPr(x) is the product of all local conditional distributions:

Pr(x) =

N∏

i=1

Pr(xi|pa(i)) (2.20)
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One important property of BNs is that a variablexi is conditionally independentof all other

variables given a special surrounding set of variables known asMarkov blanketwhich is

composed of its parents, its children and its children’s parents. For instance, in Figure 2.2a,

the Markov blanket of node 5 is{1, 4}, while it is {1, 2, 3, 5} for node 4.

To model data as a BN, we need to determine the graph connectivity structureE and esti-

mate the conditional distributionPr(xi|pa(i)). DeterminingE automatically from data is

known asstructure learning. Given the structure, estimatingPr(xi|pa(i)) is calledparam-

eter learning.

Structure learning is a hard problem, partly because the structure space ofE is usually

explosive in sizeN and partly because there is no single criterion to define ‘goodness’ of

a structure. More often, we rely on our understanding of the domain to specifyE . In many

cases the structure of data is obvious, such as the sequence of part-of-speech tags. In other

cases there are no magic formulae to design the right model for a given problem. Simple

models may be tried and then improved to account for certain aspects of the problem.

On the one hand, overly simplistic models can smooth out the real data too much so that

only high regularities are kept. On the other hand, there will not be enough regularities to

learn the over-complicated models, given limited data. Determining the right complexity

for a given data and how much data for a given complexity stillremains an art through

experiments.

Moreover, the model structure and inference are tightly coupled. Often we want some

complex structures to best characterise the problem at hand. However, most of the time,

we have to make some trade-offs in favour of simpler structures for inference efficiency.

Parameter learning is often based on maximising the data likelihoodPr(x). In discrete

BNs, learning with fully observed data is quite straightforward:Pr(xi|pa(i)) is simply the

ratio of occurrences of(xi, pa(i)) to the occurrences ofpa(i) in the training data. In situ-

ations where there are no occurrences of a particular assignment ofxi, smoothingis often

used to prevent zero probability from propagating to the joint probability in Equation 2.20.

For example, in Laplace smoothing, if a particular assignment of xi does not occur, we

assume that it occurs at least once.

However, it is often the case that the data has missing variables. One of the most successful

methods in this case is the Expectation-Maximisation (EM) algorithm (Dempsteret al.,

1977), which we will study in the next subsection.
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2.3.2 EM Algorithm

Denote byx = (ϑ, h), whereϑ is the subset of visible variables, andh the hidden. The EM

attempts to maximise the data log-likelihoodlog Pr(ϑ|w)

ŵ = arg max
w

log Pr(ϑ|w) = arg max
w

log
∑

h

Pr(ϑ, h|w) (2.21)

wherew is the model parameters. In Bayesian Networksw is the set of all local conditional

distribution{Pr(xi|pa(i))}
N
i=1. The summation inside the log function couples the two

variablesϑ andh. To decouple them, applying the Jensen’s inequality to the concave log

function, we have

L(w) = log
∑

h

Pr(ϑ, h|w) ≥
∑

h

Q(h) log
Pr(ϑ, h|w)

Q(h)
(2.22)

= EQ[log Pr(ϑ, h|w)] +H [Q] (2.23)

for any proper distributionQ(h). A nice property of the lower-bound here is that the

gap betweenL(w) and its lower-bound is closed by settingQ(h) = Pr(h|ϑ;w). Since

log Pr(ϑ, h|w) is typically decomposable into the sum of simpler components, the lower-

bound nicely decouples variables. LetQ = EQ[log Pr(ϑ, h|w)], sinceH [Q] does not

depend onw, maximising the lower-bound with respect tow is equivalent to maximising

Q. This suggests an iterative procedure which loops through two steps until convergence:

• E-step: computeQ(h) = Pr(h|ϑ;wt)

• M-step: optimise the parameterwt+1 = arg maxw EQ[log Pr(ϑ, h|w)]

Essentially, theM-step increases the lower-bound, and theE-stepcloses the gap between

the true log-likelihood and the lower-bound. The overall effect is that the log-likelihood

monotonically increases until it reaches a local maximum.

2.4 Undirected Graphical Models

This section reviews undirected graphical models, including Markov Random Field (MRF)

(e.g. see Lauritzen (1996)) and its generalisation called Factor Graph (Kschischanget al.,

2001). Although specific forms of MRFs have been used for a long time, such as the Ising

model in physics (e.g. see (Baxter, 1982)), the view of MRFs as a part of graphical models

is fairly recent.
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2.4.1 Model Representation

As a graphical model, a Markov Random Field specifies a joint distributionPr(x) over the

undirected graphG. MRFs are essentially more general than Bayesian Networks in the

sense that every Bayesian Network can be converted into a MRFby first connecting all the

parents of each variable and then dropping the arrows of the edges (Figure 2.2).

Conditional independence is ensured by a property that variablesxi andxj are condition-

ally independent of each other if we know values of a subset ofvariables that block any

paths from nodei to nodej. A useful set of blocking nodes is the Markov blanket, which

contains all neighbours of a node. Once the Markov blanket ofnodei is known, we can be

sure thatxi is independent of the rest of the nodes.

This condition is often known asMarkov property, and is enforced by the Hammersley-

Clifford theorem (Lauritzen, 1996), which states that the following factorisation must hold

Pr(x) =
1

Z
Φ(x)

=
1

Z

∏

c

ψc(xc) (2.24)

wherexc is themaximal cliquedefined by the structure ofG, andZ =
∑

x

∏
c ψ(xc) is

the normalisation constant (also known as the partition function). A maximal clique is a

completely connected subgraph (e.g. the subset{1, 2, 3, 4} in Figure 2.2b). The positive

clique functionψ(xc) is often referred to aspotentialor compatibility function.

In practice, we may not use this strict factorisation because it may not be natural to visu-

alise, but we further factorise clique potentials into products of smaller sub-potentials. For

example, in image modelling we often use the pairwise and singleton potentials, which are

defined over edges and nodes, respectively. In this case the distribution is given as4

Pr(x) =
1

Z

∏

i∈V

φi(xi)
∏

(i,j)∈E

ψij(xi, xj) (2.25)

In the context of physical systems, the potentialψc(xc) in Equation 2.24 is often written in

terms ofenergyEc(xc) as

ψc(xc) = exp(−
1

β
Ec(xc)) (2.26)

whereβ is a positive quantity commonly referred to as system temperature. The tempera-

tureβ does not have physical meaning outside physical sciences but it is sometimes used

4Traditionally, the computer vision community uses the following form Pr(x, z) =
Pr(x)

∏
i∈V

Pr(zi|xi), wherez is generated byx, or z is considered as a noisy version ofx.
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for algorithm control purposes, especially in simulated annealing (Kirkpatricket al., 1983;

Hofmann and Buhmann, 1997). In this thesis we setβ = 1 for simplicity and this should

not change the nature of data modelling.

Let E(x) =
∑

cEc(xc) be system energy. A quantity that plays an important role in

stochastic evolution of physical systems is theHelmholtz free-energy(or just free-energy)

F = E[E]−H

=
∑

x

Pr(x)E(x) +
∑

x

Pr(x) log Pr(x) (2.27)

= − logZ (2.28)

The last equation is obtained by substituting Equation 2.24and Equation 2.26 into Equa-

tion 2.27. There is a common tendency to decrease the free-energy to reach equilibrium

of a physical system. Clearly, if we know that the energy of the system has been mea-

sured (viaE[E]), minimising the free-energyF is equivalent to maximising the entropy

H, and this matches the principle of Maximum Entropy described in Section 2.2. Inter-

estingly, it has been shown in (Yedidiaet al., 2005) that minimising an approximation of

F known as Bethe free-energy is equivalent to passing messages in Pearl’s famous belief

propagation (Pearl, 1988).

2.4.2 Inference

The heart of any graphical models is obviously the inferenceengine. Let us consider the

general case where the joint state variablex has a subset of visible (or observed) variables

ϑ, and a subset of hidden (or missing, latent) variablesh, i.e.x = (ϑ, h). In this section we

outline most common quantities needed to be computed and leave the algorithmic details

for later sections.

2.4.2.1 Inference involved in learning

Let us take a closer look at the computation of data log-likelihood log Pr(ϑ). Under the

MRF setting there are two general strategies to maximise it.One is the EM scheme outlined

in Section 2.3.2 and the other is the direct optimisation approach.

The EM approach.
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Recall that in EM we are concerned with the following quantity

Q = EQ[log Pr(ϑ, h)] (2.29)

= EQ[log Φ(ϑ, h)]− logZ (2.30)

=
∑

c

EQ(hc|ϑ)[logψc(ϑc, hc)]− logZ (2.31)

In Equation 2.31 we have appliedΦ(ϑ, h) =
∏

c ψc(ϑc, hc). In theM-step, we maximise

the functionQ, and often need to compute the gradient

∇Q =
∑

c

EQ(hc|ϑ)[∇ logψc(ϑc, hc)]−∇ logZ (2.32)

The following proposition shows how{∇ logZ} is computed.

Proposition 1. Under the factorisation of Equation 2.24, the following holds:

∇ logZ =
∑

c

EPr(xc)[∇ logψc(xc)] (2.33)

Proof: Recall thatZ =
∑

x Φ(x), we have

∇ logZ =
1

Z

∑

x

∇Φ(x) (2.34)

SinceΦ(x) =
∏

c ψc(xc), we havelog Φ(x) =
∑

c logψc(xc), and

∇ log Φ(x) =
1

Φ(x)
∇Φ(x) =

∑

c

∇ logψc(xc), leading to (2.35)

∇Φ(x) = Φ(x)
∑

c

∇ logψc(xc) (2.36)

Finally, we prove the Proposition 1 using

∇ logZ =
∑

x

Pr(x)
∑

c

∇ logψc(xc) =
∑

c

∑

xc

Pr(xc)∇ logψc(xc) (2.37)

�

The direct optimisation approach.

Unlike the EM, we do not need to compute the auxiliary function Q, but proceed to the

log-likelihood directly

L = log Pr(ϑ) = log
∑

h

Pr(ϑ, h) = log

(
1

Z

∑

h

Φ(ϑ, h)

)
(2.38)

= logZ(ϑ)− logZ (2.39)
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whereZ(ϑ) =
∑

h Φ(ϑ, h). Note that once the observationϑ is made, the set of free

variables of the system is reduced toh, and the distribution becomes:

Pr(h|ϑ) =
Pr(ϑ, h)∑
h Pr(ϑ, h)

=
1

Z(ϑ)
Φ(ϑ, h) (2.40)

and thusZ(ϑ) is a new partition function of the reduced system. We can imagine that there

is an evolution from the full system to the reduced system dueto the act of observation of

ϑ. The change in free-energy during the evolution is then

∆F = Freduced − Ffull

= − logZ(ϑ) + logZ

= −L (2.41)

Thus,maximum likelihood learning is equivalent to finding the minimum of change in the

system free-energy.

In seeking for the maximiser of the log-likelihood we often compute the gradient

∇L = ∇ logZ(ϑ)−∇ logZ (2.42)

Recall thatZ(ϑ) is the partition function of the reduced system with free variablesh and

distributionPr(h|ϑ), Proposition 1 can be applied as follows

∇ logZ(ϑ) =
∑

c∈C(h)

EPr(hc|ϑ)[∇ logψc(ϑc, hc)] (2.43)

whereC(h) is the set of clique indices in the hidden part of the graphG.

In summary, in EM-based and direct optimisation learning weneed to compute the follow-

ing quantities:

• The ‘full’ partition functionZ, and the ‘reduced’ partition functionZ(ϑ),

• The local clique marginalsPr(xc) andPr(hc|ϑ).

These inference tasks are only tractable if the structure ofthe graphG is a chain or a tree.

There exists an efficient message passing over trees known asPearl’s belief propagation

(BP) (Pearl, 1988), which require only two passes through all edges (e.g. see (Willsky,

2002; Pearl, 1988)). For general structures, approximations are needed. We will cover

exact inference on chains in Sections 2.4.3, 2.4.4 and 2.4.5, and approximate inference on

other structures in Section 2.4.6.
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2.4.2.2 Inference in pattern prediction

Prediction in MRFs is usually to find the most probable variable assignment

x̂ = arg max
x

Pr(x) (2.44)

= arg max
x

log Φ(x) (2.45)

= arg min
x

∑

c

Ec(xc) (2.46)

This is essentially a combinatorial discrete optimisationproblem. Typical computer vision

problems such as image restoration (Geman and Geman, 1984) and stereo-matching (Sun

et al., 2003), are often recast into the energy-minimisation formof Equation 2.46.

Like partition function estimation, the prediction problem is generally intractable to solve

exactly. Efficient approximations to date include the iterated conditional mode (ICM) (Be-

sag, 1986), Pearl’s loopy max-product algorithm (Pearl, 1988) and variants (Wainwright

et al., 2005a), and the more recent Graph-Cuts (Boykovet al., 2001). Less efficient meth-

ods but with theoretical guarantee of convergence can be found in the sampling literature,

especially the Simulated Annealing method (Kirkpatricket al., 1983; Geman and Geman,

1984). The ICM, max-product, and graph-cuts are covered in Section 2.4.7.

2.4.3 First-order Markov Chains

(a) (b)

Figure 2.3: Undirected Markov chains: first-order (a) and second-order (b). Filled circles
denote observed symbols{zt}Tt=1 and empty circles denote state variables{xt}Tt=1.

Markov chains, depicted in Figure 2.3, also known as Boltzmann chains (Saul and Jordan,

1995), are the most widely used structure. Our model will involve observables{zt}Tt=1 as-

sociated with corresponding state variables{xt}Tt=1 but we assume thatzt will be absorbed

into appropriate local potentials involvingxt.

This subsection presents inference in first-order chains (Figure 2.3a). Extension to second-

order chains (Figure 2.3b) andnth-order in general will be covered in the next subsection.

For the chain structure, assuming singleton and pairwise local potentials, the joint potential
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is given as

Φ(x) =

[ ∏

t∈[1,T ]

φ(xt)

][ ∏

t∈[2,T ]

ψ(xt−1, xt)

]
(2.47)

whereT is the sequence length.

For first-order Markov chains, inference can be made using the forward-backwardproce-

dure5.

The forward variable

First, let us define theforward variableαt(xt) as

αt(xt) =
∑

x1:t−1

∏

i∈[2,t]

[
φ(xi−1)ψ(xi−1, xi)

]
(2.48)

To derive a recursive relation, let us rewrite Equation 2.48as

αt(xt) =
∑

xt−1

φ(xt−1)ψ(xt−1, xt)
∑

x1:t−2

∏

i∈[2,t−1]

[
φ(xi−1)ψ(xi−1, xi)

]

=
∑

xt−1

φ(xt−1)ψ(xt−1, xt)αt−1(xt−1) (2.49)

Letα1(x1) = 1 for all x1 ∈ S1, we can compute all the quantities{αt(xt)}
T
t=1 inO(T |S|2)

time, where|S| = maxt |St|. This provides an efficient way to compute the partition

function

Z =
∑

x1:T

Φ(x1:T )

=
∑

xT

αT (xT )φ(xT ) (2.50)

Since the recursion often accumulates the numerical scale of the forward variables, it may

happen that for largeT , we will face either theunder-flowor theover-flowproblem. The

first case often occurs in directed graphical models such as HMMs because the potentials

are always less than unity. The second case is coupled with the undirected graphical mod-

els, because it is hard to upper-bound the potential functions, which are usually learnt from

data. To avoid this difficulty let us provide some scaling mechanism. Equation 2.49 can be

5See (Rabiner, 1989) for details in HMMs.
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rewritten as

αt(xt) = κα,t

∑

xt−1

φ(xt−1)ψ(xt−1, xt)αt−1(xt−1) (2.51)

whereκα,t > 0. Typically we useκα,t as a normalisation constant to prevent the numerical

values ofαt(xt) from becoming too small or too large. It is not difficult to seethat, after

scaling at each time stept, the partition function must be corrected as follows

Z =

[ ∏

t∈[1,T ]

κα,t

]∑

xT

αT (xT )φ(xT ) (2.52)

Often, we want to work in the log-space instead

logZ =
∑

t∈[1,T ]

log κα,t + log
∑

xT

αT (xT )φ(xT ) (2.53)

The backward variable

In our undirected Markov chains, it is symmetric to definebackwardvariables in a similar

manner as Equation 2.48

βt(xt) =
∑

xt+1:T

∏

j∈[t+1,T ]

[
φ(xj)ψ(xj−1, xj)

]
(2.54)

which, with appropriate scaling termsκβ,t, also has the recursive relation

βt(xt) = κβ,t

∑

xt+1∈St+1

βt+1(xt+1)φ(xt+1)ψ(xt, xt+1) (2.55)

Let βT (xT ) = 1 ∀xT ∈ ST . The log-partition function can also be computed as

logZ =
∑

t=∈[1,T ]

log κβ,t + log
∑

x1

β1(x1)φ(x1) (2.56)

Of course, the main point is not just the separate forward andbackward variables but the

relationship between them and how they are used in other inference tasks. For example,
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we are often interested in the local marginals

Pr(xt) =
∑

x\xt

Pr(x)

∝
∑

x\xt

Φ(x) (2.57)

=
∑

x1:t−1,xt+1:T

Φ(x1:T ) (2.58)

= Z(xt) (2.59)

whereZ(xt) =
∑

x\xt
Φ(x). By rearranging the factors in the RHS of Equation 2.47, we

have

Φ(x) =

[ ∏

i∈[2,t]

φ(xi−1)ψ(xi−1, xi)

]
φ(xt)

[ ∏

j∈[t+1,T ]

φ(xj)ψ(xj−1, xj)

]

thenZ(xt) can be written as

Z(xt) =


∑

x1:t−1

[ ∏

i∈[2,t]

φ(xi−1)ψ(xi−1, xi)

]
φ(xt)×

×


∑

xt+1:T

[ ∏

j∈[t+1,T ]

φ(xj)ψ(xj−1, xj)

]


∝ αt(xt)βt(xt)φ(xt) (2.60)

In other words, we have

Pr(xt) = κtαt(xt)βt(xt)φ(xt) (2.61)

whereκt are appropriate normalisation constants to ensure
∑

xt
Pr(xt) = 1.

A similar trick can be applied to derive the joint marginals.Given the forward and back-

ward variables, we compute the singleton and pair marginalsas follows

Pr(xt, xt+1) = κt,t+1αt(xt)βt(xt+1)φ(xt)φ(xt+1)ψ(xt, xt+1) (2.62)

whereκt,t+1 are appropriate normalisation constants to ensure
∑

xt

∑
xt+1

Pr(xt, xt+1) =

1.
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MAP assignment and Viterbi decoding

Viterbi decoding (Rabiner, 1989) is well-known in the HMM literature, and it is equally

applicable for the undirected Markov chain. It is a two-stepprocedure:

• In the first step, we run a maximisation version of the forwardαmax
t (xt), in that all

the summarisations in Equation 2.49 are replaced by corresponding maximisations,

keeping the local maximal states in abookkeeperY

αmax
t (xt) = max

xt−1

[
φ(xt−1)ψ(xt−1, xt)α

max
t−1 (xt−1)

]
(2.63)

Yt(xt) = arg max
xt−1

[
φ(xt−1)ψ(xt−1, xt)α

max
t−1 (xt−1)

]
(2.64)

• In the second step, we need tobacktrackto decode the beststate sequence(xt)
T
t=1,

not just local maximal state.

x̂T = arg max
xT

[
αmax

T (xT )φ(xT )

]
(2.65)

x̂t = Yt+1(x̂t+1), for t = T − 1, T − 2, ..., 1 (2.66)

The algorithm takesO(T |S|2) time.

There is also an alternative, known asmax-product algorithmof Pearl, where we make

use of both the forward and backward variables in a maximisation manner (e.g. as in

Equation 2.63) Substituting the new forward and backward quantities into Equation 2.61,

we obtainx̂ by finding the maximiser of the local marginals

x̂t = arg max
xt

Pr(xt) (2.67)

2.4.3.1 HMMs as special cases

xt

zt

xt−1

Figure 2.4: Hidden Markov models.

The Hidden Markov Model (Figure 2.4) is a constrained case ofthe first-order chain, where
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we define the potentials as

φ(x1) = π(x1) Pr(z1|x1) where
∑

z1

Pr(z1|x1) = 1,
∑

x1

π(x1) = 1

φ(xt) = Pr(zt|xt), for
∑

zt

Pr(zt|xt) = 1, t ∈ [2, T ]

ψ(xt−1, xt) = Pr(xt|xt−1), where
∑

xt

Pr(xt|xt−1) = 1, t ∈ [2, T ]

Under these constraints the forward and backward variableshave nice probabilistic inter-

pretation. From Equation 2.48, we have

αt(xt) =
∑

x1:t−1

π(x1)
∏

i∈[2,t]

[
Pr(zi−1|xi−1) Pr(xi|xi−1)

]

=
∑

x1:t−1

Pr(x1:t|z1:t−1)

= Pr(xt, z1:t−1) (2.68)

Similarly, from Equation 2.54

βt(xt) =
∑

xt+1:T

∏

j∈[t+1,T ]

[
Pr(zj |xj) Pr(xj|xj−1)

]

=
∑

xt+1:T

Pr(xt+1:T , zt+1:T |xt) (2.69)

= Pr(zt+1:T |xt) (2.70)

This interpretation is, unfortunately, not present in the undirected counterparts.

The data likelihood arises nicely

Pr(z1:T ) =
∑

xt

Pr(z1:T , xt)

=
∑

xt

Pr(z1:t−1, xt) Pr(zt+1:T |xt) Pr(zt|xt)

=
∑

xt

αt(xt)βt(xt) Pr(zt|xt) (2.71)

2.4.4 Second-order Markov Chains

The second-order Markov chains can be converted into the equivalent first-order at the cost

of concatenated state space. With a slight abuse of notation, denoted byψ(xt−2, xt−1, xt)

the second-order potentials. The conversion is carried outby joining two successive nodes

xt−1 and xt into a composite-nodeyt−1 = (xt−1, xt). Let the composite-node poten-
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tial beφ(yt−1) = φ(xt−1)ψ(xt−1, xt) and the composite-edge potential beψ(yt−1, yt) =

ψ(xt−1, xt, xt+1). Given these potentials it can be seen that we now have a new first-order

Markov chain with the combined state space:

yt−1 ∈ St−1 × St (2.72)

The naı̈ve implementation of this Markov chain takesO((T−1)|S|4) time in this combined

state space. However, by paying attention to the fact that the two composite-statesyt−1 =

(xt−1, xt) andyt = (xt, xt+1) sharext, we can implement the forward-backward procedure

in O((T − 1)|S|3) time using

αt(yt) = κα,t

∑

xt−1∈St−1

αt−1(yt−1)φ(yt−1)ψ(yt−1, yt)

βt(yt) = κβ,t

∑

xt+2∈St+2

βt+1(yt+1)φ(yt+1)ψ(yt, yt+1)

and the joint marginals are computed as

Pr(yt) = κtαt(yt)βt(yt)φ(yt)

Pr(yt, yt+1) = κt,t+1αt(yt)βt(yt+1)φ(yt)φ(yt+1)ψ(yt, yt+1)

A similar strategy of state space concatenation can be applied tonth-order Markov chains,

i.e. yt = (xt, xt+1, ..., xt+n−1). In general, the overall complexity will beO((T − n +

1)|S|n+1)

2.4.5 Tree Models

(a) (b)

Figure 2.5: The two-pass procedure: the upward pass (a) and downward pass (b).

Now we generalise the chains to trees, which are the most complex structures known to

be efficient. They have important properties that aid analysis and inference. The joint
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distribution can be defined in terms of local marginals as

Pr(x) =
∏

(i,j)∈E

Pr(xi, xj)

Pr(xi) Pr(xj)

∏

i∈V

Pr(xi) (2.73)

The log-partition can be computed as follows

log Z = −
∑

(i,j)∈E

∑

xi,xj

Pr
ij

(xi, xj) log
Prij(xi, xj)

ωij(xi, xj)
+
∑

i∈V

(ni − 1)
∑

xi

Pri(xi) log
Pri(xi)

φi(xi)
(2.74)

whereωij(xi, xj) = φi(xi)φj(xj)ψij(xi, xj) andni is the number of neighbours of nodei.

Inference in trees is efficiently carried out by Pearl’sbelief propagation(BP), which is

also known as thesum-productalgorithm. It is a generalisation of the forward-backward

procedure described in Section 2.4.3. First we pick one particular node as the root. Since

the graph has no loops there is a single path from a node to any other nodes in the graph,

and each node, except for the root, has exactly one parent. The forward and backward

passes are replaced by theupwardanddownwardpasses:

• In the upward pass, messages are first initiated at the leaves, and are set to 1. Then all

messages are sent upward and updated as messages convergingat common parents

along the paths from leaves to the root. The pass stops when all the messages reach

the root.

• In the downward pass, messages are combined and re-distributed downward from

the root back to the leaves. The messages are then terminatedat the leaves.

j i

k

k

k

i

k

k

k

j i

l

lk

k

(a) (b) (c)

Figure 2.6: Message update (a), node marginal (b) and joint marginal (c).

In general, the message sent from nodej to nodei in the tree is computed as follows

µj→i(xi) = κji

∑

xj

φj(xj)ψij(xi, xj)
∏

k∈N (j),k 6=i

µk→j(xj) (2.75)

whereN (j) is the set of neighbours of nodej andκji > 0 is some constant. We can

compute the log-partition function as soon as the upward pass has reached the root noder:

logZ =
∑

ji

log κji + log
∑

xr

φr(xr)
∏

j∈N (r)

µj→r(xr) (2.76)
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Once the messages are terminated, the marginals and joint marginals can be computed as

Pr(xi) = κiφi(xi)
∏

k∈N (i)

µk→i(xi) (2.77)

Pr(xi, xj) = κi,jωij(xi, xj)


 ∏

l∈N (i),l 6=j

µl→i(xi)




 ∏

k∈N (j),k 6=i

µk→j(xj)


 (2.78)

The max-product algorithm

Computing the most probable statex̂ = arg maxx Pr(x) can be done using the max-

product algorithm6. This is essentially the sum-product algorithm where all the sum-

mations are replaced by maximisations.

Once the messages are computed we can estimatex̂i by finding the maximiser of the local

marginalPr(xi) in Equation 2.77.

2.4.6 Approximate Inference

Popular methods can be broadly classified into two groups: sampling and message passing.

Samplingis a rich literature in physics and statistics, especially under the headline of

Markov Chain Monte Carlo (MCMC). The idea is to draw enough samples from the distri-

bution so that the distribution is approximated by the sample frequency. The main problem

is that since the state space is often very huge, direct sampling is not computationally ap-

plicable. The MCMC methods solve this problem by allowing sampling in a smaller space.

See (Metropoliset al., 1953; Hastings, 1970; Kirkpatricket al., 1983) for early develop-

ment and application of Metropolis-Hasting method, (Neal,1993; MacKay, 1996; Andrieu

et al., 2003) for MCMC introduction and survey, and (Green, 1995) for a recent important

extension. A nice property of sampling is that it can asymptotically converge to the true

distribution. In practice, however, it is known to be very slow for many problems. For

further implementation issues, see (MacKay, 2003).

Message passingis another important class of approximation methods because of its

lightweight and distributed fashion (e.g. see (Minka, 2005b) for a unified view). Loopy

belief propagation (McEliece and Cheng, 1998; Murphyet al., 1999; Yedidiaet al., 2005)

is a particularly important practical method that deservesa separate subsection below. An

interesting variant is based on minimising the upper-boundof the log-partition function

(Wainwrightet al., 2005b).

6The max-product is often known as belief propagation in the computer vision community.
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Another subset of message passing methods, which attracts much recent attention, falls un-

der the root ofvariational methods(e.g. see (Jordanet al., 1999; Wainwright and Jordan,

2003)). The main idea is to approximate a complex network by some simpler networks

(e.g. by removing some edges) and to optimise the differencebetween the true and the

approximation. Depending on the divergence measure, we mayobtain the mean-field type

(e.g see (Saulet al., 1996; Wiegerinck, 2000; Kappen and Wiegerinck, 2001)) or the ex-

pectation propagation type (Minka, 2001a).

2.4.6.1 Gibbs Sampling

Of MCMC methods, Gibbs sampling is popular in the MRF context, especially after the

seminal work of Geman and Geman (1984). The idea is, instead of sampling the joint

distributionPr(x), we cyclically sample the local conditional distribution.Specifically, for

networks with pairwise clique potentials as in Equation 2.25, we draw the local values as

follows

x̂i ∼ Pr(xi|N (i))

∝ ψi(xi)
∏

j∈N (i)

ψij(xi, xj) (2.79)

whereN (i) is the set of neighbours of nodei. This local sampling is easy to perform since

it involves onlyxi ∈ Si and a fixed set of neighbourhood assignmentN (i). After a value

is sampled,xi is assigned to that value and another node is sampled.

2.4.6.2 Loopy Belief Propagation

Loopy BP is the standard BP applied to networks with cycles. Interestingly, physicists have

faced similar problems in analysing physical systems such as Ising models. They have pro-

posed the use of Bethe free-energy as an approximation to thetrue Helmholtz free-energy

(see Equation 2.27). Bethe free-energy, like standard BP, is only applicable to systems with

singly connected networks. An important recent discovery by Yedidiaet al. (2005) is that

minimising the approximate Bethe free-energy with respectto local marginals is equivalent

to seeking stationary points of the loopy BP. Recall from Equation 2.28 thatF = − logZ,

minimising the free-energy is equivalent to maximising thelog-partition function, which

is given in Equation 2.74.

The message passing scheme in loopy BP is similar to that described in Section 2.4.5.

However, as the network is loopy, there are no roots and no predefined sending directions.

Rather, messages are initiated from all nodes, and are sent in all directions. Because of

the cycles present in the network, messages may come back to their sources and create a
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non-converging loop. Indeed, there is no guarantee of convergence or quality of approx-

imation. Since the method is applied with the assumption that the network is cycle-free,

we can only hope that it will work in networks with large cycles because large cycles will

damp the messages enough so that they ‘forget’ about the origins. On the other hand,

densely connected networks will have very small loops, and thus we may not expect a

good performance. In addition, loopy BP is known to fail whenthe interaction (or edge)

potentialsψij(xi, xj) are significantly stronger than the data (or node) potentialφi(xi). The

commonly known phenomenon is the oscillation of the messages or other qualities such as

the Bethe free energy.

In practice, the BP is often declared converged if the relative change in messages or related

quantities like Bethe free energy is small enough, say10−3 − 10−5 for example. There are

two main mechanisms to control the convergence: the messageupdate schedule and damp-

ing. Update schedules can be either synchronous or asynchronous. In the synchronous

schedule, messages are updated at the same time, and in the asynchronous schedule, mes-

sages are updated one by one. Typically, the asynchronous update converges (if it does)

much faster than the synchronous counterpart since information between nodes is propa-

gated quicker. There are also several specific schedule schemes that claim to improve the

convergence rate (Wainwrightet al., 2003a; Elidanet al., 2006; Sutton and McCallum,

2007a; Casadoet al., 2007).

Damping is used to reduce the update step size in messages (orsometimes, beliefs). Addi-

tive damping has the following form

µt+1
j→i(xi)← (1− d)µt+1

j→i(xi) + dµt
j→i(xi) (2.80)

whered ∈ (0, 1] is the damping factor, and the superscriptt denotes the iteration. Multi-

plicative damping is also occasionally used

µt+1
j→i(xi)←

(
µt+1

j→i(xi)
)1−d (

µt
j→i(xi)

)d
(2.81)

Typically, setting a large value ofd yields better convergence quality, but slower rates.

The message passing scheme requiresO(2|E||S|) memory to store all the messages, where

|E| is number of edges in the graphG. The memory will be very demanding for large

images (such as those with heightH = 1000 and widthW = 1000, |S| = 256; and

|E| ≈ 2HW ).

Despite the lack of guiding theory, empirical evidence has suggested that loopy BP still

works well in a wide range of problems (Murphyet al., 1999; Yedidiaet al., 2005). It re-

mains one of the most widely used approximate techniques in graphical model applications.

Research in improving BP and characterising its convergence is an active area (McEliece
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and Cheng, 1998; Yedidiaet al., 2005; Welling and Teh, 2001; Weiss and Freeman, 2001a;

Wiegerinck and Heskes, 2003; Yuille, 2002; Wainwrightet al., 2003a,b; Wainwright and

Jordan, 2003; Dechter and Mateescu, 2003; Heskes, 2004; Mooij and Kappen, 2005a,b;

Ihler et al., 2005).

2.4.6.3 Variational Methods

In this subsection we deal with structured variational approximation, in that the whole

network is partitioned into a number of independent sub-networks (see Figure 2.7). The

partitioning effectively removes edges connecting sub-networks. When each sub-network

is a single node, the method reduces to the well-known mean-field.

Figure 2.7: Partitioning intractable networks into tractable sub-networks. Dashed lines
indicate boundaries between sub-networks.

The main assumption is that the approximate distributionQ(x) of Pr(x) is factorised as

follows

Q(x) =
∏

α

Qα(xα) (2.82)

whereα is the index of the sub-networks.

SinceQ(x) is an approximation to thePr(x), the natural goal is to minimise the distance

between the two distributions. In the variational approachthe Kullback-Leibler divergence

is minimised

Q̂ = arg min
Q
KL(Q||Pr) (2.83)

= arg min
Q

∑

x

Q(x) log
Q(x)

Pr(x)
(2.84)

subject to the constraints in Equation 2.82.

Let xc,α,β be the sub-set of clique variables at the boundary between the sub-networksα

andβ, i.e. c ∈ α ∩ β. These cliques are split when partitioning, andxc,α belongs to the
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sub-networkα, xc,β belongs toβ. Denote the message sent fromβ toα with respect to the

cliquec as

µβ→α(xc,α) = exp


∑

xc,β

Qc,β(xc,β) logψc,α,β(xc,α,β)


 (2.85)

Then the distribution of the sub-networkα is given as

Qα(xα) ∝ Φα(xα)
∏

β∈N (α)

∏

c∈α∩β

µβ→α(xc,α) (2.86)

whereN (α) is the set of neighbour sub-networks of the sub-networkα andΦα(xα) is the

product of local clique potentials belonging the to sub-network α. That is, the distribution

of a sub-network in the variational method is proportional to the potential of its variables,

and all of the messages coming from its neighbourhood. This is very similar to the case

of Belief Propagation (as in Equation 2.77). The only difference is how the messages are

computed.

Note that we have assumed each sub-networkα to be tractable, in thatQc,α(xc,α) =
∑

xα\xc
Qα(xα) can be evaluated efficiently. Thus Equations 2.85 and 2.86 provide are-

cursiverelationship between the distributions of sub-networks. originally we do not know

any distributions for sure, we need to iteratively run the message updating (Equation 2.85)

and distribution revision (Equation 2.86), and hope it willconverge.

The derivation details of Equations 2.85 and 2.86 are given in Appendix A.1.

Remark: One of the main problems of variational methods is that it does not handle well

the case with zero potentials. Zero potentials mean certainconfigurations of the local

cliques are prohibited, or equivalently, have zero probability. If such cliques are broken

due to network partitioning, then the resulting approximation will be inconsistent. This

issue does not seem not to have adequate treatment in the literature. Another problem is

that if the interaction between nodes at the removed edges isstrong, then the resulting

approximation will be poor because discriminative information is lost.
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2.4.7 Approximate Prediction

2.4.7.1 Iterated Conditional Mode

The ICM (Besag, 1986) is a fast local method that performs greedy search. The idea is

quite simple, in that we iteratively find the local optima of the conditional distribution:

x̂i ← arg max
xi∈Si

Pr(xi|N (i)) (2.87)

The process is repeated for all nodes in the network until convergence. The main drawback

of this method is that it is sensitive to initialisation and may be trapped in poor local optima.

2.4.7.2 Loopy Max-Product Algorithms

The loopy max-product algorithm is the Pearl’s max-productalgorithm applied for the

loopy networks. Messages are sent in all directions along edges and updated at each step

as

µj→i(xi) ∝ max
xj

[
φ(xj)ψ(xi, xj)

∏

k∈N (j),k 6=i

µk→j(xj)

]
(2.88)

The maximal beliefs are computed using the same equation as in Equation 2.77. As with

message passing algorithms on general graphs, the loopy max-product is not guaranteed

to converge, especially in MRFs with strong interaction between nodes, and it requires

significant memory to store all messages for large models. Fortunately, the max-product

often finds good solutions that are close to the optimum in practice.

There has been a strong interest in loopy max-product algorithms due to its wide applica-

bility in many areas. Beside issues of convergence and quality of solution found by the

loopy max-product, we need to take care of large state spaces, especially in computer vi-

sion. Work in theoretical characterisation and improvement includes (Weiss and Freeman,

2001b; Yanover and Weiss, 2003; Kolmogorov, 2005; Wainwright et al., 2005a; Meltzer

et al., 2005; Kolmogorov and Wainwright, 2005; Felzenszwalb and Huttenlocher, 2006;

Kolmogorov, 2006; Coughlan and Shen, 2006; Leordeanu and Hebert, 2006; Ravikumar

and Lafferty, 2006; Yanoveret al., 2006; Johnsonet al., 2007; Sanghavi, 2007; Gupta

et al., 2007; Duchiet al., 2007).
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2.4.7.3 Graph-Cuts

Graph-Cuts have been shown to be very successful on certain classes of vision problems

(Boykov et al., 2001; Szeliskiet al., 2006). They are, nevertheless, designed with specific

cost functions in mind (i.e.metricandsemi-metric), and therefore inapplicable for generic

cost functions such as those resulting from learning.

2.4.8 Factor Graphs

1 2 3 4 5

c’

i c

c’
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i

j

j

j

(a) (b) (c)

Figure 2.8: Examples of Factor Graph (a), which is a generalisation of the Bayesian
Network in Figure 2.2a by grouping local conditional distribution in factor nodes (filled
squares). Messages passing from node to factor (b) and factor to node (c).

Factor Graphs (Kschischanget al., 2001; Yedidiaet al., 2005) introduce a new way to rep-

resent MRFs in that both the variables, the potential functions (called ‘factors’) and their

connections are jointly represented. There are no direct connections between nodes of the

same type. Figure 2.8a shows a factor graph, which is converted from the Bayesian Net-

work in Figure 2.2a. Sometimes it is meaningful to have a factor node to encode a particular

feature, and thus a variable node can have multiple factor nodes associated with it. As ex-

pected, the joint distribution of the variables is defined inthe same way as Equation 2.24,

but nowψc(xc) is a function associated with the factorc that connects node variables inxc.

As factor graphs are just an alternative (but more expressive) way of representing MRFs,

the Markov property is also preserved. The Markov blanket ofa variable node consists of

all variable nodes that share some factor nodes with it. Similarly, inference in factor graphs

can also be carried out using Pearl’s belief propagation. The sum-product algorithm works

as follows. Since there are only direct connections betweenvariable nodes and factor

nodes, messages are sent from variable nodes to its associated factors, and vice versa. The

message sent from a nodei to a factorc (Figure 2.8b) is updated as

µi→c(xi) =
∏

c′∈C(i),c′ 6=c

ηc′→i(xi) (2.89)

whereC(i) is the set of all neighbour factors associated with nodei. And the messages
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sent from a factorc to a nodei (Figure 2.8c) is updated as

ηc→i(xi) =
∑

xc\xi


ψc(xc)

∏

j|xj∈xc,j 6=i

µj→c(xj)


 (2.90)

Finally, the local beliefs (approximate marginals) are computed as

b(xc) ∝ ψc(xc)
∏

j|xj∈xc

µj→c(xj) (2.91)

b(xi) =
∑

xc\xi

b(xc) (2.92)

A recent extension of factor graphs is introduced in (Frey, 2003) as a unification of directed

and undirected graphical models.

2.5 Probabilistic Hierarchical modelling

Modelling hierarchical aspects in complex dynamic processes is an important research

issue in many application domains ranging from computer vision, text information ex-

traction, computational linguistics to biological computation. For example, in a syntactic

parsing task known as noun-phrase chunking, noun-phrases (NPs) and part-of-speech tags

(POS) are two layers of semantics associated with words in the sentence. Previous meth-

ods first tag the POS and then feeds these tags as input to the chunker. The POS tagger

takes no information from the NPs. This layered approach, however, may not be optimal,

as a noun-phrase is often very informative to infer the POS tags belonging to the phrase.

In addition, it suffers from the so-calledcascading errorproblem (e.g. see (Finkelet al.,

2006)), as the error introduced from the lower layer will propagate to higher tasks. Thus,

it is more desirable tojointly model and infer both the NPs and the POS tags at the same

time (e.g. see (Suttonet al., 2007)).

Many models have been proposed to address this challenge, for which solutions can be

largely categorised as either graphical models extending the flat hidden Markov models

(HMM) (e.g., the layered HMM (Oliveret al., 2004), the abstract HMM (Buiet al., 2002),

hierarchical HMM (HHMM) (Fineet al., 1998; Buiet al., 2004), DBN (Murphy, 2002))

or grammar-based models (e.g., PCFG (Pereira and Schabes, 1992)). These models are all

generative.

Recent development in discriminative, hierarchical structures include extension of the flat

CRFs (e.g. dynamic CRFs (DCRF) (Suttonet al., 2007), hierarchical CRFs (Liaoet al.,

2007; Kumar and Hebert, 2005)) and conditional learning of the grammars (e.g. see (Miyao
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and Tsujii, 2002; Clark and Curran, 2003)). The main problemof the DCRFs is that they

are not scalable due to inference intractability. The hierarchical CRFs, on the other hand,

are tractable but assume fixed tree structures, and therefore are not flexible to adapt to

complex data. For example, in the noun-phrase chunking problem no prior tree structures

are known. Rather, if such a structure exists, it can only be discovered after the model has

been successfully built and learned.

The conditional probabilistic context-free grammar (C-PCFG) appears to address both

tractability and dynamic structure issues. More precisely, in C-PCFGs it takes cubic time

in sequence length to parse a sentence. However, the context-free grammar does not limit

the depth of semantic hierarchy, thus making it unnecessarily difficult to map many hier-

archical problems into its form. Secondly, it lacks a graphical model representation and

thus does not enjoy the rich set of approximate inference techniques available in graphical

models.

2.5.1 Hierarchical Hidden Markov Models

Hierarchical HMMs are generalisations of HMMs (see Section2.4.3.1) in the way that

a state in an HHMM may not emit a single observation symbol buta sub-sequence of

observations, and a state may be a sub-HHMM. On other words, an HHMM is a nested

Markov chain. In the model temporal evolution, when a child Markov chain terminates, it

returns the control to its parent. Nothing from the terminated child chain is carried forward.

Thus, the parent state abstracts out everything belonging to it. Upon receiving the return

control the parent then either transits to a new parent, (given that the grand parent has not

finished), or terminates.

Figure 2.9 illustrates the state transition diagram of a two-level HHMM. At the top level

there are two parent states{A,B}. The parentA has three children, i.e.ch(A) = {1, 2, 3}

andB has four, i.e.ch(B) = {1, 2, 3, 4}. Note that we have assumed that the parents share

some common children, i.e.ch(A)∩ ch(B) = {1, 2, 3}. This structure sharing follows the

work of (Bui et al., 2004). At the top level the transitions are betweenA andB, as in a

normal directed Markov chain. Under each parent there are also transitions between child

states, which only depend on the direct parent (eitherA or B). There are special ending

states (represented as shaded nodes in Figure 2.9) to signify the termination of the Markov

chains. At each time step of the child Markov chain, a child will emit an observational

symbol (not shown here).

The temporal evolution of the HHMM can be represented as a dynamic Bayesian network,

which was first done in (Murphy and Paskin, 2002). Figure 2.10depicts a DBN structure

of 3 levels. The bottom level is often referred to asproduction level. Associated with each



2.5 Probabilistic Hierarchical modelling 40

e1 2

3

2

1

4

3

BA
e

e

Figure 2.9: The state transition diagram of an HHMM.

state is an ending indicator to signify the termination of the state. Denote byxd
t anded

t the

state and ending indicator at leveld and timet, respectively. Whened
t = 0, the statexd

t

continues, i.e.xd
t = xd

t+1. And whened
t = 1, the statexd

t transits to a new state, or transits

to itself. There are hierarchical consistency rules that must be ensured. Whenever a state

persists (i.e.ed
t = 0), all of the states above it must also persist (i.e.ed′

t = 0 for all d′ < d).

Similarly, whenever a state ends (i.eed
t = 1), all of the states below it must also end (i.e.

ed′

t = 1 for all d′ > d).

Inference and learning in HHMMs follow the Inside-Outside algorithm of the probabilistic

context-free grammars. Overall, the algorithm hasO(|S|3DT 3) time complexity where|S|

is the maximum size of the state space at each level,D is the depth of the model andT is

the model length. This is costly for largeT .

When representing as a DBN, the whole stack of statesx1:D
t can be collapsed into a ‘mega-

state’ of a big HMM, and therefore inference can be carried out in O(|S|2DT ) time. This

is efficient for a shallow model (i.e.D is small), but problematic for a deep model (i.e.D

is large).

z

x

e

Figure 2.10: Dynamic Bayesian network representation of HHMMs.
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2.5.2 Abstract Hidden Markov Models

Like HHMMs, an abstract HMM is a also multi-scale HMM. It is proposed largely for the

purpose ofplan recognition(Kautz and Allen, 1986), a sub-area of Artificial Intelligence

where the goal is to recognise the execution plan of an agent acting in an environment.

There are four main elements in AHMMs: observation symbol, state, action and abstract

policy. States are at the bottom level which emit observation symbols just like an ordinary

HMM. The observations typically represent noisy signals the agent perceives from the

environment. Right above the state level is theaction level representing concrete actions

of the agent that will alter the agent’s states. The actions are assumed to be generated by

a stack ofabstract policies. The policy stack is quite similar to the state stack of HHMMs

above the production level. The main difference is that in AHMMs, the policies and their

termination depend on the state at production level. In HHMMs, on the contrary, the

production states never directly influence the parents.

A DBN representation of the AHMM is given in Figure 2.11. Inference in the AHMM,

unfortunately, is generally intractable, except for shallow networks with a small num-

ber of abstract policies. Approximate methods, therefore,must be used. In (Buiet al.,

2002), the authors employ a sampling based method based on the combination of Rao-

Blackwellisation (Casella and Robert, 1996) and Sequential Importance Sampling (e.g.

see (Andrieuet al., 2003)).

Policy
Ending indicator

Policy
Ending indicator

State

Action

Observations

Policy
Ending indicator

Policy

Figure 2.11: Dynamic Bayesian network representation of AHMMs.
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2.6 Closing Remarks

This chapter has reviewed background necessary for furtherdevelopment of the thesis.

Starting from the general problem of classification with structured output space, we de-

scribed two important elements of statistical machine learning: multi-class logistic classi-

fiers and an effective data modelling machinery known as graphical models. The former

has a strong connection with the exponential family of distributions, and thus with the

Maximum Entropy principle. In graphical models, we mainly focus our attention to the

undirected setting, which essentially includes the directed counterpart as a special case.

Reviewed details include representation, learning and inference under different network

structures: then-order Markov chains, the Markov tree, the general networks, exact and

approximate inference, factor graphs, and hierarchical models.

In the next chapter we narrow down the subject to the main focus of this thesis - the Con-

ditional Random Field (Laffertyet al., 2001), which is a combination of the multi-class

logistic classifier and undirected graphical models.



Chapter 3

Conditional Random Fields

In this chapter we describe Conditional Random Fields (CRFs) (Lafferty et al., 2001),

which are undirected graphical models for structured output. CRFs define distributions

over structured output variables conditioned on some inputvariables. For example, in

applications such as Part-of-Speech (POS) tagging, the output variables are a sequence of

POS tags that we want to predict from the input sentence. In image scene segmentation the

output variables are 2D arrays of scene interpretation of the raw pixels.

3.1 Model Description

z

i xi+1x

Figure 3.1: A chain-structured CRF. Empty circles denote state variablesx and filled circle
denotes conditioning variablesz.

Denote byz the input variable andx = (x1, x2, ..., xN ) the joint output variable. The input

variablez represents our knowledge about the domain. The output variable x has some

structure that specifies the interactions between its component variables(xi). For example,

in sequential modelling problems(x1, x2, ..., xT ) is a chain of lengthT , and the interactions

are between pairs of successive variables(xi, xi+1) (see Figure 3.1).

We would like to model the mapping fromz to x via the conditional distributionPr(x|z).

Thus we are only interested in the output structure conditioned on the input. The input

distributionPr(z) is left unspecified. Conditional Random Fields approach themodelling
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of Pr(x|z) by representingx as a Markov random field. More precisely,x is represented

using a graphG = (V, E)1 in which each vertex of the graph corresponds to a variable

xi. The joint variablex, when conditioned onz, admits the Markov property in that the

conditional distribution ofxi given its neighbours, defined by the graphG, does not depend

on other variables outside the neighbourhood. This is formally defined in Definition 1.

Definition 1. LetG = (V, E) be a graph such thatx = (xi)i∈V is indexed by the vertices of

G. Then(x, z) is a conditional random field such that, when conditioned onz, the random

variablesx obey the Markov property with respect to the graph:Pr(xi|z, xj , j 6= i) =

Pr(xi|z, xj , j ∈ N (i)), whereN (i) is the neighbourhood ofxi.

The conditional distributionPr(x|z) is therefore given as

Pr(x|z) =
1

Z(z)
Φ(x, z) =

1

Z(z)

∏

c

ψc(xc, z) (3.1)

wherec is the index of the cliques specified by the structure of the graphG, xc is the joint

variable associated with the cliquec, ψc(xc, z) is the non-negative potential function de-

fined overc, andZ(z) =
∑

x Φ(x, z) =
∑

x

∏
c ψc(xc, z) is the partition function with

respect to the inputz. The clique potentials specify how local variables interact and how

much the interaction contributes to the global distribution. For example, in the chain struc-

tured CRF, as illustrated in Figure 3.1, a clique is a segmentof the chain that contains two

nodes(xi, xi+1). There is one partition function for each inputz to ensure the normali-

sation of the distributionPr(x|z). This is different from standard Markov random fields

(Section 2.4) where there is a single partition function forall data cases.

Typically, we parameterise the potential function in an exponential form

ψc(xc, z) = exp(w>
f(xc, z)) (3.2)

wherew = (w1, w2, ..., wK)> ∈ R
K is the parameter vector, andf = (f1, f2, ..., fK)> is

the feature vector. Basically features are functions that encode prior belief about depen-

dency between the conditioning variablez and the output patternx. Generally the features

map the inputz and the associated clique variablexc to some real or binary value. The

parameters{wk} are the weights of corresponding feature{fk(.)} and thus specify how

features contribute to the global distribution. Note that we have used the same parameter

vector across clique potentials. This is known as parametertying.

1It is worth mentioning that the graphG is not uniquely defined for all data instances. Instead, it depends
on the nature of the each data instance. For example, POS tagging, the chain of POS tags varies with sentence
length.
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Let F(x, z) =
∑

c f(xc, z), then Equation 3.1 becomes

Pr(x|z) =
1

Z(z)
exp(w>

F(x, z)) (3.3)

which is essentially the conditional Maximum Entropy model(see Section 2.2).

Once the conditional distributionPr(x|z) has been estimated, various inference tasks can

be performed. The most important task is to predict the output x given the inputz using

x̂ = arg max
x

Pr(x|z) = arg max
x

w
>
F(x, z) (3.4)

Other common tasks include computing the log-partition functionZ(z) and the marginals

Prc(xc|z). In general, inference in a CRF(x, z) (see Definition 1) for each input obser-

vation z and state variablex is identical to that in the underlying Markov random field

imposed onx. For this reason, we do not describe the details of inferencefurther and

readers are referred to the description in Section 2.4.

3.2 Parameter Estimation

In this section we discuss how to estimatew from training data. First, we describe the case

of fully observed data in which all the output patterns are fully specified. We are given a

set ofn training instancesD = {x(l), z(l)}nl=1. Assume further that these training instances

are independently and identically distributed. Note that this assumption does not invalidate

the dependencieswithin each output patternx(l).

The most popular method is based on the maximum likelihood (ML) principle, which

selects the parameter that maximises the conditional likelihood.

ŵ = arg max
w

L(D;w); where

L(D;w) =
n∑

l=1

log Pr(x(l)|z(l);w)

=
n∑

l=1

{
w

>
F(x(l), z(l))− logZ(z(l))

}
(3.5)
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Typically, we add a quadratic penalty term2 to the log-likelihood forregularisation3

L(D;w) =

n∑

l=1

{
w

>
F(x(l), z(l))− logZ(z(l))

}
−

K∑

k=1

w2
k

2σ2
k

(3.6)

where{σ2
k}

K
k=1 specify how much the penalty is applied. In general, the penalty prevents

the absolute values of parameters{|wk|} from becoming too large. This method has a

Bayesian interpretation, in that the parameterw is treated as a random multivariate Gaus-

sian with mean0 and diagonal covariance matrix. LetPr(w) ∝ exp(−
∑K

k=1w
2
k/2σ

2
k) be

the prior distribution, the posterior is computed as

Pr(w|D) ∝ Pr(w) Pr(D|w)

= Pr(w)
n∏

l=1

Pr(x(l)|z(l);w) Pr(z(l)) (3.7)

Taking the log of both sides and ignoring the terms associated with Pr(z(l)), which is

independent ofw, we arrive at the RHS of Equation 3.6. Another less popular choice or

prior is the Laplace distribution4, i.e. Pr(w) ∝ exp(−
∑

k βk|wk|) for βk > 0. In general,

the Laplace distribution penalises large parameters more severely than the Gaussian, and it

often results in many zero parameters.

What remains is to apply optimisation methods to find the maximiser ofL(D;w) in Equa-

tion 3.6. An important property ofL(D;w) is that it is concave, and thus there exists a

unique global maximiser. A popular method is gradient-based in which we seek to find the

solution that sets the gradient of the penalised log-likelihood to zero. The partial derivative

is computed as

∂L(D;w)

∂wk
=

n∑

l=1

{
Fk(x

(l), z(l))−
∑

x

Pr(x|z(l))Fk(x, z
(l))

}
−
wk

σ2
k

(3.8)

= n
{
Ex̃|z[Fk]− Ex|z[Fk]

}
−
wk

σ2
k

(3.9)

where Ex̃|z[Fk] is the empirical distribution based on training data. SinceF(x, z) =
∑

c f(xc, z), we have

∂L(D;w)

∂wk

=
n∑

l=1

∑

c

{
fk(x

(l)
c , z

(l))−
∑

xc

Pr(xc|z
(l))fk(xc, z

(l))

}
−
wk

σ2
k

(3.10)

Thus, the computation boils down to computing clique marginalsPr(xc|z). This has been

2This term is commonly called norm-l2 regularisation.
3Regularisation is necessary forill-posedestimation problem in that a small deviation in the objective

function cause large deviation in the solution.
4This prior has several other names, for example, norm-l1 regularisation and Lasso (Tibshirani, 1996) in

the context of regression. This method has been widely used recently to achieve sparsity.
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described in Section 2.4.

Since setting this gradient to zero does not result in any closed form solution, we typically

resort to iterative methods. Since most applications of CRFs are large-scale, pure Newton

methods that require computing the second order derivativematrix is impractical. Bet-

ter choices include the Conjugate Gradients (Hestenes and Stiefel, 1952) and the limited

memory quasi-Newton method called L-BFGS (Liu and Nocedal,1989; Byrdet al., 1994).

These two methods are efficient and require only a few gradient evaluations in each round.

Indeed, the L-BFGS has been the method of choice since the work of (Sha and Pereira,

2003).

The extension to missing labels is quite straightforward. Let x(l) = (ϑ(l), h(l)) whereϑ(l)

is the subset of visible patterns andh(l) the hidden. The full likelihood in Equation 3.5 is

now replaced by the incomplete likelihood

Lincom(D;w) =
n∑

l=1

log Pr(ϑ(l)|z(l);w)

=
n∑

l=1

log
∑

h(l)

Pr(ϑ(l), h(l)|z(l);w)

=

n∑

l=1

{
logZ(ϑ(l), z(l))− logZ(z(l))

}
(3.11)

whereZ(ϑ(l), z(l)) =
∑

h(l) Φ(ϑ(l), h(l), z(l)). The gradient is now

∂Lincom(D;w)

∂wk

=
n∑

l=1

{
∑

h

Pr(h|ϑ(l), z(l))Fk(ϑ
(l), h, z(l))−

∑

x

Pr(x|z(l))Fk(x, z
(l))

}

= n
{
Eh|ϑ,z[Fk]− Ex|z[Fk]

}
(3.12)

where

Eh|ϑ,z[Fk] =
1

n

n∑

l=1

∑

h

Pr(h|ϑ(l), z(l))Fk(ϑ
(l), h, z(l)) and

Ex|z[Fk] =
1

n

n∑

l=1

∑

x

Pr(x|z(l))Fk(x, z
(l))

respectively.
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3.3 Feature Engineering and Selection

There is no doubt that features are very crucial to the success of CRF-based systems be-

cause they are meant to capture essential information aboutthe data and relations between

the input and output. In some applications, features are theoutput of the pre-processing

step. For example, in image scene segmentation, the input variables(zi)
N
i=1 are just raw

RGB values of pixels. Using RGB as features is not very informative because scenes like

water and sky may locally share very similar sets of colours.For this reason we often apply

a set of filters to detect interesting local patterns such as edges and textures, and use these

patterns as features.

As CRFs allow arbitrary and complex features to be included,it is easy to arrive at an ex-

cessively large feature pool by considering many combinations of basic features. Although

coverage is important to ensure that no useful information is missing, there are many prob-

lems associated with large feature sets. First, many features are effectively noisy, i.e. they

are not indicative of the dependence between the data and theoutput patterns. For example,

in POS tagging, most associations between a particular POS tag and words, which occur in

the same sentence but far away from the tag, happens only oncein the training data. This

rare association cannot be robustly learnt, generally.

Second, since each feature is associated with a parameter, alarge feature pool leads to a

problem known asoverfitting. In this case parameters are easily tuned to fit the training

data well, but generalise poorly in unseen data.

Third, some practical applications, such as those used in decision making (e.g. in medicine

and business), require interpretation of features selected. Complex features may be too

difficult to interpret. Finally, large feature pools are costly to process both in terms of

storage and run time.

Feature selection has been widely studied in the machine learning literature (Guyon and

Elisseeff, 2003) in unstructured output spaces. Broadly speaking there are three approaches

to this problem. Thefiltering approach employs some simple and fast heuristics to select

the features according to some independent criteria. Thewrapper approach extensively

evaluates the feature combinations according to the final performance measure. And fi-

nally, theembeddedapproach incrementally builds the feature set as learning proceeds.

Common filtering methods include the simple cut-off of infrequent features, and correla-

tion or mutual information between the input and the output.The main drawback is that

the selection may not correlate well with the final performance. In contrast, the wrapper

approach is thorough, but it is computationally expensive because of the combinatorial na-

ture of the problem. It also connects with the learning only through the final evaluation,
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and thus information gathered during learning is wasted. The third approach represents

a trade-off between these two extremes. For example, in boosting (Schapire and Singer,

1999), features are iteratively added and their weights areadjusted in a greedy manner.

In the case of CRFs, feature selection must be efficient sincethe CRFs themselves are

expensive to evaluate. The filtering-based and embedded approaches are therefore more

suitable. The filtering approach, especially the simple frequency cut-off, is popular due to

its simplicity. However, the frequency cut-off may select popular but irrelevant features,

and as a result, the selected feature set is usually large. For example, in language modelling,

common words like ‘the’ appear almost everywhere and do not often add value to the

feature set. On the other hand, it sometimes removes rare buthighly relevant features.

An alternative to the frequency cut-off is to employ some simplified and efficient version

of the CRFs to do the feature selection task. For example, thepseudo-likelihood (Besag,

1975) can be a good simplified version of the true likelihood because of its efficiency and

consistency.

There have been some studies following the embedded approach for CRFs. A feature in-

duction method for MRF introduced in (Pietraet al., 1997), incrementally adds features

that most reduce the Kullback-Leibler divergence between the model distribution and the

empirical observations. Although this method is theoretically interesting, it is iterative and

thus requires repeated inference in MRFs, which is intractable in general. For CRFs, a

similar approach is used in (McCallum, 2003), in which some simple approximations such

as mean fields are employed to improve the feature induction speed. The author of (Mc-

Callum, 2003) reports great saving in feature set size in some large-scale NLP applications.

Another method that exploits the feature selection property of boosting has been studied in

(Altun et al., 2003a; Dietterichet al., 2004).

3.4 Applications

The early motivation of CRFs is from the area of Information Extraction (IE) (Lafferty

et al., 2001; Pintoet al., 2003; Peng and McCallum, 2004; Kristjannsonet al., 2004), in

which given a dataset (mostly texts), we extract relevant information that belongs to some

predefined types (such as proper names, locations and time).As text is inherently sequen-

tial, imposing a chain structure on the text is both effective in capturing temporal relations,

and efficient in inference and learning. As a result, CRFs have been quickly adopted for a

wide range of text processing applications, for example, part-of-speech tagging (POS) and

chunking (Sha and Pereira, 2003; Suttonet al., 2007) and semantic role labeling (Cohn

and Blunsom, 2005). More recently, the application of CRFs has been expanded to word
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alignment (Blunsom and Cohn, 2006)5, question answering (Hickl and Harabagiu, 2006),

and document summarisation (Shenet al., 2007).

In fact, CRFs are applicable to any domain that allows supervised learning and such do-

mains were previously dominated by HMMs. These include speech recognition (Gregory

and Altun, 2004; Roarket al., 2004; Gunawardanaet al., 2005; Liuet al., 2005; Morris

and Fosler-Lussier, 2006), word-segmentation (Penget al., 2004; Zhanget al., 2006a), and

activity recognition (Liaoet al., 2007; Truyenet al., 2006; Liaoet al., 2005; Sminchisescu

et al., 2006; Taycheret al., 2006; Quattoniet al., 2007; Vailet al., 2007).

Generally speaking, CRFs are suitable for labeling and segmentation of structured data,

given that the labels are available for training. Since a CRFis a conditional MRF, it is

not surprising that CRFs have been applied to traditional domains of MRF such as image

processing. Specifically, these include image segmentation and labeling, both for static

images (Kumar and Hebert, 2004; Heet al., 2004; Kumar and Hebert, 2005; Cowans and

Szummer, 2005) and video (Winn and Shotton, 2006; Loeet al., 2006). In (Torralbaet al.,

2005) a random field is used to model the contextual relation between scenes and objects

and in (Quattoniet al., 2005) object parts are connected in a hidden tree graph for object

classification. CRFs also find application in stereo vision (Scharstein and Pal., 2007).

In recent years there has been much interest incollective classification(Jensenet al., 2004;

Macskassy and Provost, 2007) in that entities are interconnected so that it is better to clas-

sify them collectively rather than individually. For example, Web pages are hyperlinked

and those that are linked often belong to the same category (Taskaret al., 2002). In this

area, CRFs are often recast as discriminative relational models (Taskaret al., 2002; Sutton

and McCallum, 2006; Truyenet al., 2007).

A summary of applications of CRFs is given in Table 3.1. Thereare a number of avail-

able CRF implementations that vary in programming languages and in support of mod-

elling, inference, learning and data pre-processing features. These include the McCallum’s

MALLET package6 for general machine learning, Sarawagi’s7 that supports semi-Markov

CRFs (Sarawagi and Cohen, 2004), and Murphy’s Matlab toolbox8 for general inference

and graphs.

5Word alignment is an essential step of statistical machine translation (Brownet al., 1993).
6http://mallet.cs.umass.edu
7http://crf.sourceforge.net
8http://www.cs.ubc.ca/˜ murphyk/Software/CRF/crf.html
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Areas Publications

(Gregory and Altun, 2004; Roarket al., 2004)
Speech recognition (Gunawardanaet al., 2005)

(Liu et al., 2005; Morris and Fosler-Lussier, 2006)
Word segmentation (Penget al., 2004; Zhanget al., 2006a)
POS tagging & phrase chunking(Sha and Pereira, 2003; Suttonet al., 2007)
Semantic role labeling (Cohn and Blunsom, 2005)

(Lafferty et al., 2001; Settles, 2004)
(Sarawagi and Cohen, 2004)

Information extraction (Peng and McCallum, 2004)
(Kristjannsonet al., 2004; Zhuet al., 2005)

Image segmentation (Kumar and Hebert, 2004; Heet al., 2004)
(Kumar and Hebert, 2005; Leeet al., 2005)
(Winn and Shotton, 2006; Loeet al., 2006)

Object recognition/classification(Torralbaet al., 2005; Quattoniet al., 2005)
Stereo vision (Scharstein and Pal., 2007)

(Liao et al., 2007; Truyenet al., 2006)
Activity recognition (Liao et al., 2005; Sminchisescuet al., 2006)

(Quattoniet al., 2007; Vailet al., 2007)
(Taycheret al., 2006)

Web page classification (Taskaret al., 2002)
Word alignment (Blunsom and Cohn, 2006)
Document summarisation (Shenet al., 2007)
Question answering (Hickl and Harabagiu, 2006)
Bioinformatics (McDonald and Pereira, 2005; Settles, 2004)

(Vinsonet al., 2007)

Table 3.1: Some selected applications of Conditional Random Fields.

3.5 Discussion and Related Background

3.5.1 Approximate Learning Methods

An implicit assumption made in the discussion of maximum likelihood learning is that we

can compute exactly the clique marginalsPr(xc|z), and the partition functionZ(z). Un-

fortunately, this only holds for tree-structured CRFs. Forgeneral CRFs, approximations

must be used. One approach is to utilise stochastic methods by accepting that quantities

required for learning can only be approximated. The other approach seeks alternative ob-

jective functions other than likelihood that can be computed exactly.
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3.5.1.1 Stochastic Gradients

The first approach typically involvesstochastic gradientmethods (Robbins and Monro,

1951; Zhang, 2004; Vishwanathanet al., 2006). Given an approximate gradient∇L(D;w),

the parameter is updated as follows

w
t+1 ← w

t + λt∇L(D;wt) (3.13)

wheret is the iteration index,λt > 0 is the learning rate. Under certain conditions of the

randomness ofL(D;wt) and the learning rate, this type of learning can be very effective.

In what follows we review a number of important techniques that implement stochastic

gradients.

Online-learning. This refers to a general learning strategy in which parameters are updated

after the trainer observes a training instance. The update rule is the same as Equation 3.13.

Even when the true gradients can be evaluated exactly, the rule is still stochastic because we

approximate the gradient of all training instancesD by the gradient of just one instance.

This learning strategy contrasts with thebatch-learningstrategy, where the parameters

are only updated after seeing all the training instances. Typically, online-learning is very

greedy, and thus is much faster but can be slightly less accurate than batch-learning. The

method is, therefore, of practical significance where speedis more important than accuracy.

This includes situations that require immediate corrections such as those in interactive

applications. A simple correction is to update parameters after a small block of training

instances, and this may stabilise the learning curve and thus improve accuracy.

Perceptron learning (Rosenblatt, 1958; Freund and Schapire, 1999; Collins, 2002). The

method updates the parameter based on the mismatch between the prediction̂xt (see Equa-

tion 3.4) and the true patternxt, i.e. x̂t 6= xt:

w
t+1 ← w

t + λ{F(xt, zt)− F(x̂t, zt)} (3.14)

It has been proved that if the data is separable, that is, there exists aŵ that satisfies

ŵ
>
F(x(l), z(l)) ≥ ŵ

>
F(x, z(l)) ∀x ∈ X , x 6= x(l), then the perceptron will achieve zero

training error after finite steps. Although the Perceptron is not designed to maximise the

conditional likelihood, it is a good approximation and often works well in practice.

Contrastive Divergence(Hinton, 2002) reduces the number of time-consuming MCMC

steps by running only a few samplings from the empirical distribution. This speeds up

training significantly because estimating the ‘correct’Pr(x|z) early during the learning

process is not necessary. However, this greedy strategy does introduce bias (Carreira-

Perpiñán and Hinton, 2005) in that it will not guarantee toconverge to the true maximum
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likelihood solution. Fortunately, it has been shown empirically that the bias is relatively

small for practical purposes (Hinton, 2002; Carreira-Perpiñán and Hinton, 2005).

3.5.1.2 Pseudo-likelihood

Pseudo-likelihood (Besag, 1975) is one of the most popular objective functions as an alter-

native to the true likelihood. In particular, we employ the following objective function

L(D,w) =

n∑

l=1

∑

i∈V(l)

log Pr(x
(l)
i |z

(l);w) (3.15)

wherePr(xi|z) =
∑

x\xi
Pr(x|z) andV(l) is the set of vertices of the graph for thel-th

data instance. Pseudo-likelihood is attractive because itis efficient, regardless of network

structures, and it is theoretically consistent under some regular conditions. In practice,

however, the pseudo-likelihood is known to overestimate the interaction between nodes,

and it may underperform methods that require approximate inference. Another drawback

is that it does not support missing variables.

We can extend the pseudo-likelihood to cover trees instead of nodes (Sutton and McCal-

lum, 2007b). Specifically, we can, therefore, use
∑

τ log Pr(xτ |N (τ), z) as an alternative

criterion to maximum likelihood, wherexτ denotes variables associated with the treeτ

embedded in the network, andN (τ) denotes neighbouring variables of the treeτ .

3.5.1.3 Reranking

Reranking (Collins, 2005) is an interesting strategy to learn CRFs with intractable struc-

tures. It is a two-step procedure:

1. In the first step, we learn a base-classifier, which is generally efficient but not as

powerful as CRFs. The base classifier can sometimes be an approximation to the

CRFs, or those methods that operate only on local variables.For each data instance

(in both training and test sets), we obtain from this base-classifier a set ofK top

predictions. TheseK outputs are used as the constrained set in the output space in

the next step.

2. In the second step, in the training phase, we learn to rerank theK possible outputs

using global constraints. Any algorithms that can produce aranked list of theK

outputs can do the job. In the testing phase, the ranker is again used to rerank theK

outputs by the base-classifier on the test data.
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For the reranking to work, the base-classifier must be strongenough so that itsK best

outputs generally cover the true output pattern or some of these outputs are at least very

close to the true output. SinceK is typically much smaller the size of the full output space,

re-ranking is very efficient.

3.5.2 Learning Criteria

In parameter estimation, although we have specifically chosen the conditional likelihood

as the objective function, it is not the only criteria. Instead, any objective function that

satisfies the following properties can be used:

• Condition 1: It is asymptotically consistent. e.g.limn→∞ ŵn = w
∗, whereŵn is the

optimal parameter when training withn data instances, andw∗ is the true parameter

if it exists.

• Condition 2: It is efficient to optimise9. Generally, this is for the practical purposes.

The efficiency comes from two sources. First, the objective function must be easy to

compute. Second, the optimisation must converge rapidly.

Condition 1, although a must from a statistician perspective, it is far from being under-

stood. The CRFs can be considered as multi-class classifiers, and the only criterion cur-

rently known to be consistent in this multi-class setting isthe conditional likelihood (Laf-

ferty and Wasserman, 2006). In addition, the analysis is expected to be much more involved

given the fact that the structured output space is typicallyexponentially large with respect

to the number of nodes in the network. The number of nodes, forexample, in the case of

syntactic analysis of text, is not fixed but dependent on sentence length. The matter is more

complicated since often the likelihood of CRFs and its gradient, which are central quanti-

ties in maximum likelihood learning, can only be approximately estimated in general. The

nature of such approximation (e.g. bias and variance), which depends on the inference

methods being used, has not been fully investigated.

Condition 2 is a common sense requirement in practice. For example, applications in

language processing may involve training over hundreds of thousands of sentences and

millions of features, and typically require to pass throughthe whole data hundreds of times.

The matter is worse if the state space is large because the time complexity is typically

quadratic in the number of states. As an example, in speech recognition the number of

states (unique words in the vocabulary) is about103 − 104.

9This is different from the concept of efficiency in statistics. We are mostly concerned about the speed of
inference and numerical optimisation.
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To date, there have been no methods that meet both of these conditions. The pseudo-

likelihood discussed in Section 3.5.1.2 has proved to be consistent under some conditions.

It is a fast method but it also often overestimates the interaction between variables in prac-

tice. In fact, while consistency is a good theoretical property, it is too hard to guarantee in

practice, so most learning methods are driven by efficiency and practical needs.

For example, in (Sutton and McCallum, 2005) a subset of variables (called pieces) is treated

as an independent data instance. This allows efficient learning and at the same time, esti-

mates the local interactions. However, since the joint model is split in pieces, its statistical

properties are hard to characterise. Surprisingly, the experiments in (Sutton and McCal-

lum, 2005) reveal that this strategy is comparable with learning the joint model with BP as

the approximate underlying inference. There are several possibilities that may justify this

result. First, it has been shown in (Sutton and McCallum, 2005) that piece-wise training

maximises the lower-bound of the true likelihood. However,the bound can be rather loose,

and it can be shown that the piece-wise training attempts to learn a different model with the

same parameter set but larger state-space. To see why, let us‘glue’ the pieces together by

some unity potential functions. Such potential functions do not add anything to the global

potential of the joint network, and thus the pieces are stillprobabilistically independent

as before. But now each original node has been split into multiple nodes, each of which

belong to a piece, we have more variables, or equivalently, alarger state-space. Learning

a larger state-space somehow provides some smoothing, but it can easily over-smooth if

there are too many pieces. In fact, the experimental resultsare compared against the usual

global likelihood method with belief propagation as underlying inference. Since BP allows

only computation of approximate likelihood and its gradient, the global training is clearly

sub-optimal. In terms of final performance, that may explainwhy piece-wise training is

reasonably good.

In Chapter 7, we provide some further treatment that corrects the ‘locality’ issue of the

pseudo-likelihood and piece-wise training but retains theefficiency.

Some other objective functions are motivated by the accuracy metrics being employed for

evaluation of the system, for example, the error rate,F -score and BLEU score (Papineni

et al., 2001). Error rates andF -scores for CRFs are studied in (Suzukiet al., 2006). Typ-

ically, the error rate is computed on a network-wise basis, but in practice, we are often

interested in label-wise prediction in that we count an error for any misclassified label.

Label-wise accuracy is considered in (Grosset al., 2007), where the objective function is

defined as

L =
n∑

l=1

∑

i∈V(l)

δ[x
(l)
i = arg max

xi

Pr(xi|z
(l))] (3.16)
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Likewise, the label-wise likelihood is advocated in (Kakadeet al., 2002)

L =

n∑

l=1

∑

i∈V(l)

log Pr(x
(l)
i |z

(l)) (3.17)

wherePr(xi|z) =
∑

x\xi
Pr(x|z). See (Altunet al., 2003b) for some experimental evalua-

tion of network-wise versus label-wise criteria.

3.5.3 Other Topics

There are other aspects of CRFs that we do not address in this thesis:

• Bayesian learning

• Structure learning

• Semi-supervised learning

• Hybrid directed/undirected models

• Hybrid discrete/continuous variables

• Cost-sensitive learning

• Imbalanced data

Bayesian learninghas been studied in (Qiet al., 2005), where the prediction on unseen

dataz is based on

Pr(x|z,D) =

∫

w

Pr(x|z,w) Pr(w|D)dw (3.18)

Thus, in the Bayesian CRFs, parameters are not estimated butaveraged out. Thus this

performs model averaging and helps to combat the overfittingproblem. Pr(w|D) is ap-

proximated by a distributionQ(w) using Expectation Propagation (Minka, 2001a).

Structure learninginvolves discovering the connectivity of the Markov network from data.

Research in this area has a quite long history, starting from(Chow and Liu, 1968), but

has mostly concerned Bayesian networks. The past few years have witnessed a substantial

interest in structure learning of Markov random fields (Parise and Welling, 2007; Mein-

shausen and Buhlmann, 2006; Banerjee and Natsoulis, 2006; Wainwright et al., 2006;

Schmidtet al., 2007). However, this does not automatically translate into CRFs because the

Markov networks can vary from one data instance to another. In that situation, estimating

a common structure for all data instances does not apply.
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Another aspect issemi-supervision, or learning with some labeled instances and some un-

labeled ones (e.g. see (Chapelleet al., 2006) for a comprehensive account, and (Zhu, 2006)

for a constantly updated survey in the field). This is particularly useful in many situations

where collecting unlabeled data is fairly easy (e.g. human faces under Webcams or surveil-

lance cameras) but manual labeling is very expensive (e.g. the person’s name). Most of the

work has only involved unstructured data but the community has recently been paying con-

siderable attention to structured data (Laffertyet al., 2004; Ando and Zhang, 2005; Altun

et al., 2006; Jiaoet al., 2006; Brefeld and Scheffer, 2006; Mann and McCallum, 2007).

Originally the CRF was defined as an undirected graphical model. However, in some ar-

eas it may be beneficial to incorporate directed components into the model. Theoretically,

directed parts are just constrained versions of the undirected counterparts in that the lo-

cal conditional probabilityPr(xi|pa(i)) plays the role of the clique potentialψ(xi, pa(i))

subject to
∑

xi
ψ(xi, pa(i)) = 1. Practically, however, representing the component by a

directed subgraph is more intuitive, and the constraints may lead to better numerical stabil-

ity. Early attempts to build ahybrid representationinclude chain-graphs (Buntine, 1995)

and factor-graphs (Frey, 2003).

Most of the work involving CRFs so far has assumed discrete state variables. Much of

the probabilistic consistency for the discrete cases can beapplied for thecontinuous vari-

ables. However, here is no straightforward marginalisation overvariables even in contin-

uous cases because it now involves integration, which may not have any analytical form.

There has long been investigation into Gaussian random fields in general, but investigation

into Gaussian CRFs, in particular, is fairly recent (Tappenet al., 2007).

Cost-sensitive learning(Elkan, 2001) addresses theconsequenceof applying the classifiers

in the domain rather than just generic criteria such as maximum likelihood or accuracy.

This is important in decision making under uncertainty, i.e. when we want to chose an

action that maximises an expected utility, or equivalentlyto minimise an expected cost:

x̂ = arg min
x

∑

x′

Pr(x′|z)C(x, x′) (3.19)

whereC(x, x′) is the cost of choosingx when the true output isx′. There has been consid-

erable research in this area for unstructured output classifiers, but we are only aware of an

attempt in (Sen and Getoor, 2006) for CRFs.

Imbalanced data(e.g. see (Japkowicz, 2002)) refers to situations when the class label dis-

tribution is far from uniform, i.e. some labels are much morepopular than others. For

example, in images, it is often the case that the objects of interest are quite small compared

to the background. Prior work, which has mostly addressed the problem in classifiers

with unstructured output, can be roughly divided into two groups: those with re-sampling
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for correcting the class distribution and those with cost-modification for introducing more

weight for rare classes. However, these methods cannot be applied directly for structured

classifiers such as CRFs because the interaction between labels is not considered. Only

very recently there have been some indirect attempts for this class imbalance in structured

output spaces. Sen and Getoor (2006) address cost-sensitive learning, which can be consid-

ered as one technique to deal with class imbalance problem. The authors propose a method

based on weighted features to bias the cost. Another work addressing the problem in a

slightly different angle is (Phanet al., 2005), which aims at discovering rare associations.

The work in (Leeet al., 2005) proposes a hybrid method called Support vector random

field (SVRF) that combine SVMs as a local classifier and CRFs asa global classifier. The

authors claim that the SVRF is insensitive to the class imbalance.

3.6 Closing Remarks

In summary, the Conditional Random Field is a recent major advance in statistical ma-

chine learning where the combination between graphical models and machine learning

is just about ‘right’. It is a proven machinery for many real-world tasks in that it often

achieves competitive results against state-of-the-art methods. Chapters 4 and 5 demon-

strate its applications further in the area of accent restoration and collaborative filtering,

respectively.

So what are the drawbacks of CRFs? There are many, some of which we have pointed out in

this chapter. The main computational bottleneck is still the intractability of the underlying

graphical models for complex structures. We provide some answers to this problem from

the learning perspective in Chapter 7.

Second, the development of CRFs so far has only concentratedon hand-specified features.

To be truly effective we should incorporate into CRF the feature discovery capacity from

unsupervised learning, as well as feature selection. We address the feature selection prob-

lem in Chapter 6.

Third, accurate labels are required so that learning can proceed, and this is too expensive in

many domains. There should be some mechanism to at least reduce the need for labeling.

One approach that we adopt as the common theme of this thesis is partially supervised

learning, where only part of the labels in the network are needed. For example, in hand

labeling of images the areas around segment boundaries are difficult to handle, so they can

be left unlabeled.

Certainly, there is much room for exploring the network structures in the CRFs to make

the best out of the framework. In Chapters 8 and 9, we generalise the commonly used
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chain-CRFs into hierarchical CRFs in a way that each node in aMarkov chain is a Markov

chain by itself.



Chapter 4

Statistical Vietnamese Accent

Restoration

4.1 Introduction

In this chapter we present a novel application of sequentialCRFs to the problem of accent

restoration, which is a common task for many languages whose‘accents’ are not repre-

sented by the standard alphabet set in writing. This chapteris limited to the Vietnamese

language.

The Vietnamese writing system utilises a set of Latin alphabets, a small set of new alpha-

bets and a set of five tonal marks. A sentence is a sequence of text units known assyllables

separated by white spaces. One or more consecutive syllables constitute a word, which

is the smallest meaningful text unit. Thus, word boundariesare not predefined by white

spaces. Vietnamese accent arises when a syllable contains one or more new alphabets, or

when it is combined with none or one of the five tonal marks.

Most keyboards today are designed for English, which means without further help, we can

only type the Latin alphabet but the accents are lost. For example, a Vietnamese sentence:

ba. n hãy tȟam Vîe. t Nam ngay ĥom nay(‘please visit Vietnam today’) will be written as an

accent-less sequence asban hay tham Viet Nam ngay hom nay. It is annoying and error-

prone for human readers to decode such messages. The accent-less termngaycan easily

lead to confusion between the original Vietnamesengay(‘now’ or ‘straight’) and the plau-

sible alternativengày (‘day’). The current solution for this problem is to use typing-aided

software to automatically assign the correct Vietnamese characters when users type in a

certain pattern. However, some keying methods such asTelex1 require a great deal of

1Telex is a technique that encodes accents using extra characters, for example, by typing fast enough, one
convertsngayf into ngàyandhoominto hôm.
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practice to master since it is quite unintuitive from English keyboards. Yet another moti-

vating application is with small footprint devices such as Pocket PCs, where there exists

some word processing software with handwriting recognition capability so that users need

only to write by hand directly on the screen. Again, most of the handwriting recognition

software currently works only for English characters.

It is therefore necessary to restore the accents automatically from English-like texts for

reducing the typing burden and for backward transliteration (Knight and Graehl, 1998).

The difficulty of this problem is due to the high ambiguity of the accent-less text and it

cannot be tackled locally because the context of a syllable is also in the accent-less form.

Therefore, methods that look for local patterns between syllables like those in contextual

spelling correction (Golding and Roth, 1999) may not work properly.

4.2 Background on Accent Restoration

An accent-less sentencez = (z1, z2, ..., zT ) can be considered as a result of forward-

transliteration of an original Vietnamese sentencex = (x1, x2, ..., xT )

zt = L(xt) (4.1)

whereL(xt) is a deterministic function for removing the accent of the Vietnamese syllable

xt, andT is the length of the sentencez. Thus eachxt would yield a uniquezt.

The restoration is defined as finding the Vietnamese sequencex̂ given the accent-less se-

quencez

x̂|z = arg max
x∈V(z)

Pr(x|z) = arg max
x∈V(z)

Pr(x)Pr(z|x)

= arg max
x∈V(z)

Pr(x) (4.2)

whereV(z) is the space of all Vietnamese sentences whose accent-less form is z, i.e.

V(z) = {x|zt = L(xt)∀t ∈ [1, T ]}, andPr(z|x) = 1 since the forward transliteration

is deterministic.

There are thus two main problems: (1) how to efficiently and effectively estimate the lan-

guage modelPr(x), and (2) how to define the search spaceV(z). In subsequent subsections

we present some solutions for the first problem. The second issue is quite straightforward

since for each accent-less syllablezt we only need to build aproposal setof Vietnamese

syllablesV(zt) = {xt}. From the corpus, we add a Vietnamese syllablext to V(zt) if

L(xt) = zt andxt is not yet inV(zt). The good news is that the number of Vietnamese

syllables is quite small (of the order of104), and the number of accent-less syllables is even
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smaller (of the order of103), and each accent-less syllable corresponds to 1-24 Vietnamese

syllables.

4.2.1 N -gram Models

Clearly, since we do not have enough resources to enumerate all possible sentences in Viet-

namese, approximation must be made. Options include the localn-gram models (Manning

and Schütze, 1999, ch. 6) and others with global constraints. The simplest method is the

unigram modelPr1 that assumes the complete factorisation:

Pr1(x) ≈
∏

t∈[1,T ]

Pr(xt) (4.3)

where each unigram is a syllable. However, syllables by themselves do not generally have

meaning. They make sense only if they belong to words. Thus, modelling the relation

between unigrams is more important. The bigram modelPr2 and the trigram modelPr3

capture this better:

Pr2(x) ≈ Pr(x1)
∏

t∈[2,T ]

Pr(xt|xt−1) (4.4)

Pr3(x) ≈ Pr(x1, x2)
∏

t∈[3,T ]

Pr(xt|xt−1, xt−2) (4.5)

The bigram model is actually a special case of the first-orderHMM (see Section 2.4.3.1 for

description and Figure 2.4 for illustration) where the emission probability is one (Pr(zt|xt) =

1). Likewise, the trigram model is a second-order HMM.

Then-gram distributions can be estimated by simply counting thenumber of occurrences

as usual. Due to data sparseness we need to smooth over the distribution to assign a non-

zero probability to unseenn-grams. In this study, we employ simple Laplace smoothing,

which is given as

Pr(xt−n+1, ..., xt) =
C(xt−n+1, ..., xt) + 1

Nn + |Vn|
(4.6)

whereC(xt−n+1, ..., xt) is the number of occurrences of then-grams,Nn is the total occur-

rences of alln-grams,|Vn| is the estimated vocabulary size of then-grams of the language.

Thus an unseenn-gram will be given the uniform probability of1/|Vn|.

Given these three simple models we can proceed to estimate the corresponding conditional

probabilities from the data. On the other hand, the bigrams and trigrams model the lan-

guage better, but reliably estimating the bigrams and trigrams would require a very large
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data set. One effective strategy is to join the three schemestogether in a Product-of-Expert

(PoE) approach (Hinton, 2002):

Pr(x) =
1

Z
Pr1(x)

w1Pr2(x)
w2Pr3(x)

w3 (4.7)

wherew1, w2, w3 ≥ 0 are the weights of the component models, andZ is the normalisation

constant. The beauty of this approach is that the computational complexity is the same as

its components, whilst we can adjust the contribution of thecomponents by tuning the extra

parametersw1, w2, w3. The distribution by the PoE is often more peaked than the compo-

nent parts. For example, if the three component models agreeon a particular sentencex,

the PoE would yield a high probability. Another important property is that if the trigram

model is not discriminative about a particular sentence, while the bigram and the unigram

are, the resulting PoE still assigns a reasonable probability to that sentence.

4.2.2 Related Work

Previous research has addressed the accent restoration problem for other languages such as

Spanish (Yarowsky, 1994), the Latinised Chinese called Pinyin (Wan and Verspoor, 1998).

We can consider this problem as a form of backward transliteration (Knight and Graehl,

1998; Li et al., 2004) which aims to recover the original form of transliterated words.

The work in this area is still limited, and seems to focus on a narrow set of proper names

and technical terms transliterated between different languages such as Japanese/Chinese

and English. An example is to recover the original English words (such ascomputer,

Washington) from the Japanese transliteration (Knight and Graehl, 1998). Our work, in

contrast, is to recover the whole original Vietnamese sentences from the accent-less forms.

At a larger scale, it is a special case of machine translation(Brownet al., 1993) converting

accent-less Vietnamese into correct Vietnamese. Fortunately, the accent restoration prob-

lem is expected to be far easier than the translation, because the mapping is word-for-word

and no alignments are needed. Moreover, it falls into the lexical ambiguity category, where

each accent-less syllable can correspond to many possible Vietnamese alternatives. From

this perspective the problem can also be cast as aword sense disambiguationproblem (Ide

and Veronis, 1998), where each alternative roughly plays the role of a ‘sense’.

4.3 Modelling using Conditional Random Fields

Then-gram models and their PoE ensemble described in the previous subsection do not

exploit the fact that we do not need to model the whole language space of all possible
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Figure 4.1: A second-order CRF.

sentences (see Equation 4.2). Rather, for each accent-lesssentencez, we need only to

pay attention to the restricted subspaceV(z). More specifically, the size of the whole

language space is the number of combinations of words in the vocabulary, the sentence

length, and the permutation of word order in the sentence. Onthe contrary, the subspace

V(z) is limited to the specific sequence length and word order ofz, and only a subset

of vocabulary, because the maximum number of accent alternatives for each accent-less

unigram is 24. Furthermore, the weight vector in the PoE (Equation 4.7) should be learned

automatically from the data.

The conditional nature of the CRFs allows us to directly model the distributionPr(x|z),

and therefore deals only with the subspace{x|x ∈ V(z)}

Pr(x|z) =
1

Z(z)

∏

c

ψc(xc, z)

whereZ(z) =
∑

x∈V(z)

∏
c ψc(xc, z). In this study, we employ CRFs with second-order

Markov chains (see Section 2.4.4 for description and Figure4.1 for illustration). Thus the

clique potentials are of the formψt(xt, xt+1, xt+2, z), wherext ∈ V(zt), t ∈ [1, T − 2].

More specifically, we have

ψt(xt, xt+1, xt+2, z) = exp{wk1fk1(xt, z) + wk2fk2(xt, xt+1, z) + wk3fk3(xt, xt+1, xt+2, z)}

wherefk1(xt, z), fk2(xt, xt+1, z) andfk3(xt, xt+1, xt+2, z) are binary unigram, bigram and

trigram features, respectively. The features are given as

fk1(xt, z) = δ[C(xt) > n1]δ[xt ∈ V(zt)]

fk2(xt, xt+1, z) = δ[C(xt, xt+1) > n2]δ[xt ∈ V(zt)]δ[xt+1 ∈ V(zt+1)]

fk3(xt, xt+1, xt+2, z) = δ[C(xt, xt+1, xt+2) > n3]δ[xt ∈ V(zt)]×

×δ[xt+1 ∈ V(zt+1)]δ[xt+2 ∈ V(zt+2)]

where{n1, n2, n3} ≥ 0 are thresholds for the number of occurrencesC(.), and δ[.] is

the indicator function. Thus, this feature design implements the simple frequency cut-off

feature selection method (see Section 3.3).

The main difference of this CRF compared to the majority of previous CRF applications
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is that the label set at each node in the Markov chain is constrained, depending on the

accent-less syllable. The problem has been partly addressed in the name ofconstrained

inference(Kristjannsonet al., 2004) in the context of interactive labeling. In (Kristjannson

et al., 2004), at decoding time, when the user of the system gives a label at a given node of

the sequence, the system responds by limiting the label set of that node to this given label,

and thus improves the performance. The constrained inference is not used at training time.

Our work can be considered as an extension to (Kristjannsonet al., 2004) by applying con-

strained inference to an arbitrary subset of labels in both training and decoding. Most other

works, especially those in the field of Information Extraction (Cowie and Lehnert, 1996;

Lafferty et al., 2001), assume a fixed set of labels is used for all nodes in thesequence.

For parameter estimation we are more interested in the online-setting in which parameters

are updated after seeing a training instance (Section 3.5.1.1). This is important because in

interactive applications the system may output several possible alternatives and let the user

select the one that is the most appropriate to the user’s context. Since the style used by

each person differs, an accent-less sentence can possibly have many plausible Vietnamese

alternatives, so letting the user correct the restoration will allow the system to gradually

adjust the parameters to suit the individual styles. In particular, we use both the stochastic

gradient and perceptron methods for parameter estimation (detailed in Section 3.5.1.1).

4.4 Experiments

4.4.1 Corpus and Pre-processing

Training size 426× 103 sentences
Testing size 28× 103 sentences
Accent-less vocabulary size1.4× 103 syllables
Number of accents 24(max), 4(average)
Vietnamese unigram set 7× 103 unigrams
Vietnamese bigram set 842× 103 bigrams
Vietnamese trigram set 1264× 103 trigrams

Table 4.1: Data statistics.

Data is collected from online news articles and split into a training set of 426K sentences

and a test set of 28K sentences. The corpus contains a wide range of subjects2. The writing

styles vary as the material comes from a dozen news sources.

For testing, we first perform the forward-transliteration to obtain the accent-less form and

2They are: politics, social issues, IT, family & life-style,education, science, economics, legal issues,
health, world, sports, arts & culture, and personal opinions.
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then decode back the Vietnamese form. The decoded text is compared against the original.

Here we do not distinguish between upper and lower cases. Learning and comparison are

done in lower-case.

Since news articles often contain foreign words, acronyms and non-alphabets, we restore

only the accents of those in a fixed accent-less vocabulary. To obtain the accent-less vocab-

ulary we remove the accents of the syllables in a Vietnamese dictionary. The accent-less

vocabulary has 1.4K syllables, which is much smaller than the typical Vietnamese set of

syllables (around 10K). Through the forward-transliteration we obtain the proposal sets,

each of which is a set of Vietnamese syllables correspondingto a particular accent-less

syllable. The number of Vietnamese syllables that share thesame accent-less form ranges

from 1 to 24, and is about 4 on average.

The performance is measured within the accent-less vocabulary. The word accuracy is the

portion of restored syllables that are correct. A restored sentence is considered correct if

all of its restored syllables (within the accent-less vocabulary) are correct.

From the training data we estimate the unigram, bigram and trigram distributions. There

are 7K unique unigrams whose accent-less form is in the accent-less dictionary. We count

a bigram if it occurs and one of the component unigrams is in the unigram list. We obtain

a bigram list of size 842K. If we remove those bigrams that happen only once in the cor-

pus, the list is reduced to 465K. Similarly, we count a trigram if it occurs and one of the

component unigrams is in the unigram list. This gives 3137K unique trigrams. Removing

the trigrams with a single occurrence, we obtain a trigram list of size 1264K.

We then apply the Laplace smoothing (see Equation 4.6), where vocabulary sizes for uni-

grams, bigrams and trigrams are estimated to be104, 7 × 108, and7 × 1013, respectively.

The unigram vocabulary estimate is from the 7K unigrams we obtain from the corpus. To

estimate the bigram vocabulary size, recall that the we count a bigram if one of its com-

ponent unigram is from the 7K unigram list, and the other unigram can be anything. We

estimate that there are about105 unique unigrams outside the list, and this number is multi-

plied with 7K to yield7×108. Multiplying this result further by105, we obtain the estimate

of the trigram vocabulary size. The main statistics of the data is summarised in Table 4.1.

4.4.2 Results

For the Product-of-Experts, we set the weight manually

• first-order PoE (unigram & bigram):w1 = 1;w2 = 1,

• second-order PoE (unigram & bigram & trigram):w1 = 2;w2 = 2;w3 = 1
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First, we perform a set of experiments with first-order models, which include the bigrams,

the first-order PoE and the first-order CRF. The baseline is the unigram model. One

problem with the bigram model is how it handles unseen bigrams. As the majority of

Vietnamese words used in writing are bigrams, this means that a bigram is not simply

a random combination of two unigrams. Therefore, most random combinations of two

unigrams should have an extremely low probability, or at least their probabilities are not

equal. The popular Laplace smoothing, on the other hand, tries to assign every unseen bi-

gram an equally small probability under the assumption of prior uniform distribution. This

is unrealistic in Vietnamese. To deal with this we assign unseen bigrams with a very low

probability, which is practically zero, so that any sequence with unseen bigrams is severely

penalised. Although this is not optimal since some plausible bigrams are cut off, it seems

to solve the problem. Luckily, the PoE does not have this problem, probably because the

unseen bigrams will be compensated by the component unigrams.

In the first-order CRF model, we use only the bigram features.For training, we run the

Perceptron for 20 iterations and the Stochastic Gradient for 15 iterations over the whole

training data set. This is obviously much slower than the bigram and first-order PoE models

since we need to estimate the bigram distribution using onlyone run through the data.

However, such a cost can be well justified by the higher performance of the CRF model

compared with the bigram and the PoE as shown in Table 4.2. In this study, we use 465K

bigram features for all the first-order models. The simple unigram model works poorly as

expected, and its performance is unacceptable for practical use. The PoE, which is just a

product of the unigram and the bigram models, works surprisingly well with significant

improvement over the bigram model. The CRF model is the winner despite the fact that it

uses no more domain information than for the PoE.

Model Word accuracy Sentence accuracy
Baseline 71.83 6.31

Bigram 90.68 30.87
1st-order PoE 92.42 37.54
1st-order CRF (Perceptron) 93.16 38.40
1st-order CRF (Stochastic Gradient) 93.68 41.95

2st-order PoE 93.45 42.72
2st-order CRF (Perceptron) 93.51 41.77
2st-order CRF (Stochastic Gradient) 94.26 44.83

Table 4.2: Word and sentence accuracy (%) of first/second-order models compared with
the baseline unigram model.

The second set of experiments is performed with second-order models. For the moment

only the second-order PoE is used with 7K unigram features, 465K bigram features and

1264K trigram features. We run the Perceptron for 10 iterations and the Stochastic Gradient

for 5 iterations. The last rows in Table 4.2 show the accuracyof the PoE and the CRF. The
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trigram model is not used since it performs fairly poorly, possibly due to the limited corpus.

Interestingly, the PoE can compensate for the poor estimateof the trigrams by using the

unigram and bigram components.

Overall for both experiment sets, the CRF trained by Stochastic Gradient performs best. We

observe that the Perceptron minimises the error overtraining data quickly as it is specifi-

cally designed for this task. However, this leads to the overfitting problem as the Perceptron

does not have any regularisation mechanism. The StochasticGradient training, on the other

hand, can control the overfitting through the Gaussian penalty term (Equation 3.6).

4.5 Closing Remarks

In this chapter we have applied the CRFs to the Vietnamese accent restoration problem.

Experimental results so far indicate that the approach is suitable and achieve good results

in the news domain.

In regard to the accent restoration problem, there are several aspects that need further in-

vestigation. One aspect of Vietnamese is that the white spaces are not indicators of word

boundaries. Most words are composed of two syllables, especially words used in writ-

ten texts. It is therefore important to incorporate the capability of word segmentation in

the language models. From our experience with the popular bigrams, we believe that we

need a better smoothing scheme for the Vietnamese language model, which is inherently

different from English.

Furthermore, there are different genres and writing styles, and it is likely that a sequence of

accent-less syllables can correspond to several plausibleVietnamese sequences, depending

on the context of use. A very challenging domain is creative writing, especially poetry,

where authors make deliberate use of word reordering and repetition to achieve stylistic

and artistic effects. The most challenging form is perhaps spoken language, especially

in online environments such as chatting and SMS, where the use of language is largely

distorted due to the constraints of writing space and personal interests.

The current study is limited to the online news domain, and clearly the results are biased

towards these reporting styles. Thus, one possible direction is to address varying styles by

training the algorithms on more data to obtain better coverage. Another option is to detect

the style through independent methods or through clustering.

An issue not addressed in this work is the analysis of syntax and semantics. It is likely

that the analysis will provide more consistent results. Through the CRF framework, for

example, it is possible to incorporate a richer set of features to address the correlation
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between sentences in the same paragraph. Also, we can createdifferent models to address

different linguistic aspects and then combine them together in the PoE approach.

In the next chapter we will demonstrate another applicationof CRF in the field of movie

recommendation. This utilises a different network structure under a setting known as Re-

lational Markov Networks, where there is only a single (complex and large-scale) Markov

network built on top of a relational database.



Chapter 5

Relational Markov Networks for Hybrid

Recommendation

5.1 Introduction

In previous chapters we have presented the Conditional Random Field and a real-world

application for Vietnamese accent restoration. A common practice when using CRFs is to

assume that the structured training instances are independently generated. Typically, we

generate a Markov network for each instance and ignore dependencies between instances.

However, this practice may not be appropriate for relational domains in which all the en-

tities are related. Such relations often do not allow partitioning the data into independent

instances.

To be more concrete, let us study a particular relational domain called automatic recom-

mendation. In this domain, we have a set of users and a set of items. A user is anyone

who purchases products (for example, books) or subscribes to services (for example, on-

line movies). An item refers to products or services that users use. Each user typically

expresses their preference over a subset of items they have been using. Based on the pref-

erences, the recommender system will predict the next set ofpreferred items for a given

user and ratings on how much the user will like these items.

Recall that a relational domain can be represented by aschemathat defines entity types, en-

tity attributes and relations between entity types. In recommender systems, there are three

entity types:User, Item andRating (Figure 5.1). TheUser may have multiple attributes

such asAgeandSex. TheItem’s attributes may includeCategory, andDate. Rating has an

ordinalScoreattribute, which is typically a small integer from the set{1, 2, .., |S|}. Typi-

cally, in each entity of typesUser andItem, there is also anID attribute for indexing. Rela-



5.1 Introduction 71

tions between entities are realised by reference attributes pointing to other entities’ identity.

For example, the attributeRating.ByUserpoints to the user ID, andRating.OnItempoints

to the item ID.

User

IDID

Rating

Score

Date Sex

Age

OnItem

ID

ByUser

Category

Item

Figure 5.1: Schema for recommender systems.

In the relational database each entity type has multiple instances and their attributes are

filled with specific values. These constitute aninstantiationI of the schema. For example,

in the MovieLens dataset, which we will use for experiments in Section 5.3.6, there are

943 instances of theUser entity types, 1682 ofItem and 100,000 ofRating. The instanti-

ation of reference attributes defines an instantiation graph that links all the entity instances

together.

In our study we are interested in probabilistic modelling and prediction of all attributes

Rating.Scorein the instantiation. That is, we want to define a Markov network over all

the ratings. We can manually construct a CRF as in the previous chapter but the model

representation can be very expensive and is only applicablefor a particular instantiation

of the schema. For example, in recommender systems, the sizeof a rating database can

be hundreds of millions of items1. In contrast, the schema, as we have seen, can be quite

simple and is generic for any instantiation.

In this chapter we will present a method called Relational Markov Network (RMN) (Taskar

et al., 2002) that deals with this problem. The RMN exploits the compactness of the re-

lational schema to specify how the network structure of the CRF is constructed. Then in

Section 5.3, we propose the use of RMN for preference modelling and prediction in recom-

mender systems, and call the resulting model aPreference Network(PN). Differing from

previous approaches to recommendation, the PN is a joint model of all preferences and it

takes into account a variety of information, including relations between users and between

1The Netflix movie rating data has 100 millions entries [http://www.netflixprize.com].
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products, user demographics and product attributes. The model then serves as a probabilis-

tic database that supports various queries such as the most probable ratings and top-N new

items for a given user. We evaluate the PN on the movie rating database in Section 5.3.6.

5.2 Relational Markov Networks

Relational Markov Networks exploit the relational structure by providing a query language

that helps to build the Markov network structure at atemplatelevel. First, for each schema,

the RMNs define a setC of relational clique templates, and each clique template in the

setC ∈ C includes a subset of entities, a subset of relations betweenthese entities, and a

subset of attributes associated with the selected entities. A clique template can be a set of

rules (or SQL queries) that tie entities together. This doesnot depend on specific schema

instantiation. For example, in our movie rating example, the clique template can be the

same, regardless of the movie data sources being used.

The instantiated clique templateC(I) (i.e.C applied to the specific instantiationI) is a set

of cliques{c ∈ C(I)}. Thus, the set of all cliques of all templates{c|c ∈ C(I), C ∈ C}

specifies the graph structure of the Markov network.

What remains is the potential function associated with eachclique templateC. Let x be

the set of attributes in the instantiation that we want to treat as hidden state variables of

the resulting Markov network. Letz be the rest of the attributes. The clique potential that

realises the templateC, and specific cliquec defined by the instantiationC(I), therefore,

has the formψC(xc, zc), wherexc is the subset of hidden state variables in the cliquec and

zc is the set of content and reference attributes.

A Relational Markov Network defines the following conditional distribution

Pr(x|z) =
1

Z(z)

∏

C∈C

∏

c∈C(I)

ψC(xc, zc) (5.1)

Using log-linear parameterisation, we writeψC(xc, zc) = exp(w>
CfC(xc, zc)).

Thus, given an instantiationI, the RMN produces anunrolledCRF. Note that for a particu-

lar domain the same set of clique templates can be used for different instantiations. Given a

schema and a relational database, the RMN provides a set of queries to construct the CRF.

Thus, the RMN is a compact representation of the CRF. The compactness is important for

computational reasons. For example, in our study of movie ratings a standard CRF will

have a densely connected network of 100,000 nodes. Storing the network structure and

all associated potentials will be too expensive. Rather, weshould only store the tables of
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ratings, users and items and then construct the network fragments and associated potentials

on-the-fly based on the clique template specifications.

5.3 Preference Networks for Recommender Systems

5.3.1 Background on Recommender Systems
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Figure 5.2: (a) Preference matrix; (b) Correlation betweenuser 1 and user 4 are based on
common items 1 and 3 co-rated by the two users; and (c) Correlation between item 1 and
3 are based on common users 1 and 4 co-rating the two items.

Recommenders are automated tools to deliver selective information that matches personal

preferences. These tools have become increasingly important to help users find what they

need from massive amount of media, data and services currently flooding the Internet.

Commercial systems currently operating include Amazon2, Netflix3 and Google News4.

Recommender systems make recommendations based on the content of products and ser-

vices (content-based), or based on collective preferences of the crowd (collaborative fil-

tering), or both (hybrid methods). Typically, content-based methods work by matching

product attributes to user-profiles using classification techniques. Collaborative filtering,

on the other hand, relies on similarity between users (Resnick et al., 1994) or products

(Sarwaret al., 2001) and preferences the user has expressed. Since content and prefer-

ences are complementary, hybrid methods often work best when both types of information

are available (Balabanović and Shoham, 1997; Basuet al., 1998; Pazzani, 1999; Basilico

and Hofmann, 2004).

In general, the recommendation can be stated as follows: given a set ofM users, andL

items that the users can select from, letM = {xui} denote thepreference matrixwhereu ∈

2http://www.amazon.com
3http://www.netfix.com
4http://news.google.com
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{1, 2, ...,M} is the user index,i ∈ [1, 2, ..., L] is the item index, andxui is the preference

or rating of useru over itemi (Figure 5.2a). In many applications a user usually rates only

a small number of items and this makes the preference matrixM extremely sparse. For

example, in the MovieLens dataset, only about 6.3% entries in theM matrix are filled.

A common problem in recommender systems is to use all previous preferences and try

to estimate the rest of the entries inM (the preference prediction problem). In practice,

a preferencexui is expressed either explicitly when a user gives a numericalrating, or

implicitly when she chooses to read a particular news article.

Another frequent task is to return a set ofN items that the user has not expressed pref-

erence for, but may prefer if the items are presented to her. This is known as thetop-N

recommendation problem(Deshpande and Karypis, 2004). Typically the task involvessev-

eral steps. In the first step a candidate set of promising items is identified. In the second

step, these candidates are ranked in decreasing order of relevance and then the topN items

are presented to the user. The measure of relevance depends on context, for example, it

may be the probability that the user will like the item, or theexpected benefit that the user

will gain for choosing the item.

Most popular works to date address these two tasks by using some similarity measure

between related users, or between items. Users are related in the way that they co-rate

some common items. One of the most common similarity measures(u, v) between useru

and userv is Pearson’s correlation

s(u, v) =

∑
i∈I(u,v)(xui − x̄u)(xvi − x̄v)

[∑
i∈I(u,v)(xui − x̄u)2

] 1
2
[∑

j∈I(u,v)(xvj − x̄v)2
] 1

2

(5.2)

whereI(u, v) is the set of all items co-rated by usersu andv, andx̄u is the average rating

by useru. Figure 5.2b illustrates the case whereu = 1, v = 4 and I(u, v) = {1, 3}.

Prediction of preference of an unseen item for a given user can be computed as (Resnick

et al., 1994)

xui = x̄u +

∑
v∈U(i) s(u, v)(xui − x̄v)∑

v∈U(i) |s(u, v)|

whereU(i) is the set of all users who rate itemi. Since in the preference matrix, users and

items play equal roles, similarity between items (Sarwaret al., 2001) can also be used for

prediction

s(i, j) =

∑
u∈U(i,j)(xui − x̄u)(xuj − x̄u)

[∑
u∈U(i,j)(xui − x̄u)2

] 1
2
[∑

v∈U(i,j)(xvj − x̄v)2
] 1

2

(5.3)

whereU(i, j) is the set of all users who co-rate both itemsi andj. Figure 5.2c illustrates
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the case wherei = 1, j = 3 andU(i, j) = {1, 4}. The prediction rule in this case is

analogous to Equation 5.3 where the roles of useru and itemi are swapped.

Further constraints are often in place, for example, in user-based methods, onlyK most

similar usersv ∈ U(i) with respect to useru are selected. Typically,K ranges from 20 to

100. Another practice is to choose only positive, correlated users in the neighbourhood of

useru.

Another approach is based on non-negative matrix factorisation (NNMF) (Lee and Seung,

1999; Rennie and Srebro, 2005; Zhanget al., 2006b). The idea is that the preference

prediction problem is to fill the empty entries in the preference matrixM. We approximate

M as follows

M ≈ A = BC (5.4)

whereB = {buh} is anM × H non-negative matrix, andC = {chi} is aH × L non-

negative matrix, andH is often much smaller thanM andL. In essence, we seek a lower

dimension representation ofM, in thatB is roughly a low rank basis, andC is roughly

the projection ofM on B. A common method to determineB andC is to minimise the

following function

∑

u,i|xui>0

(xui − buhchi)
2 + µ(

∑

u,h

b2uh +
∑

h,i

c2ui) (5.5)

whereµ > 0 is a regularisation factor. Note that in the first term, we only sum over

observed entries in the preference matrix. The optimisation can be done via methods such

as gradient descent. Once we find an approximate factorisation the empty entries inM can

be filled by corresponding entries inA.

Probabilistic approaches to the recommendation problem attempt to construct models that

explain user ratings (Breeseet al., 1998; Heckermanet al., 2001; Hofmann, 2004; Marlin,

2004). Existing work has employed directed graphical models such as Bayesian networks

(Breeseet al., 1998) and dependency networks (Heckermanet al., 2001), and undirected

models such as restricted Boltzmann machines (Salakhutdinov et al., 2007). Many of other

probabilistic works perform clustering. This is an important technique for reducing the

dimensionality and noise, dealing with data sparsity and more significantly, discovering

latent structures. Here, the latent structures are either communities of users with similar

tastes or categories of items with similar features. Some representative techniques are

mixture models, probabilistic latent semantic analysis (pLSA) (Hofmann, 2004) and latent

Dirichlet allocation (LDA) (Marlin, 2004). These methods try to uncover some hidden

process which is assumed to generate items, users and ratings. Such a generative process,

on one hand, is intuitive and expressive in the way that it expresses prior belief, but on the
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other hand may not reliably ‘explain’ the data well.

Another important class of methods are from machine learning. These methods map the

recommendation into a classification problem (Billsus and Pazzani, 1998; Basuet al., 1998;

Zhang and Iyengar, 2002; Basilico and Hofmann, 2004; Zitnick and Kanade, 2004). One

of the key observations made is that there is some similaritybetween text classification and

rating prediction (Zhang and Iyengar, 2002). There are two ways to convert collaborative

filtering into a classification problem (Billsus and Pazzani, 1998). The first is to build a

model for each item, and ratings by different users are treated as training instances. The

other builds a model for each user, and ratings on different items by this user are considered

as training instances (Breeseet al., 1998). These treatments, however, are complementary,

and there should therefore be a better way to systematicallyunify them (Basuet al., 1998;

Basilico and Hofmann, 2004). That is, the pairs (user,item)are now treated as indepen-

dent training instances. However, the assumption that training instances are independently

generated does not hold in collaborative filtering. Rather all the ratings are interconnected

directly or indirectly through common users and items.

5.3.2 Preference Networks

vi

user attributes item attributes

u i vj

x
uj

x
ui

x

Figure 5.3: A fragment of Preference Networks.

The main goal is to apply the RMN framework for modelling and prediction of ratings. To

that end we build a single Markov network for all ratings in the database. Since the rat-

ings reflect user’s preferences we call the resulting Markovnetwork aPreference Network

(PN). We would like the PN to integrate varieties of domain knowledge such as prior rich

information of user demographics, item content attributes, correlation information between

closed users (Resnicket al., 1994) and between related items (Sarwaret al., 2001). Given

the schema (Figure 5.1), we define the following clique templates:

1. User Identity: this specifies the association between the two attributesUser.ID and

Rating.Score, and captures how likely a user gives a particular scoring.

2. Item Identity: this specifies the association between the two attributesItem.ID and

Rating.Score, and captures how likely an item is given a particular scoring.
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3. User Type: this specifies the association between the item’s identityattributeItem.ID

and the user’s attributes such asUser.Age. It carries the likelihood that an item will

be preferred by a particular class of users (e.g. teenagers).

4. Item Category: this specifies the association between the user’s identityattribute

User.ID and the item’s content attributes such asItem.Category. For example, this

captures how likely a user would buy a particular type of product (e.g. a VIP cus-

tomer will be likely to use first-class services). Since a product may fall into multiple

categories, this template must be able to take aggregation of categories into account.

5. User Correlation: this captures the ‘hidden relations’ between any two usersif they

share common interest in a particular item. The common belief is that if two users

are both interested in some items, their tastes are similar,and that ratings by one user

are indicative of the other’s ratings (Resnicket al., 1994). The SQL query is:

SELECT rating1.Score, rating2.Score

FROM Rating rating1,Rating rating2,User user1,User user2

WHERE rating1.OnItem= rating2.OnItemand rating1.ByUser= user1.ID and rat-

ing2.ByUser= user2.ID

Figure 5.2b depicts two cliques returned by this query for user 1 and user 4.

6. Item Correlation: similar to the case of User Correlation, this template captures the

‘hidden relations’ between any two items if they are co-rated by the same user. The

idea is that if two items are co-rated by some users, then qualities of these items are

similar and that scores given to one item are informative in predicting the score of

the other item. The SQL query is:

SELECT rating1.Score, rating2.Score

FROM Rating rating1,Rating rating2,Item item1,Item item2

WHERE rating1.ByUser= rating2.ByUserand rating1.OnItem= item1.ID and rat-

ing2.OnItem= item2.ID

Figure 5.2c depicts two cliques returned by this query for item 1 and item 3.

Application of these six clique templates to the rating database results in an unrolled

Markov network, or Preference Network. Figure 5.3 depicts afragment of the PN.Rat-

ing.Scores are treated as hidden state variables. Denote byxui the state variable associated

with useru and itemi. The pair(u, i) is then the index of the network’s vertex. There

is an edge between any two ratings by the same useru, and an edge between two ratings

on the same itemi. As a result, a vertex ofxui will be connected withU(i) + I(u) − 2

other vertices. Thus, for each user, there is a fully connected sub-network of all ratings that

have been made, plus connections to ratings by other users onthese items. Likewise, for

each item, there is a fully connected sub-network of all ratings by different users on this

item, plus connections to ratings on other items by these users. The resulting networkG is

typically densely connected becauseU(i) can be potentially very large (e.g.106).
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Two-step modelling

Ideally, we would be interested in modelling all possible ratings, including those which

have not yet been in the database. In other words, the ideal model should cover all the

empty cells in the preference matrix (Figure 5.2). However,in practice, the matrix size

is extremely large (e.g.,106 × 106), making computation intractable. In addition, such

modelling is unnecessary because a user is often interestedin a moderate number of items.

As a result, we adopt a two-step strategy:

• During the learning phase, we limit to model the joint distribution over existing rat-

ings.

• During the prediction/recommendation phase we extend the model to incorporate

to-be-predicted entries without changing parameters.

5.3.3 Feature Design and Selection

Corresponding to the six clique templates defined in Section5.3.2 are feature functions

that realise the templates in real data. They areuser-identity, item-identity, user-type, item-

category, user-correlation, anditem-correlation.

5.3.3.1 Feature design

User identity

Assume that the ratings are integer, ranging from 1 to|S|. The average ratinḡxu by user

u over items rated roughly indicates the user-specific scale of the rating because the same

rating of4 may mean ‘OK’ for a regular user, but may mean ‘excellent’ fora critic. The

feature that encodes such belief is given as

fu(xui, u) = g(|xui − x̄u|) (5.6)

whereg(y) = 1 − y/(|S| − 1) is used to ensure that the feature values is normalised to

[0, 1] and|S| is the rating scale.

Item identity

Similarly, we know from the database the average ratingx̄i of item i which roughly indi-

cates the general quality of the item with respect to those who have rated it. We have the

following feature

fi(xui, i) = g(|xui − x̄i|), (5.7)
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User types

Denote byau the vector of attributes for useru. We are interested in seeing the classes of

users who like a particular itemi through the following mapping

fi(xui) = aug(|xui − x̄i|) (5.8)

Item categories

Denote byai the vector of attributes of itemi. Mapping from item attributes to user pref-

erence can be carried out through the following feature

fu(xui) = aig(|xui − x̄u|) (5.9)

User correlation

The user correlation features capture the idea that if two users rate the same item then the

ratings, after being offset by user’s mean rating, should besimilar

fu,v(xui, xvi) = g(|(xui − x̄u)− (xvi − x̄v)|) (5.10)

Item correlation

The item correlation features capture the fact that if a userrates two items, then after

offsetting the goodness of each item, the ratings should be similar;

fi,j(xui, xuj) = g(|(xui − x̄i)− (xuj − x̄j)|) (5.11)

5.3.3.2 Feature selection

We employ the filtering approach (Section 3.3) for selectingcorrelation features. Specif-

ically, we only select those correlation features if the correlations are beyond a certain

threshold. Between users, the Pearson’s correlation in Equation 5.2 is used. Likewise, the

similarity measure in Equation 5.3 is employed as correlation between items. For simplic-

ity, the threshold is set to0.

It should be noted that correlation features realise correlation clique templates. Thus fea-

ture selection is equivalent to clique selection, which in turn defines the connectivity of the

Preference Network.
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5.3.4 Parameter Estimation

We limit ourselves to supervised learning in that all the ratings{xui} in the training data

are known. Since the network structure is dense we resort to the pseudo-likelihood learn-

ing method (Section 3.5.1.2). To optimise the parameters weuse the stochastic gradient

ascent procedure (Section 3.5.1.1). Not only is the stochastic gradient ascent fast, it is also

suitable for dealing with dynamic databases in an online setting where the users constantly

update the ratings. Typically, 2-3 passes through the entire data are often enough in our

experiments.

5.3.5 Prediction

Recall that we employ a two-step modelling. In the learning phase (Section 5.3.4), the

model includes all previous ratings. Once the model has beenestimated we extend the

graph structure to include new ratings that need to be predicted or recommended. Since the

number of newly added ratings is typically small compared tothe size of existing ratings,

it can be assumed that the model parameters do not need to be re-estimated.

5.3.5.1 Preference prediction

The prediction of the ratingxui for useru over itemi is given as

x̂ui = arg max
xui

Pr(xui | N (u, i), z) (5.12)

whereN (u, i) is the neighbourhood of the nodexui. The probabilityPr(x̂ui|N (xui), z) is

the measure of theconfidenceor the ranking level in making this prediction. This can be

useful in practical situations when we need high precision,that is, only ratings with high

confidence are presented to the users.

We can jointly infer the ratingsxu of given useru on a subset of itemsi = (i1, i2, ..) as

follows

x̂u = arg max
xu

Pr(xu | N (u), z) (5.13)

whereN (u) is the set of all existing ratings that are connected with ratings by useru. In

another scenario we may want to recommend a relatively new itemi to a set of promising

users, we can make joint predictionsxi as follows

x̂i = arg max
xi

Pr(xi | N (i), z) (5.14)
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whereN (i) is the set of all existing ratings that are connected with ratings on itemi. Since

the sub-networks in such joint predictions are potentiallydensely connected, it is only

feasible to apply local iterative classification methods such as Iterated Conditional Mode

(Section 2.4.7.1), mean fields (Section 2.4.6.3) and relaxation labeling (e.g. see (Pelillo

and Refice, 1994)).

5.3.5.2 Top-N recommendation

In order to provide a list of top-N items to a given user, the first step is usually to identify

a candidate set of promising items. Then in the second step werank and choose the bestN

items from this candidate set according to some measure of relevance.

Identifying the candidate set.

This step should be as efficient as possible and the candidateset should be relatively small

compared to the number of items in the database. There are twocommon techniques used

in user and item-based methods. In the user-based technique, for each user we identify the

set ofK most similar users, and then take the union of all items ratedby theseK users.

Then, we remove from the union those items that the user has previously rated. In the

item-based technique (Deshpande and Karypis, 2004), for each item the user has rated we

select theK best similar items that the user has not rated. Then, we take the union of all

similar items.

Indeed, ifK → ∞, or equivalently, we use all similar users and items in the database,

then the item sets returned by the item-based and user-basedtechniques areidentical. To

see why, we show that every candidatej returned by the item-based technique is also the

candidate by the user-based technique, and vice versa. Recall that a pair of items is said to

be similar if they are jointly rated by the same user. LetI(u) is the set of items rated by

the current useru. So for every itemj /∈ I(u) similar to itemi ∈ I(u), there must exist a

userv 6= u so thati, j ∈ I(v). Sinceu andv jointly rate i, they are similar users, which

mean thatj is also in the candidate set. Analogously, for every candidate j rated by userv,

which is similar tou, andj /∈ I(u), there must be an itemi 6= j jointly rated by bothu and

v. Thusi, j ∈ I(v), and therefore they are similar. This means thatj must be a candidate

for the item-based technique.

One drawback of this neighbourhood-based method is that dueto data sparsity the candi-

date set can be limited, and may not cover what the user is really interested in. For example,

if each user rates 5 items, there are, at most, 5 users in her neighbourhood, each of whom

rates 4 more items. Thus the candidate set has at most 20 items.

In our Preference Networks, the similarity measure is replaced by the correlation between
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users or between items. The correlation is in turn captured by the corresponding correla-

tion parameters. Thus, we can use either the user-user correlation or item-item correlation

to identify the candidate set. Furthermore, we can also use both the correlation types and

take the union of the two candidate sets.

Ranking the candidate set.

The second step in the top-N recommendation is to rank the candidates according to some

scoring methods. Ranking in the user-based methods is oftenbased on the popularity of

the item, i.e. the number of users in the neighbourhood who have rated the item. Ranking

in the item-based methods (Deshpande and Karypis, 2004) is computed by considering not

only the number of raters but the similarity between the itembeing ranked and the set of

items already rated by the user.

Under our Preference Networks formulation, we propose to compute the change in system

energy and use it as the ranking measure. Our PN can be thoughtof as some stochastic

physical system whose energy is related to the conditional distribution as follows

Pr(x|z) =
1

Z(z)
exp(−E(x, z)) (5.15)

whereE(x, z) = −w
>
F(x, z) is the system energy. Thus the lower the energy the system

statex has, the more probable the system is in that state. Denote byt = (u, i) the index of

node in the Preference Network. Since the features are function of attributes at node and

of pairwise interaction between nodes, the system energy isthe sum of node-based energy

and interaction energy

E(x, z) =
∑

t∈V

Et(xt, z) +
∑

(t,t′)∈E

Et,t′(xt, xt′z)

Recommending a new itemi to a given useru is equivalent to extending the system by

adding new rating nodext = xui. The change in system energy is therefore the sum of

node-based energy of the new node, and the interaction energy between the node and its

neighbours.

∆E(xt, z) = Et(xt, z) +
∑

t′∈N (t)

Et,t′(xt, xt′ , z)

whereN (t) is the neighbourhood of nodet. For simplicity, we assume that the state of the

existing system does not change after the node addition. Typically, we want the extended

system to be in the most probable state, or equivalently the system state with lowest energy.

This means that the node that causes the most reduction of system energy will be preferred.

Since we do not know the correct statext of the new nodet, we may guess by predicting
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x̂t (using Equation 5.12). Let us call the energy reduction by this method themaximal

energy change. Alternatively, we may compute theexpected energy changeto account for

the uncertainty in the preference prediction

E[∆E(xt, z)] =
∑

xt

P (xt|N (t), z)∆E(xt, z) (5.16)

5.3.6 Results

5.3.6.1 Data and Experimental setup

We evaluated our method on the MovieLens data5, collected by the GroupLens Research

Project at the University of Minnesota from September 19th,1997 through April 22nd,

1998. We used the dataset of 100,000 ratings (1-5 scale). This has 943 users and 1682

movies. The data is divided into a training set of 80,000 ratings and the test set of 20,000

ratings. The training data accounts for 852,848 user-basedand 411,546 item-based corre-

lation features.

We transform the content attributes into a vector of binary indicators. Some attributes such

as sex are categorical and thus are dimensions in the vector.Age requires some segmen-

tation into intervals: under 18, 18-24, 25-34, 35-44, 45-49, 50-55, and 56+. We limit user

attributes to age, sex and 20 job categories6, and item attributes to 19 film genres7. Much

richer movie content can be obtained from the Internet MovieDatabase (IMDB)8. Then we

normalise the binary vectors by dividing it to the number of active vector elements. This

makes the content features less sensitive to the amount of available content information.

5.3.6.2 Accuracy of rating prediction

For comparison we implement three methods described in Section 5.3.1: the user-based

Pearson’s correlation, the item-based correlation method, and the non-negative matrix fac-

torisation. For correlation methods only positive correlations are used for prediction. For

matrix factorisation the gradient descent was employed. Weset the regularisation parame-

ter asµ = 0.01 and the learning rate of5×10−4. We experiment with different rank values

H and then choseH = 5. The gradient descent was stopped after 100 iterations.

5http://www.grouplens.org
6Job list: administrator, artist, doctor, educator, engineer, entertainment, executive, healthcare, home-

maker, lawyer, librarian, marketing, none, other, programmer, retired, salesman, scientist, student, technician
and writer.

7Film genres: unknown, action, adventure, animation, children, comedy, crime, documentary, drama,
fantasy, film-noir, horror, musical, mystery, romance, sci-fi, thriller, war and Western.

8http://us.imdb.com
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Method MAE 0/1 Error

User-based 0.720 0.590
Item-based 0.717 0.592
NNMF 0.718 0.590
PN 0.693 0.572

Table 5.1: Mean absolute error (MAE) of recommendation methods on MovieLens data.
NNMF = Non-negative Matrix Factorisation, PN = Preference Network.
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Figure 5.4: (a) Mean absolute error (MAE) and (b) mean 0/1 error of recommendation
methods with respect to training size of the MovieLens data.PN-content: PNs with
content-based features only, PN-correlation: PNs with correlation-based features only, PN-
all: PNs with all features, and NNMF: Non-negative matrix factorisation.

For the PNs, in the training phrase, we set the learning rateλ = 0.001 and the regularisation

termσ = 1. Good performance is obtained after 2 iterations.

Two metrics are used: the mean absolute error (MAE)

∑

(u,i)∈T ′

|x̂ui − xui|/(|T
′|) (5.17)

whereT ′ is the set of rating indices in the test data, and the mean 0/1 error

∑

(u,i)∈T ′

δ(x̂ui 6= xui)/(|T
′|) (5.18)

In general, the MAE is more desirable than the 0/1 error because making exact predictions

may not be required and making ‘close enough’ predictions isstill helpful. As item-based

and user-used algorithms output real ratings, we round the numbers before computing the

errors. Results shown in Table 5.1 demonstrate that the PN outperforms all other methods.

Sensitivity to data sparsity
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To evaluate methods against data sparsity we randomly subsample the training set, but

fix the test set. We report the performance of different methods using the MAE metric

in Figure 5.4a and the mean 0/1 errors in Figure 5.4b. As expected, the purely content-

based method deals with the sparsity in the user-item ratingmatrix very well, i.e. when

the training data is limited. However, as the content we use here is limited to a basic set

of attributes, more data does not help the content-based method further. The correlation-

based method (purely collaborative filtering), on the otherhand, suffers severely from the

sparsity, but outperforms all other methods when the data issufficient. Finally, the hy-

brid method, which combines all the content, identity and correlation features, improves

the performance of all the component methods, both when datais sparse, and when it is

sufficient.

5.3.6.3 Accuracy of top-N list

We produce a ranked list of items for each user in the test set so that these items do not

appear in the training set. When a recommended item is in the test set of a user, we call

it is a hit. For evaluation, we employ two measures. The first is theexpected utilityof the

ranked list (Breeseet al., 1998), and the second the MAE computed over the hits. The

expected utility takes into account the positionj of the hit in the list for each useru

Ru =
∑

j

1

2(j−1)/(α−1)
(5.19)

whereα is the viewing half-life. Following (Breeseet al., 1998), we setα = 5. Finally,

the expected utility for all users in the test set is given as

R = 100

∑
uRu∑

uR
max
u

(5.20)

whereRmax
u is computed as

Rmax
u =

∑

j∈I′(u)

1

2(j−1)/(α−1)
(5.21)

whereI ′(u) is the set of items of useru in the test set.

For comparison, we implement a user-based recommendation in that for each user we rank

the item based on the number of times it is rated by other (positively) correlated users.

Table 5.2 reports results of Preference Network using ranking measure of maximal energy

change and expected energy change to produce the top 20 item recommendations.

We vary the rate of recall by varying the value ofN , i.e. the recall rate typically improves

asN increases. We are interested in how the expected utility andthe MAE changes as
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Method MAE Expected Utility

User-based 0.669 46.61
PN (maximal energy change)0.603 47.43
PN (expected energy change)0.607 48.49

Table 5.2: Performance of top-20 recommendation. PN = Preference Network.

a function of recall. The expected energy change is used as the ranking criteria for the

Preference Network. Figure 5.5a shows that the utility increases as a function of the recall

rate and reaches a saturation level at some point. Figure 5.5b exhibits a similar trend. It

supports the argument that when the recall rate is smaller (i.e.N is small), we have more

confidence on the recommendation. For both measures, it is evident that the Preference

Network has advantages over the user-based method.
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Figure 5.5: Expected utility (a) and Mean absolute error (b)as a function of recall. The
lager utility the better. The smaller MAE the better. PN = Preference Network.

5.4 Closing Remarks

This chapter has presented Relational Markov Networks, a compact representation of CRFs

in relational domains. We have also applied the RMN to recommendation systems. The

whole rating database was modelled by a single Markov network to best exploit the inter-

dependency between variables. In terms of feature selection we employed heuristic-based

correlation measures. Interestingly, feature selection in this case is not a separate task from

network modelling, but rather, it specifies the network structure directly. As the network

structure constructed in the case study is large-scale and densely connected, the pseudo-

likelihood is used. For optimisation we use stochastic gradient ascent for efficiency and

the requirement of dynamic database updating.
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In our movie rating application we have treated the attributeRating.Scoreas acategorical

variable as in standard CRFs. In this treatment, all values are equally important. However,

in factRating.Scoreis ordinal, in that the difference between the likelihoods of two values

that are close (e.g. 1 and 2) should be smaller than that between values that are not close

(e.g. 1 and 5). Treatment of ordinal state variables for CRFsis still an open problem and

the only work we are aware of is (Mao and Lebanon, 2007).

Looking into wider contexts there are pending problems in CRFs that have not been fully

investigated. First, in the heuristics we have used for selecting features, little is known

about their effect on learning and final performance evaluation. Feature selection should

preferably be embedded in learning so that the progress can be monitored.

Second, as evidenced in the recommendation case study, learning globally with complex

network is not possible and we had to resort to the local pseudo-likelihood. This has been

known to over-estimate the interaction potentials, and thus, the performance may be sub-

optimal. Unfortunately, there have not been any generic global learning algorithms that are

both efficient and highly accurate in arbitrary networks.

And finally, the two case studies in the previous and current chapters share a common

property in that the data is essentially flat, and there are nohierarchical structures. Further,

the model structures are pre-specified and are not inferred directly from the unseen data.

In many domains, on the other hand, there is a natural hierarchy where structures are

data dependent, and thus cannot be pre-specified. These problems, however, cannot be

represented by current modelling in CRFs.

In the rest of this thesis we present investigations into these three issues.



Chapter 6

AdaBoost.CRFs for Feature Selection

with Missing Labels

6.1 Introduction

As discussed in Section 3.3, feature selection plays a crucial role in the successful imple-

mentation of a CRF-based system. In Chapters 4 and 5 we employed the filtering approach

that involves frequency cut-off and correlation measures.These methods help to reduce

the number of features significantly, but are not integratedinto the learning process and not

evaluated against the final prediction performance. Since extensive evaluation of feature

combinations in the wrapper approach is extremely expensive, even for small CRF-based

systems, it is more reasonable to embed feature selection into learning.

One particular successful learning methodology that exhibits feature selection behaviour is

boosting (Freund and Schapire, 1997; Schapireet al., 1998; Schapire and Singer, 1999). In

the boosting setting we have access to a pool of ‘base learners’, and boosting aims to boost

the predictive power of these learners by sequentially adding the weighted learners into

an ensemble. Base learners can be simple and weak (e.g. decision stumps (Schapire and

Singer, 2000)) but they can also be sophisticated (e.g. decision trees (Quinlan, 1993; Di-

etterich, 2000), neural networks (Bishop, 1995; Druckeret al., 1992), and Hidden Markov

Models (Rabiner, 1989; Yinet al., 2004)). In the context of linear classifiers, base learn-

ers are features or weighted combination of features. The sequential process of drawing

features from the feature pool generally results in a small subset of features.

In this chapter we extend the boosting framework for parameter estimation of CRFs un-

der the condition that some labels may be missing. Thus, learning ispartially supervised.

We adapt a multi-class boosting algorithm known as AdaBoost.MR (Freund and Schapire,
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1997; Schapire and Singer, 1999) for partially labeled CRFs. The resulting algorithm is

called AdaBoost.CRF. Its effectiveness is demonstrated through experiments on the prob-

lem of video-based human activity recognition, in which boosting provides a comparable

performance to maximum likelihood estimation (MLE) but with a much smaller subset of

features.

6.2 Related Work

Our work is closely related to that in (Dietterichet al., 2004), where boosting is applied

to learn parameters of the CRFs using gradient trees (Friedman, 2001). The objective

function is the log-likelihood in the standard MLE setting but the training is based on fitting

regression trees in a stage-wise fashion. The final decisionfunction is in the form of a linear

combination of regression trees. In (Dietterichet al., 2004), functional gradients of the log-

loss are used whilst we apply the original gradients of the exponential loss of AdaBoost

(Freund and Schapire, 1997; Schapireet al., 1998; Schapire and Singer, 1999). More

importantly, the paper in (Dietterichet al., 2004) does not incorporate hidden variables as

our work does.

Another work, (Torralbaet al., 2005), integrates the message passing algorithm of belief

propagation (BP) with a variant of LogitBoost (Friedmanet al., 2000). Instead of using the

per-network loss as in (Dietterichet al., 2004), the authors of (Torralbaet al., 2005) employ

the per-label loss (e.g. see (Altunet al., 2003b) for details of the two losses), that is, they

use the marginal probabilities. The work in (Torralbaet al., 2005) converts the structured

learning problem into a more conventional unstructured learning problem. The algorithm

thus alternates between a message passing round to update the local per-label log-losses,

and a boosting round to update the parameters. However, as the BP is integrated in the

algorithm, it is not made clear on how to apply different inference techniques when the BP

fails to converge in general networks.

There have been a number of attempts to exploit the learning power of boosting applied

to structured models other than CRFs, such as dynamic Bayesian networks (DBNs) (Garg

et al., 2003), Bayesian network classifier (Jinget al., 2005), and HMMs (Yinet al., 2004).

6.3 Multi-class Boosting

This section reviews a multi-class boosting algorithm known as AdaBoost.MR (Schapire

and Singer, 1999; Collinset al., 2002; Lebanon and Lafferty, 2002; Altunet al., 2003a),

based on which our work will be developed. We adopt the functional view of boosting
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from (Masonet al., 2000).

Given a pool of features{Fm(x, z)}, we seek to select a subset{Fk(x, z)}Kk=1 and corre-

sponding weights{wk}. LetG(x, z) =
∑K

k=1wkFk(x, z) be a final classifier that outputs

the prediction as follows

x̂ = arg max
x∈X

G(x, z) (6.1)

Given a training setD = {x(l), z(l)}nl=1, we would expect thatx(l) = x̂(l), and thus

G(x(l), z(l)) ≥ G(x, z(l)) (6.2)

for all x ∈ X andl = 1, 2, ..., n. Whenever there exists anx that invalidates this assertion,

the system suffers a loss. Therank lossis defined as

Lrank =
1

n

n∑

l=1

∑

x

δ[G(x, z(l))−G(x(l), z(l)) > 0] (6.3)

whereδ[.] is the indicator function. This rank loss is basically the number of possibilities

where the system misclassifies the data. The loss vanishes ifthe system correctly classifies

all the data instances.

However, the rank-loss in Equation 6.3 is difficult to minimise. Therefore we resort to the

exponential-loss, which is a smooth, convex upper-bound ofthe rank-loss:

Lexp =
1

n

n∑

l=1

∑

x

exp{G(x, z(l))−G(x(l), z(l))} (6.4)

Term-by-term comparison of Equations 6.3 and Equation 6.4 can easily verify thatLexp is

indeed the upper-bound ofLrank up to a constant.

To see the connection between the exponential loss and the log-likelihood, assume a con-

ditional distribution

Pr(x|z) =
1

Z(z)
exp(G(x, z)) (6.5)

whereZ(z) =
∑

x exp(G(x, z)) is the normalisation constant. This assumption makes

sense because the prediction rule in Equation 6.1 is identical to the Maximum A Posteriori:

x̂ = arg max
x

G(x, z) = arg max
x

Pr(x|z) (6.6)
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SubstitutingPr(x|z) into Equation 6.4 yields

Lexp =
1

n

n∑

l=1

1

Pr(x(l)|z(l))
(6.7)

This appears similar to the log-loss used in the maximum likelihood estimation

Llog =
1

n

n∑

l=1

log
1

Pr(x(l)|z(l))
(6.8)

The difference between the exponential loss and the log-loss is about the numerical scale,

because of thelog function in the log-loss. However, in (Lebanon and Lafferty, 2002)

the authors show that the two loss functions give very close results given enough data.

This paper suggests that boosting can be regarded as an (approximate) alternative for the

maximum likelihood estimation (MLE). From another relatedangle, boosting-style MLE

algorithms are derived in (Friedmanet al., 2000; Collinset al., 2002).

The learning process in boosting is iterative, in that at each stept we greedily seek an

update of the functionalG(.) that best reduces the loss:

Gt+1 ← Gt + αtFj where (6.9)

(αt, j) = arg min
α,k
Lexp(G+ αFk) (6.10)

The last equation depicts the process of incremental feature selection, i.e. only the best

feature is drawn at each step.

6.4 AdaBoost.CRFs

6.4.1 Exponential Loss for Incomplete Data

We view pattern prediction in CRFs as a classification problem. However, in this case the

number of distinct classes is exponentially large, i.e.|S||V|, where|S| is the size of label

set, and|V| is the number of nodes in the Markov network. In our partiallysupervised

setting the label setx has a visible subsetϑ and a hidden subseth, i.e. x = (ϑ, h). Given

n i.i.d observations{ϑ(l), z(l)}nl=1, maximum likelihood learning in CRFs minimises the

incomplete log-loss

Llog = −
1

n

n∑

l=1

log Pr(ϑ(l)|z(l)) =
1

n

n∑

l=1

log
1

Pr(ϑ(l)|z(l))
(6.11)
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Following the development in Section 6.3, we define a newexpected ranking lossto incor-

porate hidden variables as follows

Lrank =
1

n

n∑

l=1

∑

h

Pr(h|ϑ(l), z(l))
∑

ϑ 6=ϑ(l)

δ[∆G(z(l), ϑ, h) > 0] (6.12)

where∆G(z(l), ϑ, h) = G(z(l), ϑ, h)−G(z(l), ϑ(l), h). This rank loss captures the expected

number of times when a classification is wrong. To see why, assume that the classification

is right, thenmaxϑG(z(l), ϑ, h) = G(z(l), ϑ(l), h), implyingG(z(l), ϑ, h) < G(z(l), ϑ(l), h)

for all ϑ 6= ϑ(l). As for optimisation purposes, we will deal with a smooth, convex upper

bound of the rank loss

Lexp =
1

n

n∑

l=1

∑

h

Pr(h|ϑ(l), z(l))
∑

ϑ

exp(∆G(z(l), ϑ, h)) (6.13)

Whenϑ = x andh = ∅, i.e. all state variables are observed, this reduces to the rank loss

proposed in (Altunet al., 2003a).

A difficulty associated with this formulation is that we do not know the true conditional

distributionPr(h|ϑ(l), z(l)). First, we approximate it by the learned distribution at thepre-

vious iteration. Thus, the conditional distribution is updated along the way, starting from

some guessed distribution, for example, a uniform distribution. Second, we assume the

log-linear model as in Equation 6.5, leading to

∑

ϑ

exp(∆G(z(l), ϑ, h)) =

∑
ϑ exp(G(z(l), ϑ, h))

exp(G(z(l), ϑ(l), h))

=
1

Pr(ϑ(l)|h, z(l))

which can be fed into Equation 6.13 to obtain

Lexp =
1

n

n∑

l=1

∑

h

Pr(h|ϑ(l), z(l))

Pr(ϑ(l)|h, z(l))

=
1

n

n∑

l=1

1

Pr(ϑ(l)|z(l))
(6.14)

We can notice the similarity between the exponential loss inEquation 6.14, and the log-

loss in Equation 6.11 as log(.) is a monotonically increasing function. The difference is

the exponential scale used in Equation 6.14 with respect to features{Fk} as compared to

the linear scale in Equation 6.11.
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6.4.2 Boosting-based Learning

Applying the greedy update rules in Equations 6.9 and 6.10, we seek the best featureFj and

its coefficient to add to the ensembleGt+1 = Gt +αtFj so that the loss in Equation 6.13 is

minimised.

(αt, j) = arg min
α,k
Lexp(t, α, k), where (6.15)

Lexp(t, α, k) =
1

n

n∑

l=1

Eh|ϑ(l),z(l),t[
∑

ϑ

exp(∆Gl,t + α∆F
(l)
k )]

andEh|ϑ(l),z(l),t[.] is the expectation with respect to the distributionPr(h|ϑ(l), z(l), t); and

Gl,t andF (l)
k are shorthands forGt(z(l), ϑ, h) andFk(z

(l), ϑ, h), respectively. Note that this

is just an approximation to the loss in Equation 6.13 becausewe fix the conditional dis-

tribution Pr(h|ϑ(l), z(l), t) obtained from the previous iteration. However, this still makes

sense since the learning is incremental, and thus the estimated distribution will get closer

to the true distribution along the way. Indeed, this captures the essence of boosting: during

each round boosting selects the base learner that best minimises the following loss over the

weighted data distribution (Schapire and Singer, 1999)

(αt, j) = arg min
α,k

1

n

n∑

l=1

∑

ϑ,h

D(l, ϑ, h, t) exp(α∆F
(l)
k ) (6.16)

whereD(l, ϑ, h, t) is the weighted data distribution

D(l, ϑ, h, t) =
Pr(h|ϑ(l), z(l), t) exp(∆Gl,t)∑
l′ Pr(h|ϑ(l′), z(l′), t) exp(∆Gl′,t)

(6.17)

Since the data distribution does not containα, Equation 6.16 is identical to Equation 6.15

up to a constant.

6.4.3 Beam Search

It should be noted that boosting is a very generic framework to boost the performance of

the base learner. Thus, we can build more complex and stronger base learners by using

some ensemble of features and then later fit them into the boosting framework. However,

here we stick to simple base learners, which are features, tomake the algorithm compatible

with the MLE.

We can select a number of top features and associated coefficients that minimise the loss in

Equation 6.16 instead of just one feature. This is essentially a beam search with specified

beam sizeB.
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6.4.4 Regularisation

We employ al2 regularisation term to make it consistent with the popular Gaussian prior

used in conjunction with the MLE of CRFs. It also maintains the convexity of the original

loss. The regularised loss becomes

Lreg = Lnon−reg +
∑

k

w2
k

2σ2
k

(6.18)

whereLnon−reg is eitherLlog for MLE in Equation 6.11 orLexp for boosting in Equa-

tion 6.13. Note that the regularisation term for boosting does not have the Bayesian inter-

pretation as in the MLE setting but is simply a constraint to prevent the parameters from

growing too large, i.e. the model fits the training data too well, which is clearly sub-optimal

for noisy and unrepresentative data. The effect of regularisation can be numerically very

different for the two losses, so we cannot expect the sameσ for both MLE and boosting.

6.5 Efficient Computation

Straightforward implementation of the optimisation in Equation 6.15 or Equation 6.16 by

sequentially and iteratively searching for the best features and parameters can be impracti-

cal if the number of features is large. This is partly becausethe objective function, although

tractable to compute using dynamic programming in tree-like structures, is still expensive.

We propose an efficient approximation which requires only a few vectors and an one-step

evaluation. The idea is to exploit the convexity of the loss functionLexp(t, α, k) by ap-

proximating it with a convex quadratic function using second-order Taylor’s expansion.

The change due to the update is approximated as

∆Lexp(t, α, k) ≈
dLexp(t, α, k)

dα

∣∣∣∣
α=0

α +
1

2

d2Lexp(t, α, k)

dα2

∣∣∣∣
α=0

α2 (6.19)

The selection procedure becomes

(αt, j) = arg min
α,k
Lexp(t, α, k) = arg min

α,k
∆Lexp(t, α, k)

The optimisation overα has an analytical solution

αt = −
L′

exp

L′′
exp

(6.20)

Once the feature has been selected the algorithm can proceedby applying an additional

line-search step to find the best coefficient asαt = arg minα Lexp(t, α, j). One way to do
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so is to repeatedly apply the update based on Equation 6.20 until convergence.

Up to now we have made an implicit assumption that all computation can be carried out ef-

ficiently. However, this is not the case for general CRFs because most quantities of interest

involve summation over an exponentially large number of network configurations. Simi-

lar to (Altun et al., 2003a), we show that dynamic programming exists for tree-structured

networks. However, for general structures approximate inference must be used. This issue

will be studied in Chapter 7.

There are three quantities we need to compute: the distribution Pr(v(l)|z(l)) in Equa-

tion 6.14, the first and second derivative ofLexp(t, α, k) in Equation 6.19. For the dis-

tribution, we have

Pr(ϑ(l)|z(l)) =
∑

h

Pr(ϑ(l), h|z(l))

=
Z(ϑ(l), l)

Z(l)
(6.21)

whereZ(ϑ(l), l) =
∑

h exp(
∑

c G(z(l), ϑ
(l)
c , hc)) and Z(l) =

∑
x exp(

∑
cG(z(l), xc)).

Both these partition functions are in the form of sum-product, thus, they can be computed

efficiently using a single pass through a tree-like structure. The first and second derivatives

of Lexp(t, α, k) are then

L′
exp|α=0 =

1

n

n∑

l=1

Eh|ϑ(l),z(l),t[
∑

ϑ

exp(∆Gl,t)∆F
(l)
k ] (6.22)

L′′
exp|α=0 =

1

n

n∑

l=1

Eh|ϑ(l),z(l),t[
∑

ϑ

exp(∆Gl,t)(∆F
(l)
k )2] (6.23)

Expanding Equation 6.22 yields

L′
exp|α=0 =

1

n

n∑

l=1

1

Pr(ϑ(l)|z(l), t)

∑

ϑ,h

Pr(ϑ, h|z(l), t)∆F
(l)
k (6.24)

Recall thatF (l)
k in the CRF is decomposed into the sum of clique-based features as

F
(l)
k (z(l), x) =

∑
c f

(l)
k (z(l), xc). It follows that ∆Fk(z

(l), x) =
∑

c ∆fk(z
(l), xc). Thus

Equation 6.24 reduces to

L′
exp|α=0 =

1

n

n∑

l=1

1

Pr(ϑ(l)|z(l), t)

∑

c

∑

xc

Pr(xc|z
(l), t)∆fk(z

(l), xc) (6.25)

which now contains clique marginals and can be estimated efficiently for tree-like struc-

tures using a downward and upward sweep. For general structures, loopy belief propaga-

tion can provide approximate estimates. Details of the procedure are omitted here due to



6.6 Evaluations 96

space constraints.

However, the computation of Equation 6.23 does not enjoy thesame efficiency because

the square function is not decomposable. To make it decomposable, we employ Cauchy’s

inequality to yield the upper bound of the change (Equation 6.19) as

(∆Fk(z
(l), x))2 = (

∑

c

∆fk(z
(l), xc))

2

≤ |C|
∑

c

∆fk(z
(l), xc)

2

where|C| is the number of cliques in the network.

The update usingα = −L′
exp/L̃

′′
exp, whereL̃′′

exp is the upper bound of the second derivative

L′′
exp, is rather conservative, so it is clear that a further line search is needed. Moreover, it

should be noted that the change in Equation 6.19, due to the Newton update, is

∆L̃exp(α, k) = −0.5
(L′

exp)
2

L̃′′
exp

(6.26)

where∆L̃exp is the upper bound of the change∆Lexp due to Cauchy’s inequality, so the

base learner selection using the optimal change does not depend on the scale of the second

derivative bound of̃L′′
exp. Thus, the term|C| in Cauchy’s inequality above can be replaced

by any convenient constant.

The complexity of our boosting algorithm is the same as that in the MLE of the CRFs.

This can be verified easily by taking the derivative of the log-loss in Equation 6.11 and

comparing it with the quantities required in our algorithm.

6.6 Evaluations

6.6.1 Data and Feature Extraction

We evaluate the proposed AdaBoost.CRF algorithm on the problem of home video surveil-

lance that was previously studied in (Nguyenet al., 2005). The task is to recognise ac-

tivities performed by a person in a kitchen using two camerasmounted on two opposite

ceiling corners. There are three complex activities: SHORTMEAL, HAVE SNACK and

NORMAL MEAL. Each of these consists of some of 12 primitive activities (Table 6.1),

which are essentially trajectories between landmark points. Specifically, SHORTMEAL =

{1,2,3,4,11}, HAVE SNACK = {2,5,6,7,8}, and NORMAL MEAL = {1,2,4,9,10,11,12}.
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No. Activity No. Activity
1 Door→Cupboard 7 Fridge→TV chair
2 Cupboard→Fridge 8 TV chair→Door
3 Fridge→Dining chair 9 Fridge→Stove
4 Dining chair→Door 10 Stove→Dining chair
5 Door→TV chair 11 Fridge→Door
6 TV chair→Cupboard 12 Dining chair→Fridge

Table 6.1: Primitive activities, from Nguyenet al. (2005).

The raw data consists of 90 video sequences from which noisy coordinates of the person

at each time step are extracted using a background subtraction algorithm. The coordinate

sequences are then used as the observations since they are deemed relevant for the task

of recognising sub-trajectories. Each time step is manually annotated by two labels: the

complex and primitive activities. The labels are given at training time to learn the model

and used as ground-truth to evaluate the accuracy of the model’s prediction. The data is

divided into training and testing sub-sets with 45 sequences each.

Although the data is hierarchical, we restrict our attention to modelling and recognising

the primitive activities only. The data is divided into three subsets corresponding to the

three complex activities. Thus, the problem is inherently sequential for which a chain-

structured CRF is appropriate and thus efficient. The state space of each subset is limited

to the corresponding primitive activities.

For all the experiments reported here, we train the model using the MLE along with the lim-

ited memory quasi-Newton method (L-BFGS) and we use the proposed boosting scheme

with the help of a line search, satisfying Amijo’s conditions (Nocedal and Wright, 1999).

For regularisation, the sameσ is used for all features for simplicity and is empirically se-

lected. In the training data, only 50% of labels are randomlygiven for each data slice in

the sequence. For the performance measure, we report the per-label error and the average

F1-score over all distinct labels1.

From the raw observation of coordinates, we extract five observational features at each

time stepτ : g(z, τ) = {gm(z, τ)}5m=1. These include the(X, Y ) coordinates, theuX &

uY velocities, and the speed
√
u2

X + u2
Y , respectively. These observational features are

approximately normalised so that they are of comparable scale.

1TheF1-score is computed asF1 = 2× R× P/(R + P ), whereR is the recall rate, andP is precision.
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6.6.2 Effect of Feature Selection

We design three feature sets. The first set, calledactivity-persistence, captures the fact that

activities are in general persistent. The set is divided into data-association features

fl,m(z, xτ ) = δ[xτ = l]gm(z, τ) (6.27)

wherem = 1, .., 5, and label-label features

fl,m(z, xτ−1, xτ ) = δ[xτ−1 = xτ ]δ[xτ = l] (6.28)

Thus the set hasK = 5|S|+ |S| features, where|S| is the size of the label set.

The second feature set consists oftransition-featuresthat are intended to encode the activ-

ity transition nature as follows

fl1,l2,m(z, xτ−1, xτ ) = δ[xτ−1 = l1]δ[xτ = l2]gm(z, τ) (6.29)

Thus the size of the feature set isK = 5|S|2.

The third set, called thecontext set, is a generalisation of the second set. Observation-

features now incorporate neighbouring observation pointswithin a sliding window of width

W

gm(z, τ, ε) = gm(z, τ + ε) (6.30)

where ε = −Wl, ..0, ..Wu with Wl + Wu + 1 = W . This is intended to capture the

correlation of the current activity with the past and the future, or the temporalcontextof

the observations. The second feature set is a special case with W = 1. The number of

features is a multiple of that in the second set, which isK = 5W |S|2.

The boosting studied here has a beam sizeB = 1, i.e. each round picks only one fea-

ture to update its weight. Tables 6.2, 6.3 and 6.4 show the performance of the training

algorithms on test data of all three scenarios (SHORTMEAL, HAVE SNACK and NOR-

MAL MEAL) for the three feature sets, respectively. Note that the infinite regularisation

factorσ means that there is no regularisation. In general, sequential boosting appears to be

slower than the MLE because it updates only one parameter at atime. For the activity per-

sistence features (Table 6.2), the feature set is compact but informative enough so that the

MLE attains a reasonably high performance. Due to this compactness, the feature selection

capacity is almost eliminated, leading to poorer results ascompared with the MLE.

However, the situation changes radically for the activity transition feature set (Table 6.3)

and for the context feature set (Table 6.4). When the observation context is small, i.e.
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Table 6.2: Performance on three data sets, activity-persistence features. Here, SM =
SHORT MEAL, HS = HAVE SNACK , NM = NORMAL MEAL, Agthm = algorithm,
itrs = number of iterations, ftrs = number of selected features, % ftrs = portion of selected
features.

Data SM SM HS HS NM NM
Agthm MLE Boost MLE Boost MLE Boost
σ ∞ ∞ ∞ ∞ ∞ ∞
error(%) 10.3 16.6 12.4 14.5 9.7 17.2
F1(%) 86.0 80.2 84.8 82.1 87.9 77.4
itrs 100 500 100 200 100 200
# ftrs 30 30 30 30 42 35
% ftrs 100 100 100 100 100 83.3

Table 6.3: Performance on activity transition features

Data SM SM HS HS NM NM
Agthm MLE Boost MLE Boost MLE Boost
σ ∞ ∞ ∞ ∞ ∞ ∞
error(%) 18.6 10.1 13.0 10.8 15.0 16.5
F1(%) 75.8 89.3 86.8 85.7 81.4 80.9
itrs 59 200 74 100 53 100
# ftrs 125 57 125 44 245 60
% ftrs 100 45.6 100 35.2 100 24.5

W = 1, boosting consistently outperforms the MLE whilst maintaining only a partial

subset of features (< 50% of the original feature set). The feature selection capacity is

demonstrated more clearly with the context-based feature set (W = 11), where less than

9% of features are selected by boosting for the SHORTMEAL scenario, and less than 3%

for the NORMAL MEAL scenario. The boosting performance is still reasonable despite

the fact that a very compact feature set is used. There is therefore a clear computational

advantage when the learned model is used for classification.

6.6.3 Learning the Activity-Transition Model

In this section we demonstrate that the activity transitionmodel can be learned by both the

MLE and boosting. The transition feature sets studied previously do not separate the tran-

sitions from data, so the transition model may not be correctly learned. We design another

feature set, which is the bridge between the activity-persistence and the transition feature

set. Similar to the activity persistence set, the new set is divided into data-association
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Table 6.4: Performance on context features with window sizeW = 11

Data SM SM HS HS NM NM
Agthm MLE Boost MLE Boost MLE Boost
σ 2 2 ∞ ∞ ∞ ∞
error(%) 15.3 9.6 9.4 11.2 9.3 16.6
F1(%) 81.6 87.7 89.3 86.6 87.7 78.1
itrs 51 200 22 100 21 100
# ftrs 1375 115 1375 84 2695 80
% ftrs 100 8.36 100 6.1 100 3.0

Table 6.5: Activity transition matrix of SHORTMEAL data set

Activity 1 2 3 4 11

1 1 1 0 0 0
2 0 1 1 0 1
3 0 0 1 1 0
4 0 0 0 1 0
11 0 0 0 0 1

features, as in Equation 6.27, and label-label features

fl1,l2(xτ−1, xτ ) = δ[xτ−1 = l1]δ[xτ = l2] (6.31)

Thus the set hasK = 5|S|+ |S|2 features.

Given the SHORTMEAL data set, and the activity transition matrix in Table 6.5, the

parameters corresponding to the label-label features are given in Tables 6.6 and 6.7, as

learned by boosting and MLE, respectively.

At first sight it may be tempting to select non-zero parameters and their associated tran-

sition features, and hence the corresponding transition model. However, as transition fea-

tures are non-negative (indicator functions), the model actually penalises the probabilities

Table 6.6: Parameter matrix of SHORTMEAL data set learned by boosting

Activity 1 2 3 4 11

1 1.8 0 -5904.9 -5904.9 0
2 -5904.9 3.6 0 -5904.9 0
3 -5904.9 -5904.9 2.425 0 -5904.9
4 -5904.9 -5904.9 -5904.9 2.4 -5904.9
11 -5904.9 -5904.9 -5904.9 -5904.9 2.175
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Table 6.7: Parameter matrix of SHORTMEAL data set learned by MLE

Activity 1 2 3 4 11

1 10.81 4.311 -5.7457 -5.3469 -1.8398
2 -2.2007 15.056 3.6388 -5.6644 0.41921
3 -5.3565 -2.3131 9.3656 1.6575 -2.3736
4 -5.4103 -4.556 -4.1142 7.1332 -5.2976
11 -3.17 -0.09001 -2.9518 -4.8741 8.9128

of any configurations that activate negative parameters exponentially, sincePr(x|z) ∝

exp(wkFk(xτ−1, xτ )). Therefore, huge negative parameters practically correspond to im-

probable configurations. If we replace all non-negative parameters in Table 6.6 and 6.7 by

1, and the rest by 0, we actually obtain the transition matrixin Table 6.5. The difference be-

tween boosting and MLE is that boosting penalises the improbable transitions much more

severely, thus leading to much sharper decisions with high confidence. Note that for this

data set boosting learns a much more correct model than the MLE, with an error rate of

3.8% (F1 = 93.7%), in constrast to 15.6% (F1 = 79.5%) by the MLE without regularisation,

and 11.8% (F1 = 85.0%) by the MLE withσ = 5.

6.6.4 Effect of Beam Size

Recall that the beam search described in Section 6.4.3 allows the base learner to be an

ensemble ofB features. WhenB = K, all the parameters are updated in parallel, so it

is essentially similar to the MLE, and thus no feature selection is performed. We run a

few experiments with different beam sizesB, starting from 1, which is the main focus of

this study, to the full parameter setK. As B increases, the number of selected features

also increases. However, it is inconclusive about the final performance. It seems that

whenB is large, the update is quite poor, leading to slow convergence. This is probably

because the diagonal matrix resulting from the algorithm isnot a good approximation to

the true Hessian used in Newton updates. It suggests that there exists a good, but rather

moderate beam size that performs best in terms of both the convergence rate and the final

performance.

An alternative is just to minimise the exponential loss in Equation 6.13 directly by using

any generic optimisation method (e.g. see (Altunet al., 2003a,b)). However, this approach,

although fast to converge, loses the main idea behind boosting, which is to re-weigh the

data distribution on each round to focus more on hard-to-classify examples as in Equa-

tion 6.16. These issues are left for future investigation.



6.7 Closing Remarks 102

6.7 Closing Remarks

We have presented a scheme to exploit the discriminative learning power of the boost-

ing methodology and the semantically rich structured modelof CRFs and integrated them

into a boosting based CRF framework which can handle missingvariables. We have

demonstrated the performance of the newly proposed algorithm (AdaBoost.CRF) over the

standard maximum-likelihood frameworks on video-based activity recognition tasks. The

built-in capacity of feature selection by boosting suggests an interesting application area in

small footprint devices with limited processing.

However, in our algorithm, we have assumed that the underlying inference is efficient in

computing clique marginals. This assumption, unfortunately, only holds for a restricted

class of tree-like Markov network structures. For general networks, approximate infer-

ence must be used. The drawback of this approximation is thatsince the first and second

derivatives cannot be computed exactly, it is very hard to analyse the convergence property

of optimisation method used in the learning algorithm. For example, the updating rule in

Equation 6.20 may be corrupted. One possible approach to handle this problem of stochas-

tic derivatives is to apply stochastic gradient methods as in Chapter 4 and Chapter 5 with

the hope that the long term effect of these methods will average out the randomness intro-

duced by inference approximation. An alternative approachis to employ approximate loss

functions that support exact inference. This type of loss and convergence properties are

easier to characterise. This will be presented in the next chapter.



Chapter 7

AdaBoost.MRF for Learning CRFs with

General Structures

7.1 Introduction

In the last chapter we have addressed the problem of feature selection under partially su-

pervised conditions. The underlying inference of the learning process is assumed to be

efficient. However, this only holds for tree-like structures, and learning CRFs in general

structures is intractable.

There are two general approaches to deal with this problem: stochastic and deterministic.

Stochastic methods allow running parameter updatesevenwith inexact computation, and

they carefully control the learning process in the way that it may converge to the true

maximum likelihood solution. Deterministic methods, on the other hand, work only with

exact computation, but deterministically approximate thetrue likelihood by more efficient

objective functions.

In the stochastic approach attention is paid to the quality of the stochastic process, e.g.

convergence, bias and variance. However, under the generalnetwork setting these issues

are poorly understood. More specifically, as we have presented in Section 2.4.6, approx-

imate inference can be carried out in different ways, eitherthrough sampling or through

message passing algorithms. Unfortunately, sampling can be extremely slow to reach good

approximation and message passing algorithms are not guaranteed to converge. Under the

practical constraints of running time these methods often result in approximate quantities

required in parameter estimation, causing the optimisation loop to stop prematurely.

In the deterministic approach, since there is no approximate inference that affects the qual-

ity of the parameter updating process we can focus our attention to the parameter esti-
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mation. The art is to maintain a good balance between inference efficiency and the qual-

ity of approximation of the objective function to the true likelihood. Examples include

pseudo-likelihood (see Section 3.5.1.2 for description and Chapter 5 for an application in

recommender systems), piece-wise pseudo-likelihood and piece-wise likelihood (see Sec-

tion 3.5.2).

This chapter addresses the intractability of parameter estimation under general structures

by following the deterministic approach. We introduce a novel algorithm called Ad-

aBoost.MRF. The name comes from the fact that it is based on AdaBoost - a boosting

algorithm we have studied in the context of feature selection in the previous chapter. The

second part of the algorithm stands for Markov Random Forest, or the collection of Markov

trees induced by the graph under study. We exploit the fact that a graph is a superimposition

of many spanning trees, which are intractable jointly for inference but efficient individu-

ally. The main part of the algorithm is a method to effectively distribute the parameter

estimation task to individual trees and then combine the results at the end. We show that

under mild assumptions the AdaBoost.MRF is guaranteed to reach the unique optimum.

Furthermore, since the AdaBoost.MRF considers all the variables in the MRFs, the prob-

lem of hidden variable can also be handled effectively.

We demonstrate the effectiveness of the AdaBoost.MRF on thehome video surveillance

data described in Chapter 6. However, this time we jointly model multiple levels of activi-

ties using a grid CRF, known as Factorial CRF (FCRF) (Suttonet al., 2007) instead of the

flat CRF as in Chapter 6. Differing from previous applications of the FCRF we tackle the

problem of missing labels. We compare our AdaBoost.MRF withthe standard maximum

likelihood method, which uses Loopy BP (Section 2.4.6) and its variant (Wainwrightet al.,

2005b) as the underlying inference engines. To evaluate theeffectiveness of the discrim-

inative FCRFs against generative methods, we implement a variant of the layered hidden

Markov models (LHMMs) (Oliveret al., 2004), that has previously been applied for ac-

tivity recognition. Differing from the original LHMMs, ourvariant can handle partially

observed state variables to make it compatible with the FCRFs considered in this paper.

7.2 AdaBoost.MRF

In this section we describe AdaBoost.MRF, the boosting algorithm for parameter estima-

tion of general Markov random fields. As in the previous chapter, we consider the general

case where the state labelx may have a hidden componenth and a visible componentϑ,

that isx = (ϑ, h).
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7.2.1 Boosted Markov Random Forests

Figure 7.1: An example of Markov network (left-most) and some spanning trees (right).

Recall from Section 6.3 that given a set of weak learners{Fk(x, z)}Kk=1, boosting seeks a

linear combination that makes a strong learner as follows:G(x, z) =
∑K

k=1wkFk(x, z),

where{wk}Kk=1 are corresponding weights.

In the fully supervised setting withn i.i.d observations{x(l), z(l)}nl=1, we want to minimise

the exponential loss of Equation 6.4. In partial supervision, on the other hand, we are given

only the visible partϑ(l) of x(l) for the instancel. We propose to minimise theincomplete

loss given by

Linco =
∑

l

∑

ϑ

exp(G(ϑ, z(l))−G(ϑ(l), z(l))) (7.1)

In this setting, at stept, the strong learnerGt(ϑ, z) is updated by adding a weak-learner

F t(ϑ, z) to the previousGt−1(ϑ, z) as

Gt(ϑ, z) = Gt−1(ϑ, z) + αtF t(ϑ, z) (7.2)

whereαt is the weight of each weak learner in the ensemble. The weak learner and its

weight are chosen to minimise the loss in Equation 7.1, i.e.

(F t, αt) = arg min
F,α
Linco (7.3)

As we are interested in estimating the distributionPr(ϑ|z) we may choose the weak learner

asF (ϑ, z) = log Pr(ϑ|z). However, if we use the distribution defined over the general

Markov networks, the computation of the weak learner itselfis intractable. To address

this issue we propose the use of spanning trees as weak learners. Thus, spanning trees are

weak approximations to the whole network. The spanning tree-based learners are ‘weak’

because they are crude approximations of the true model

F (ϑ, z) = log Prτ (ϑ|z) (7.4)

whereτ is the index of the spanning trees in the network. This choicealso allows incorpo-
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ration of the hidden information since

F (ϑ, z) = log
∑

h

Prτ (ϑ, h|z) (7.5)

The strong learnerG is therefore a collection of trees, and hence we call our boosting

method AdaBoost.MRF (AdaBoosted Markov Random Forests). Figure 7.1 shows a sim-

ple example of a four-node network and some spanning trees.

7.2.2 Loss Bound using Ḧolder’s Inequality

With the tree selection procedure described in the previoussubsection, and given the fact

that the strong learner is the weighted sum of the tree log-likelihood, the incomplete expo-

nential loss (Equation 7.1) at the stept becomes

Linco =
∑

l,ϑ

exp

{
t∑

j=1

αj

(
log Prτj

(ϑ|z(l))− log Prτj
(ϑ(l)|z(l))

)}

=
∑

l

∑
ϑ

∏
j Prτj

(ϑ|z(l))αj

∏
j Prτj

(ϑ(l)|z(l))αj (7.6)

Although the evaluation of each weak learner is tractable, the sum over all visible variables

in the numerator is unfortunately intractable, except for the special case when all selected

spanning trees are the same1.

Fortunately, there exists a technique that helps to remove the summation in the numera-

tor. The idea is to apply the Hölder’s inequality (Hardyet al., 1952, Theorem 11) (see

Appendix A.2 for details) to the numerator

∑

ϑ

∏

j

Prτj
(ϑ|z(l))αj

≤
∏

j

(
∑

ϑ

Prτj

(
ϑ|z(l)

)αjrj
)1/rj (7.7)

where
∑

j 1/rj = 1 andrj > 0. If we can ensure thatαj > 0 andαjrj = 1 for all j, or

1This case can only happen if the Markov network is originallya tree or during the course of learning, no
other structures can compete with one particular tree. The former case is not interesting because any learning
method will do and we suspect that the latter case rarely happens unless the tree is a very good approximation
to the original network.
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∑
j α

j = 1, we obtain

Linco ≤
∑

l

∏
j

{∑
ϑ Prτj

(ϑ|z(l))

}αj

∏
j Prτj

(ϑ(l)|z(l))αj

=
∑

l

1∏
j Prτj

(ϑ(l)|z(l))αj

= LH (7.8)

since
∑

ϑ Prτj
(ϑ|z(l)) = 1, ∀l, j.

Using the fact thatlog Prτj
(ϑ|z) is a weak learner we can rewrite the upper bound lossLH

as

LH(G) =
∑

l

exp

{
−
∑

j

αj log Prτj
(ϑ(l)|z(l))

}
(7.9)

=
∑

l

exp

{
−Gt(ϑ(l), z(l))

}
(7.10)

It can be seen that the new bound is tractable to evaluate, andis also convex so that a global

minimum exists. We use the new lossLH for learning. The domain ofLH is therefore a

linear space of functions (Masonet al., 2000), which are{F t(ϑ, z(l)) = log Prτt
(ϑ|z(l))}

in our case.

The requirement
∑

j α
j = 1 can be met by defining the following ensemble

Gt(ϑ, z) = (1− αt)Gt−1(ϑ, z) + αtF t(ϑ, z) (7.11)

= Gt−1(ϑ, z) + αtst(ϑ, z) where (7.12)

st(ϑ, z) = F t(ϑ, z)−Gt−1(ϑ, z) (7.13)

From Equation 7.12, it can be seen thatst() plays the role of the search direction with

respect to the functionalG(). Each previous weak learner’s weight is scaled down by a

factor of1− αt as

αj
∗ ← αj(1− αt) (7.14)

for j = 1, ..., t−1, so that
∑t−1

j=1 α
j
∗ +αt =

∑t−1
j=1 α

j(1−αt)+αt = 1, since
∑t−1

j=1 α
j = 1.



7.2 AdaBoost.MRF 108

7.2.3 Weak Learners, Convergence and Complexity

7.2.3.1 Selecting the best tree

We now show how to carry out the stepwise optimisation in Equation 7.3 with the incom-

plete loss replaced by the upper boundLH(G) in Equation 7.10.

The lossLH(G) as a function ofG(ϑ, z) can be minimised by moving in the opposite

direction of gradient

∇LH(ϑ, z(l)) =

{
− exp(−Gt−1(ϑ(l), z(l))) if ϑ = ϑ(l)

0 otherwise
(7.15)

However, as the functional gradient∇LH(G) and and the functional directions in Equa-

tion 7.12 may not belong to the same function space, direct optimisation may not apply. In

(Masonet al., 2000) the authors propose to findst which points to the decreasing direction

of LH , i.e.

〈∇LH, s〉 < 0 (7.16)

Thus the best search directionst is the solution of

st = arg min
s
〈∇LH , s〉 (7.17)

The step sizeαt is determined using a line search or by setting it to a small constant

∈ (0, 1).

Let us define the weight of data instancel

Dt−1(l) =
exp{−Gt−1(ϑ(l), z(l))}∑
l exp{−Gt−1(ϑ(l), z(l))}

(7.18)

These weights play the role of data distribution which is updated as boosting proceeds.

Substituting Equation 7.15 into Equation 7.17, we have

st = arg min
s

∑

l

−Dt−1(l)s(ϑ(l), z(l)) (7.19)

As s(ϑ(l), z(l)) = F (ϑ(l), z(l))−Gt−1(ϑ(l), z(l)), minimising with respect tos(ϑ(l), z(l)) and

F (ϑ(l), z(l)) is equivalent, sinceGt−1(ϑ(l), z(l)) is a constant. Recall from Equation 7.4 that

F (ϑ(l), z(l)) = log Prτ (ϑ
(l)|z(l);wτ ), this minimisation translates to selecting the best tree
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τt and its parameterswτt
as follows

(τt,wτt
) = arg max

τ,wτ

∑

l

Dt−1(l) log Prτ (ϑ
(l)|z(l);wτ ) (7.20)

Our final result has a satisfying interpretation:the functional gradient descent step tries

to solve the maximum re-weighted log-likelihood problem (Equation 7.20) for each tree

and selects the best tree with the largest re-weighted log-likelihood. As boosting proceeds,

some trees may be more likely to be selected than others, so the accumulated weights of

trees may be different.

From Equation 7.18 it can be seen that after adding the learner st to the ensemble in Equa-

tion 7.12, the data distribution is updated as

Dt(l) ∝ exp(−Ft(ϑ
(l), z(l)))

= exp(−Gt−1(ϑ(l), z(l))− αtst(ϑ(l), z(l)))

= Dt−1(l) exp(−αtst(ϑ(l), z(l))) (7.21)

This distribution must be re-normalised as

Dt(l) ←
Dt(l)∑n
l=1D

t(l)
(7.22)

Sinceαt > 0, the weight increases ifst = F t − Gt−1 < 0. It can be interpreted thatfor a

given data instancel, if the new weak learnerF t is less likely than the average of previous

weak learnersGt−1, the AdaBoost.MRF will increase the weight for that data instance.

This is different from the usual boosting behaviour where the data weight increases if the

strong learner fails to correctly classify the instance. The AdaBoost.MRF seems to max-

imise data likelihood rather than minimise training error,and this is particularly desirable

for density estimation.

7.2.3.2 Convergence property

We now provide a formal support for the convergence of the tree selection procedure in

Equation 7.20.

The search directions satisfying the condition in Equation 7.16 is calledgradient-related

toGt (Bertsekas, 1999, p.35). We have the following convergenceresult (Bertsekas, 1999,

Proposition 1.2.3)

Proposition 2. Given aLipschitz continuitycondition on∇LH , i.e. ‖∇LH(G)−∇LH(G′)‖

≤M‖G−G′‖, for someM > 0, ∀G,G′ ∈ F , whereF is the function space, a gradient-
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related search directionst, and a reasonably (positive) small step sizeαt that satisfies

ε ≤ αt ≤ (2− ε)
|〈∇LH(Gt−1), st〉|

M‖st‖2
(7.23)

whereε is a fixed positive scalar. Then

lim
t→∞

Gt = arg min
G
LH(G) (7.24)

The Lipschitz continuity condition can be satisfied in our case becauseLH is twice differ-

entiable, and the Hessian∇2LH is bounded (Bertsekas, 1999, p. 48). The constantM is

hard to find analytically, so in our implementation we set thestep size to a small constant

αt = 0.05, and we have found it is sufficient in our experiments. The algorithm terminates

when we cannot find any weak learners that satisfies the condition in Equation 7.16.

7.2.3.3 Complexity

The running time of AdaBoost.MRF scales linearly in number of treesR. Recall from

Section 2.4.5 that inference in trees with|V| nodes,|S| states per node takesO(2|V|S2)

time. If we only consider limited spanning trees, just enough to cover the whole network,

thenR can be quite moderate. For example, for a fully connected network we just need

R = |V|, and in a grid-like network (Figure 7.3a),R = 2 is enough (Figure 7.4).

7.2.4 Combining the Parameters

Up to this point we have successfully estimated the parameters of individual trees, and thus

the strong learner in the boosting sense, which is sufficientfor classification purposes. The

prediction of output patternx given the inputz is given as

x̂ = arg max
x∈X

G(x, z) (7.25)

However, our ultimate goal is to (approximately) estimate the parameters of the original

network, which is a superimposition of individual trees. This subsection argues for a sen-

sible method for such an approximate estimation.

Recall thatG(x, z) =
∑

t α
tF t(x, z) andF t(x, z) = log Prτt

(x|z), thus

G(x, z) =
∑

t

αt log Prτt
(x|z) (7.26)
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Assume that the tree distribution also belongs to the exponential family, that is

Prτ (x|z;wτ ) =
1

Z(z;wτ )
exp(w>

τ F(x, z)) (7.27)

wherewτ is the tree parameter vector andZ(z;wτ ) =
∑

x exp(w>
τ F(x, z)). Assume

further that the trees share the same feature functionsF(x, z). We require that the parts of

the parameterswτ , that correspond to cliques outside the trees to be zero. Thus

G(x, z) =
∑

t

αt(w>
τt
F(x, z))−

∑

t

αtZ(z;wτ ) (7.28)

Let

w =
∑

t

αt
wτt

(7.29)

then Equation 7.28 becomes

G(x, z) = w
>
F(x, z) −

∑

t

αtZ(z;wτ ) (7.30)

Combining this with Equation 7.25 leads to

x̂ = arg max
x∈X

w
>
F(x, z) (7.31)

Obviously we want̂x to be the MAP assignment of the the original network, that isx̂ =

arg maxx Pr(x|z). One reasonable way is to assume thatPr(x|z) is parameterised by the

exponential family with parameterw and feature setF(x, z). The network distribution can

be written in terms of component tree distributions as

Pr(x|z) ∝ exp

{
〈
∑

t

αt
wτt

,F(x, z)〉

}
(7.32)

=
∏

t

exp
{
αt〈wτt

,F(x, z)〉
}

(7.33)

∝
∏

t

Prτt
(x|z)αt

(7.34)

As Pr(x|z) is a distribution, we have

Pr(x|z) =

∏
t Prτt

(x|z)αt

∑
x

∏
t Prτt

(x|z)αt (7.35)

Thus, the combined model is a Logarithmic Opinion Pool (LogOP) (Heskes, 1998; Pen-

nock and Wellman, 1999). Each modelPrτt
(x|z) is an ‘expert’ providing an estimate of the

true distributionQ(x|z). The aggregatorPr(x|z) is indeed a minimiser of the weighted sum
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of Kullback-Leibler divergences between theQ(x|z) and eachPrτt
(x|z) (Heskes, 1998)

Pr(x|z) = arg min
Q(x|z)

∑

t

αt
∑

x

Q(x|z) log
Q(x|z)

Prτt
(x|z)

(7.36)

The work of (Heskes, 1998) shows thatPr(x|z) is closer to the true distributionQ(x|z)

than the average of all individual expertsPrτt
(x|z). Our boosting algorithm can be seen as

an estimator of the weighting factors{αt}.

The AdaBoost.MRF is summarised in Figure 7.2.

Input : l = 1, 2, ..., n data pairs, graphs{G(l) = (V(l), E (l))}
Output : parameter vectorw
Begin

Select spanning trees for each data instance
Initialise{Dl,0 = 1/n}, andα1 = 1
For each boosting roundt = 1, 2, . . .

Train all trees given weighted data{Dt−1(l)}
/*Select the best tree distribution*/
(τt,wτt

) = arg maxτ,wτ

∑
lD

t−1(l) log Prτ (ϑ
(l)|z(l);wτ )

F t = log Prτt
(ϑ(l)|z(l))

st = F t −Gt−1

If
∑

l D
t−1(l)st(ϑ(l), z(l)) ≤ 0 Then go to Output

If t > 1 Then select the step size0 < αt < 1
/*Update the strong learner*/
Gt = (1− αt)Gt−1 + αtF t

/*Scale down the previous learner weights*/
αj ← αj(1− αt), for j = 1, ..., t− 1
/*Update the data weight*/
Dt(l)← Dt−1(l) exp(−αtst(ϑ(l), z(l)))

Dt(l)← Dt(l)∑n
l=1 Dt(l)

End
Outputw =

∑
t α

t
wτt

End

Figure 7.2: AdaBoost.MRF - AdaBoosted Markov Random Forests.

Pennock and Wellman (1999) offer an interesting discussionon the relation between Markov

networks, the LogOP, and the properties of desirable aggregators which the LogOP satis-

fies. Our method is based on the idea of superimposition, orunionof sub-networks, that

is, if a node or an edge belongs to the aggregated network it must belong to one of the

individual sub-networks. In (Smithet al., 2005) the authors consider the combination of

different models but they share the same underlying simple chain structure. Models are

trained independently and then combined using the LogOP. The model weights{αt} are

then estimated by maximising the likelihood of the combinedmodels. This approach is

fine as long as the underlying structure is tractable.
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Another related idea is the the product-of-experts (Hinton, 2002), where all weights are

unity. In (Hinton, 2002) sampling is used to overcome the intractability, which may not

converge within a limited time. By contrast, our method is efficient as it deals directly with

trees.

7.2.5 AdaBoost.MRF as Guided Search for MLE

As we rely on the boosting capacity to boost weak learners to astrong one, we do not need

to reach the maximum of the weighted log-likelihood in each round. We can simply run a

few training iterations and take the partial results as longas the condition in Equation 7.16

is met. To speedup the learning, we can initialise the parameters for each weak learner to

the previously learned values.

This procedure has an interesting interpretation for tree-structured networks. As we do

not have to select the best spanning trees anymore, the algorithm simply optimises the

re-weighted log-likelihood in a stage-wise manner. We argue that this approach can be

attractive because more information from the data distribution can be used to guide the

MLE, and it can create more diverse weak classifiers.

7.3 Evaluation

x

z

x

z

(a) FCRF (b) Collapsed FCRF

Figure 7.3: Factorial CRF with missing labels (a), and the collapsed version into a chain
(b). Filled circles and bars are data observations, empty circles are hidden labels, shaded
labels are the visible.

We evaluate the AdaBoost.MRF on the same home video surveillance dataset described

in Chapter 6. Recall that the data is hierarchical, in that the complex human activities are

composed of primitive activities. However, this property was not considered in Chapter 6

as we did not have efficient tools for learning more complex structures than chains and

trees. In this chapter we model each data sequence as a grid (see Figure 7.3). In other

words we build a two level Factorial CRF (FCRF) (Suttonet al., 2007). The bottom level

represents all 12 primitive activities and the top level 3 complex activities. Note that the
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setting of the bottom level in this chapter is different fromthat in Chapter 6 in the sense

that the state space is the union of sub-state spaces considered in Chapter 6.

Differing from the original setting of the FCRF in (Suttonet al., 2007), we allow some

missing labels in training data. Specifically, we randomly provide half the labels for each

level. For testing, the MAP assignments resulted from Pearl’s loopy max-product algorithm

are compared against the ground-truth.

In Figure 7.3 circles represent state variables (corresponding to labels) and the bottom filled

bar is the whole observation sequence (the sequence of coordinates in this case). Empty

circles represent missing labels.

Since the model hierarchy is not deep, exact estimation of marginals can be carried out

by collapsing all the states at the current time into a mega-state (see Figure 7.3b) and

performing aforward-backwardprocedure. Approximate inference using the BP (see Sec-

tion 2.4.5) and a BP-variant by Wainwright, Jaakkola and Willsky (WJW) (Wainwright

et al., 2005b) methods has the complexity ofO(2I|E||S|2), whereI is the number of mes-

sage passing rounds,|E| is the number of edges in the network, and|S| is the state size per

node. However, the number of roundsI is not known analytically and there has not been

any theoretical estimate of it yet.

In our AdaBoost.MRF, inference in the trees takesO(2|V|S2) time, where|V| is the

number of nodes in the network. Thus, for|D| data instances andR trees, the Ad-

aBoost.MRF costsO(4|D|R|V|S2) in total time for each gradient evaluation as we need to

take bothΦ(ϑ, z) andΦ(z) into account. Similarly, the BP and WJW-based ML requires

O(4|D|I|E|S2) time. In fully connected networks,|E| = 1
2
|V|(|V|+1), and in grid FCRFs,

|E| ≈ 2|V|. If we take onlyR = |V| trees for the former fully connected networks, and

R = 2 for the grids, the total complexity per gradient evaluationof the BP and WJW-

based maximum likelihood and the AdaBoost.MRF will be similar up to a constantI. We

summarise the complexities in Table 7.1.

BP/WJW AdaBoost.MRF
O(4|D|I|E|S2) O(4|D|R|V|S2)

Table 7.1: Complexity per gradient evaluation.

7.3.1 Feature Extraction

At the bottom level of the FCRFs in our study the observational feature set described in

Chapter 6 is reused. At the top level, however, instant information such as velocities offers

limited help since the complex activities often span long periods. Instead of using the real
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coordinates(X, Y ) for data association we quantize them into 24 squares in the room. We

also use much larger sliding windows withs1 = s2 = 20. To avoid computational overhead

we takeε = −s1,−s1 + 5, ..., s2 − 5, s2.

There are also state features that capture the state transition between time steps at both

levels, and features that encode the state emission from theparent state at the top level to

the child at the bottom. For simplicity we use indicator functions for both cases.

7.3.2 Spanning Trees for AdaBoost.MRF

The AdaBoost.MRF algorithm described in Figure 7.2 requires the specification of a set

of spanning trees which will be used as weak classifiers. Given the grid structure con-

sidered in this experiment there are many spanning trees that can be extracted. However,

since the nature of our problem is about temporal regularities where the slice structure is

repeated over time, it is natural to decompose the network into trees in a such a way that the

structural repetition is maintained. With this hint there are two most noticeable trees that

stand out as shown in Figure 7.4, which roughly correspond tothe top and bottom chains

respectively.

x

z

x

z

(a) Top process (b) Bottom process

Figure 7.4: (a,b) Two process view of the FCRF in activity modelling: (a) the complex
activity, and (b) the primitive.

With the same method the number of trees for dynamic models that respect the Markov

assumption is reduced drastically. If we impose further restrictions that each state can

only interact with the levels right above and below it, then the number of trees can be

manageable (e.g. see Figure 7.5 for another example).

Figure 7.5: 2-slice structures of spanning trees for the FCRFs whose 2-slice structure is
given in the left-most graph in Figure 7.1.
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7.3.3 Segmentation and Annotation Results
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Figure 7.6: Macro-averagedF1 scores at the bottom layer vs training time.

For segmenting and annotating data we apply Pearl’s loopy max-product algorithm.

For comparison we implement ML learning methods based on BP,WJW and exact in-

ference for FCRFs. We also evaluate the effectiveness of theFCRFs against the Layered

HMMs (LHMMs) (Oliver et al., 2004), where the output of the bottom HMM is used as

the input for the top HMM. Since, it is difficult to encode richfeature information in the

LHMMs without producing very large state spaces, we limit the LHMMs features to be

the discretised positions, and the differences between current position and the previous

and next ones. Our new implementation of LHMMs differs from the original in (Oliver

et al., 2004) for each HMM has been extended to handle the partiallyobserved states. All

learning algorithms are initialised uniformly. For segmentation purposes we report the

macro-averagedF1 scores on a per-label basis.

For parameter optimisation of the (re-weighted) log-likelihood, initially we used the lim-

ited memory quasi-Newton method (L-BFGS) as suggested in the CRF literature, but it

seems to be slower and it converges prematurely to poor solutions for the BP and the ex-

act inference. The conjugate-gradient (CG) method works better in our experiments. For

the Markov forests we run only two iterations of CG per boosting round with the initial

parameters from the previously learned ones as we only need to meet the condition in

Equation 7.16. The WJW inference loop is stopped if the messages have converged at the

rate of10−4 or after 100 rounds. It appears that the final performance of BP is sensitive

to the choice of convergence rates, while it is fairly stablefor the WJW. For example, the

F1 scores at the bottom level for BP are0.84, 0.87 and0.82 corresponding to the rates of
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Table 7.2: Macro-averagedF1 scores for top and bottom layers.

Algorithm Top-layer Bottom-layer

AdaBoost.MRF 0.98 0.87
BP 0.99 0.87
WJW 0.98 0.87
Exact 0.98 0.88
LHMM 0.88 0.67

10−3, 10−4 and10−5, respectively. Below we report only the case of10−4, which appears

to be the best both in terms of accuracy and speed. Learning algorithms for the FCRFs are

stopped after 100 iterations if they have not converged at the rate of10−5.

The performance of the AdaBoost.MRF and its alternatives isreported in Figure 7.6 and

Table 7.2, respectively. Overall, after enough training time, the AdaBoost.MRF performs

comparably with the ML methods based on BP and WJW. The exact inference ML method

gives slightly better results as expected, but at the cost ofmuch slower training time. How-

ever, it should be stressed that inference in our AdaBoost.MRF always converges, while it

is not guaranteed in the BP and WJW and it is generally intractable in the exact method.

The complexity per evaluation of the log-likelihood gradient is known and fixed for the Ad-

aBoost.MRF, while for the BP and the WJW, it is generally dependent on the convergence

criteria and how much the distribution is different from uniform (see Table 7.1).

Figure 7.7 shows the AdaBoost.MRF segmentation details of 22 randomly selected se-

quences which are concatenated together.

7.4 Closing Remarks

We have presented a novel method for using boosting in parameter estimation of the gen-

eral CRFs with hidden variables. The algorithm AdaBoost.MRF offers an efficient way

to tackle the intractability of the maximum likelihood method by breaking the model into

tractable trees and combining them to recover the original networks. We apply the algo-

rithm to learn the FCRF for the problem of multilevel activity recognition and segmenta-

tion.

As shown in our experiments, it appears that the AdaBoost.MRF exhibits a structure learn-

ing behaviour since it may selectively pick some trees more frequently than others, giving

higher weights to those trees. An important issue we have left unanswered is that how

to automatically select the optimal tree at each round without knowing the set of trees in

advance.
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Figure 7.7: The segmentation compared with the ground-truth at top (top graph) and bot-
tom levels (bottom graph).

There have been no exact methods (the AdaBoost.MRF is still an approximate method)

that can perform inference and learning on arbitrary multilevel data. On the other hand

there are classes of multilevel temporal data that are strictly nested, in the sense that the

life span of the higher level semantics exclusively contains the life span of the lower ones.

This constraint may give rise to more efficient inference andlearning. We will investigate

this issue in the next two chapters.



Chapter 8

Hierarchical Conditional Random Fields

for Recursive Sequential Data

8.1 Introduction

In the previous two chapters we have investigated two aspects associated with general

CRFs: feature selection and efficient learning with generalstructures. In this chapter, we

turn our attention to the third aspect,hierarchical data modelling.

Hierarchies are indeed a natural property of many domains inthat each level is anabstrac-

tion of lower level details. We have seen in the previous chapter that high level human ac-

tivities may include sub-activities at more primitive levels. In vision, objects are composed

of parts, which in turn are a combination of visual cues such as edges, dots and textures.

Similarly, in natural language processing (NLP) syntax trees are inherently hierarchical.

For example, in the partial parsing task known as noun-phrase (NP) chunking (Sang and

Buchholz, 2000), there are four levels: the sentence, noun-phrases, part-of-speech (POS)

tags and unigrams. In this setting, the sentence is a sequence of NPs and non-NPs, each

phrase is a sub-sequence of POS tags, and finally each POS tag possible consists of one

unigram (as in English) or more (as in Chinese and Vietnamese).

A popular approach to deal with hierarchical data is to builda cascaded model: each level

is modelled separately, and the output of the lower level is used as the input of the level

right above it (e.g. see (Oliveret al., 2004)). For instance, in NP chunking this approach

first builds a POS tagger and then constructs a chunker that incorporates the output of the

tagger. This approach is clearly sub-optimal because the POS tagger takes no information

of the NPs and the chunker is not aware of the reasoning of the tagger. In contrast, a noun-

phrase is often very informative to infer the POS tags belonging to the phrase. As a result,
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this layered approach often suffers from the so-calledcascading errorproblem as the error

introduced from the lower layer will propagate to higher levels.

A more holistic approach is to build a joint representation of all the levels. However,

complex models are likely to suffer inference intractability. There must be appropriate con-

straints that allow efficient inference. Fortunately thereexists a class of hierarchical models

that satisfy both the requirements of joint representationand efficiency. More specifically,

the models are recursive and sequential, in that each level is a sequence and each node in a

sequence can be decomposed further into a sub-sequence of finer grain at the lower level.

There has been substantial investigation of these types of model, especially in the area

of probabilistic context-free grammars (e.g. see (Manningand Schütze, 1999, Chapter

11)). However, grammars are often unbounded in depth and thus difficult to represent by

graphical models. A more restricted version known as hierarchical hidden Markov model

(HHMM) (Fine et al., 1998) offers clearer representation in that the depth is fixed and

the semantic levels are well defined. It can also be represented as a Dynamic Bayesian

Network (DBN) (Murphy and Paskin, 2002). Essentially, the HHMM is a nested HMM in

the sense that each state is a sub HMM by itself.

In this chapter we follow a similar route to generalise chain-structured CRFs to nested

CRFs. As a result, we propose a novel model calledHierarchical Conditional Random

Field (HCRF), which is an undirected conditional graphical modelof nested Markov chains.

Thus HCRF is the combination of the discriminative nature ofCRFs and the nested mod-

elling of the HHMM. To be more concrete let us return to the Noun-Phrase chunking

example. The problem can be modelled as a three-level HCRF, where the root represents

the sentence, the second level the NP process, and the bottomlevel the POS process. The

root and the two processes are conditioned on the sequence ofwords in the sentence. Un-

der the discriminative modelling of the HCRF, rich contextual information such as starting

and ending of the phrase, the phrase length, and the distribution of words falling inside the

phrase can be effectively encoded. On the other hand, such encoding is much more difficult

for HHMMs.

For learning and inference we derive an efficient algorithm based on the Asymmetric

Inside-Outside (AIO) of (Buiet al., 2004) that exhibits cubic time complexity. We also

develop a generalised Viterbi algorithm for decoding the optimal state assignment for a

given observational sequence.
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Notations and Chapter Organisation

This chapter introduces a number of new mathematical notations which we include in

Table 8.1 for reference.

Notation Description
xd:d′

i:j Subset of state variables from leveld down to leveld′

and starting from timei and ending at timej, inclusive.
ed:d′

i:j Subset of ending indicators from leveld down to leveld′

and starting from timei and ending at timej, inclusive.
ζd,s
i:j Set of state variables and ending indicators of a

sub model rooted atsd, leveld, spanning a sub-string[i, j]
σ Contextual clique

i, j, t Time indices
τd Set of all ending time indices, e.g. ifi ∈ τd thened

i = 1
r, s, u, v, w State

Rd,s,z
i:j State-persistence potential of states, leveld, spanning[i, j]
πd,s

u,i Initialisation potential of states at leveld, timei initialising sub-stateu
Ad,s,z

u,v,i Transition at leveld, timei from stateu to v under the same parents
Ed,s,z

u,i Ending potential of statez at leveld and timei, and receiving
the return control from the childu

Φ[ζ, z] The global potential of a particular configurationζ
Sd The number of state symbols at leveld

∆d,s
i:j The symmetric inside mass for a states at leveld,

spanning a substring[i, j]
∆̂d,s

i:j The full symmetric inside mass for a states at leveld,
spanning a substring[i, j]

Λd,s
i:j The symmetric outside mass for a states at leveld,

spanning a substring[i, j]
Λ̂d,s

i:j The full symmetric outside mass for a states at leveld,
spanning a substring[i, j]

αd,s
i:j (u) The asymmetric inside mass for a parent states at leveld, starting ati

and having a child-stateu which returns control
to parent or transits to new child-state atj

λd,s
i:j (u) The asymmetric outside mass, as a counterpart of

asymmetric inside massαd,s
i:j (u)

ψ(.), ϕ(.) Potential functions.

Table 8.1: Notations used in this chapter.

The rest of the chapter continues with the HCRF model definition and parameterisation

in Section 8.2. Section 8.3 defines building blocks requiredfor common inference tasks.

These blocks are computed in Section 8.3.2 and 8.3.3. Parameter estimation follows in Sec-

tion 8.4. Section 8.5 presents the generalised Viterbi algorithm. We analyse the complexity

of the AIO algorithm in Section 8.6 and conclude the chapter in Section 8.7.
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8.2 Model Definition

Consider a hierarchically nested Markov process withD levels. Then as in the HHMMs

(Fine et al., 1998), the parent state embeds a child Markov chain whose states may in

turn contain child Markov chains. The family relation is defined in themodel topology,

which is a state hierarchy of depthD. The model has a set of statesSd at each level

d ∈ [1, D], i.e. Sd = {1...|Sd|}, where|Sd| is the number of states at leveld. For each

statesd ∈ Sd where1 ≤ d < D, the topological structure also defines a set of children

ch(sd) ⊂ Sd+1. Conversely, each childsd+1 has a set of parentspa(sd+1) ⊂ Sd. Unlike

the original HHMMs where the child states belong exclusively to the parent, the HCRFs

allow arbitrary sharing of children between parents. For example, in Figure 8.1,ch(s1 =

1) = {1, 2, 3}, andpa(s3 = 1) = {1, 2, 4}. This helps to avoid an explosive number of

sub-states whenD is large, leading to fewer parameters and possibly less training data and

time. The shared topology has been investigated in the context of HHMMs in (Bui et al.,

2004).

The temporal evolution in the nested Markov processes with sequence length ofT operates

as follows:

• As soon as a state is created at leveld < D, it initialisesa child state at leveld + 1.

The initialisation continues downward until reaching the bottom level1.

• As soon as a child process at leveld + 1 ends, it returns control to its parent at level

d, and in the case ofd > 1, the parent eithertransitsto a new parent state or returns

to the grand-parent at leveld− 1.

The main requirement for the hierarchical nesting is that the life span of the child process

belongs exclusively to the life span of the parent. For example, consider a parent process

at leveld starts a new statesd
i:j at time i and persists until timej. At time i the parent

initialises a child statesd+1
i which continues until it ends at timek < j, at which the child

state transits to a new child statesd+1
k+1. The child process exits at timej, at which the

control from the child level is returned to the parentsd
i:j. Upon receiving the control the

parent statesd
i:j may transit to a new parent statesd

j+1:l, or end atj, returning the control to

the grand-parent at leveld− 1.

We are now in a position to specify the nested Markov processes in a more formal way.

Let us introduce a multi-level temporal graphical model of lengthT withD levels, starting

from the top as 1 and the bottom asD (Figure 8.2). At each leveld ∈ [1, D] and time index

1In HHMMs, the bottom level is also calledproduction level, in which the states emit observational
symbols. In HCRFs, this generative process is not assumed.
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Figure 8.1: The shared topological structure.
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Figure 8.2: The multi-level temporal model.

i ∈ [1, T ], there is a node representing a state variablexd
i ∈ S

d = {1, 2, ..., |Sd|}. Associ-

ated with eachxd
i is an ending indicatored

i which can be either1 or 0 to signify whether the

statexd
i ends or persists ati. The nesting nature of the HCRFs is now realised by imposing

the specific constraints on the value assignment of ending indicators (Figure 8.3).

• The top state persists during the course of evolution, i.e.e11:T−1 = 0, e1T = 1.
•When a state finishes, all of its descendants must also finish,

i.e. ed
i = 1 impliesed+1:D

i = 1.
•When a state persists, all of its ancestors must also persist,

i.e. ed
i = 0 impliese1:d−1

i = 0.
•When a state transits, its parent must remain unchanged, i.e. ed

i = 1, ed−1
i = 0.

• The bottom states do not persists, i.e.eD
i = 1 for all i ∈ [1, T ].

• All states end atT , i.e. e1:DT = 1.

Figure 8.3: Hierarchical constraints.

Thus, specific value assignments of ending indicators providecontextsthat realise the evo-

lution of the model states in both hierarchical (vertical) and temporal (horizontal) direc-

tions. Each context at a level and associated state variables form acontextual clique, and

we identify four contextual clique types:

• State-persistence: This corresponds to the life time of a state at a given level (see Fig-

ure 8.4). Specifically, given a contextc = (ed
i−1:j = (1, 0, .., 0, 1)), thenσpersist,d

i:j =

(xd
i:j , c), is a contextual clique that specifies the life span[i, j] of any states = xd

i:j.

• State-transition: This corresponds to a state at leveld ∈ [2, D] at timei transiting to

a new state (see Figure 8.5a). Specifically, given a contextc = (ed−1
i = 0, ed

i = 1)
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thenσtransit,d
i = (xd−1

i+1 , x
d
i:i+1, c) is a contextual clique that specifies the transition of

xd
i to xd

i+1 at timei under the same parentxd−1
i+1 .

• State-initialisation: This corresponds to a state at leveld ∈ [1, D − 1] initialising a

new child state at leveld+1 at timei (see Figure 8.5b). Specifically, given a context

c = (ed
i−1 = 1), thenσinit,d

i = (xd
i , x

d+1
i , c) is a contextual clique that specifies the

initialisation at timei from the parentxd
i to the childxd+1

i .

• State-ending: This corresponds to a state at leveld ∈ [1, D− 1] to end at timei (see

Figure 8.5c). Specifically, given a contextc = (ed
i = 1), thenσend,d

i = (xd
i , x

d+1
i , c)

is a contextual clique that specifies the ending ofxd
i at timei with the last childxd+1

i .

xjxi−1

ej−1 = 0

xi xj−1

ej = 1ei = 0ei−1 = 1

Figure 8.4: An example of a state-persistence sub-graph.
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Figure 8.5: Sub-graphs for state transition (left), initialisation (middle) and ending (right).

In the HCRF we are interested in theconditionalsetting in which the entire state variables

{x1:D
1:T , e

1:D
1:T } are conditioned on observational sequencesz. For example, in computational

linguistics, the observation is often the sequence of wordsand the state variables might be

the part-of-speech tags and the phrases.

To capture the correlation between variables and such conditioning, we define a non-

negative potential functionψ(σ, z) over each contextual cliqueσ. Figure 8.6 shows the

notations for potentials that correspond to the four contextual clique types we have identi-

fied above. Details of potential specification are describedin the Section 8.4.1.

• Rd,s,z
i:j = ψ(σpersist,d

i:j , z) wheres = xd
i:j .

• Ad,s,z
u,v,i = ψ(σtransit,d

i , z) wheres = xd−1
i+1 andu = xd

i , v = xd
i+1.

• πd,s,z
u,i = ψ(σinit,d

i , z) wheres = xd
i , u = xd+1

i .
• Ed,s,z

u,i = ψ(σend,d
i , z) wheres = xd

i , u = xd+1
i .

Figure 8.6: Shorthands for contextual clique potentials.

Let ζ = (x1:D
1:T , e

1:D
1:T ) denote the set of all variables that satisfies the set of hierarchical

constraints in Figure 8.3. Letτd denote ordered set of all ending time indices at leveld,
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e.g. if i ∈ τd thened
i = 1. The joint potential defined for each configuration is the product

of all contextual clique potentials over all ending time indicesi ∈ [1, T ] and all semantic

levelsd ∈ [1, D]:

Φ[ζ, z] =

[ ∏

d∈[1,D]

∏

ik,ik+1∈τd

Rd,s,z
ik+1:ik+1

]
×

×
∏

d∈[1,D−1]





[ ∏

ik∈τd+1,ik /∈τd

Ad+1,s,z
u,v,ik

][ ∏

ik∈τd+1

πd,s,z
u,ik+1

][ ∏

ik∈τd+1

Ed,s,z
u,ik

]
(8.1)

The conditional distribution is given as

Pr(ζ |z) =
1

Z(z)
Φ[ζ, z] (8.2)

whereZ(z) =
∑

ζ Φ[ζ, z] is the partition function for normalisation.

In what follows we omitz for clarity, and implicitly use it as part of the partition function

Z and the potentialΦ[.]. It should be noted that in the unconditional formulation, there is

only a singleZ for all data instances. In conditional setting there is aZ(z) for each data

instancez.

Remarks: The temporal model of HCRFs presented here is not a standardgraphical model

(Lauritzen, 1996) since the connectivity (and therefore the clique structures) is not fixed.

The potentials are defined on-the-fly depending on the context of assignments of ending

indicators. Although the model topology is identical to that of shared structure HHMMs

(Bui et al., 2004), the unrolled temporal representation is an undirected graph and the

model distribution is formulated in a discriminative way. Furthermore, the state persis-

tence potentials capture duration information that is not available in the dynamic DBN

representation of the HHMMs in (Murphy and Paskin, 2002).

In the way the potentials are introduced it may first appear toresemble the clique tem-

plates in the discriminative relational Markov networks (RMNs) (Taskaret al., 2002). It is,

however, different because cliques in the HCRFs are dynamicand context-dependent.

8.3 Asymmetric Inside-Outside Algorithm

This section describes a core inference engine called Asymmetric Inside-Outside (AIO)

algorithm, which is partly adapted from the generative, directed counter part of HHMMs

in (Bui et al., 2004). We now show how to compute the building blocks that are needed in
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most inference and learning tasks.

8.3.1 Building Blocks and Conditional Independence

dlevel

+1

leveld

dlevel

(a) (b)

Figure 8.7: (a) Symmetric Markov blanket, and (b) Asymmetric Markov blanket.

8.3.1.1 Contextual Markov blankets

In this subsection we define elements that are building blocks for inference and learning.

These building blocks are identified given the corresponding boundaries. Let us introduce

two types of boundaries: the contextualsymmetricandasymmetric Markov blankets.

Definition 2. A symmetric Markov blanket at leveld for a states starting ati and ending

at j is the following set

Πd,s
i:j = (xd

i:j = s, ed:D
i−1 = 1, ed:D

j = 1, ed
i:j−1 = 0) (8.3)

Definition 3. Let Πd,s
i:j be a symmetric Markov blanket, we defineζd,s

i:j andζd,s

i:j
as follows

ζd,s
i:j = (xd+1:D

i:j , ed+1:D
i:j−1 ) (8.4)

ζd,s

i:j
= ζ\(ζd,s

i:j ,Π
d,s
i:j ) (8.5)

subject toxd
i:j = s. Further, we define

ζ̂d,s
i:j = (ζd,s

i:j ,Π
d,s
i:j ) (8.6)

ζ̂
d,s

i:j
= (ζd,s

i:j
,Πd,s

i:j ) (8.7)

Figure 8.7a shows an example of a symmetric Markov blanket (represented by a double-

arrowed line).
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Definition 4. A asymmetric Markov blanket at leveld for a parent states starting ati and

a child stateu ending atj is the following set

Γd,s
i:j (u) = (xd

i:j = s, xd+1
j = u, ed:D

i−1 = 1, ed+1:D
j = 1, ed

i:j−1 = 0) (8.8)

Definition 5. Let Γd,s
i:j (u) be an asymmetric Markov blanket, we defineζd,s

i:j (u) andζd,s

i:j
(u)

as follows

ζd,s
i:j (u) = (xd+1:D

i:j−1 , x
d+2:D
j , ed+1:D

i:j−1 ) (8.9)

ζd,s

i:j
(u) = ζ\(ζd,s

i:j (u),Γd,s
i:j (u)) (8.10)

subject toxd
i:j = s andxd+1

j = u. Further, we define

ζ̂d,s
i:j (u) = (ζd,s

i:j (u),Γd,s
i:j (u)) (8.11)

ζ̂
d,s

i:j
(u) = (ζd,s

i:j
(u),Γd,s

i:j (u)) (8.12)

Figure 8.7b shows an example of asymmetric Markov blanket (represented by an arrowed

line).

Remark: The concepts of contextual Markov blankets (or Markov blankets for short) are

different from those in traditional Markov random fields andBayesian networks because

they are specific assignments of a subset of variables, rather than a collection of variables.

8.3.1.2 Conditional independence

Recall that conditional independence refers to the situation in which two subsets of vari-

ablesA andB are independent given the the subsetC. Generally,C consists of separating

variables that block any paths betweenA andB. If C is also the boundary ofA, for ex-

ample, then theC is a Markov blanket ofA. Given the separating boundary we can safely

ignore any variables outside the boundary. This often greatly simplifies computation.

As our thesymmetricandasymmetric Markov blanketsare the boundaries, we have impor-

tant conditional independence occurrences, which are summarised in Propositions 3 and

4.

Proposition 3. ζd,s
i:j andζd,s

i:j
are conditionally independent givenΠd,s

i:j

Pr(ζd,s
i:j , ζ

d,s

i:j
|Πd,s

i:j ) = Pr(ζd,s
i:j |Π

d,s
i:j ) Pr(ζd,s

i:j
|Πd,s

i:j ) (8.13)

In words, Propositions 3 says that variables falling insideand outside the symmetric Markov
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blanketΠd,s
i:j are conditionally independent givenΠd,s

i:j . This proposition gives rise to the

following factorisation

Pr(ζ) = Pr(Πd,s
i:j ) Pr(ζd,s

i:j , ζ
d,s

i:j
|Πd,s

i:j ) = Pr(Πd,s
i:j ) Pr(ζd,s

i:j |Π
d,s
i:j ) Pr(ζd,s

i:j
|Πd,s

i:j ) (8.14)

Although in the following development, we will not use this factorisation directly, it does

offer some insight how we should proceed in computingPr(ζ) and the partition func-

tion. Here, we at each step, we can work with the separate componentsPr(ζd,s
i:j |Π

d,s
i:j ) and

Pr(ζd,s

i:j
|Πd,s

i:j ) as functions of the Markov blanket. Thus we can avoid dealingwith all vari-

ablesζ at the same time. Since we do not knowΠd,s
i:j for sure, we have to examine all

possible enumerations, which are about1
2
|S|T 2 for each level.

We also have similar argument and insight for the asymmetricMarkov blankets.

Proposition 4. ζd,s
i:j (u) andζd,s

i:j
(u) are conditionally independent givenΓd,s

i:j (u)

Pr(ζd,s
i:j (u), ζd,s

i:j
(u)|Γd,s

i:j (u)) = Pr(ζd,s
i:j (u)|Γd,s

i:j (u)) Pr(ζd,s

i:j
(u)|Γd,s

i:j (u)) (8.15)

The following factorisation is a consequence of Proposition 4

Pr(ζ) = Pr(Γd,s
i:j (u)) Pr(ζd,s

i:j (u), ζd,s

i:j
(u)|Γd,s

i:j (u))

= Pr(Γd,s
i:j (u)) Pr(ζd,s

i:j (u)|Γd,s
i:j (u)) Pr(ζd,s

i:j
(u)|Γd,s

i:j (u)) (8.16)

The proof of Propositions 3 and 4 is given in Appendix A.3.1.

8.3.1.3 Symmetric Inside/Outside Masses

From Equation 8.5 we haveζ = (ζd,s
i:j ,Π

d,s
i:j , ζ

d,s

i:j
). SinceΠd,s

i:j separatesζd,s
i:j from ζd,s

i:j
, we

can group local potentials in Equation 8.1 into three parts:Φ[ζ̂d,s
i:j [, Φ[ζ̂

d,s

i:j
[, andΦ[Πd,s

i:j ]. By

‘grouping’ we mean to multiply all the local potentials belonging to a certain part, in the

same way that we group all the local potentials belonging to the model in Equation 8.1.

Note that althougĥζd,s
i:j containsΠd,s

i:j we do not groupΦ[Πd,s
i:j ] into Φ[ζ̂d,s

i:j ]. The same holds

for Φ[ζ̂
d,s

i:j
].

By definition of the state-persistence clique potential (Figure 8.6), we haveΦ[Πd,s
i:j ] = Rd,s

i:j .

Thus Equation 8.1 can be replaced by

Φ[ζ ] = Φ[ζ̂d,s
i:j ]Rd,s

i:j Φ[ζ̂
d,s

i:j
] (8.17)
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There are two special cases: (1) whend = 1, Φ[ζ̂
1,s

1:T
] = 1 for s ∈ S1, and (2) when

d = D, Φ[ζ̂D,s
i:i ] = 1 for s ∈ SD andi ∈ [1, T ]. This factorisation plays an important role

in efficient inference.

We know define a quantity calledsymmetric inside mass∆d,s
i:j , and another calledsymmetric

outside massΛd,s
i:j .

Definition 6. Given a symmetric Markov blanketΠd,s
i:j , the symmetric inside mass∆d,s

i:j and

the symmetric outside massΛd,s
i:j are defined as

∆d,s
i:j =

∑

ζd,s
i:j

Φ[ζ̂d,s
i:j ] (8.18)

Λd,s
i:j =

∑

ζd,s

i:j

Φ[ζ̂
d,s

i:j
] (8.19)

As special cases we haveΛ1,s
1:T = 1 and s ∈ S1, and∆D,s

i:i = 1 for i ∈ [1, T ], s ∈ SD.

For later use let us introduce the ‘full’ symmetric inside mass∆̂d,s
i:j and the ‘full’ symmetric

outside masŝΛd,s
i:j as

∆̂d,s
i:j = Rd,s

i:j ∆d,s
i:j (8.20)

Λ̂d,s
i:j = Rd,s

i:j Λd,s
i:j (8.21)

In the rest of the thesis, when it is clear in the context, we will use inside massas a short-

hand for symmetric inside mass,outside massfor symmetric outside mass,full-inside mass

for full-symmetric inside mass, andfull-outside massfor full-symmetric outside mass.

Thus, from Equation 8.17 the partition function can be computed from the full-inside mass

at the top level (d = 1)

Z =
∑

ζ

Φ[ζ ]

=
∑

ζ1,s
1:T

∑

s∈S1

Φ[ζ̂1,s
1:T ]R1,s

1:T

=
∑

s∈S1

∆d,s
1:TR

d,s
1:T

=
∑

s∈S1

∆̂1,s
1:T (8.22)

With the similar derivation the partition function can alsobe computed from the full-

outside mass at the bottom level (d = D)

Z =
∑

s∈SD

Λ̂D,s
i:i , for anyi ∈ [1, T ] (8.23)
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In fact, we will prove a more general way to computeZ in Appendix A.4

Z =
∑

s∈Sd

∑

i∈[1,t]

∑

j∈[t,T ]

∆d,s
i:j Λd,s

i:jR
d,s
i:j (8.24)

for anyt ∈ [1, T ] andd ∈ [2, D − 1]. These relations are summarised in Figure 8.8.

• Z =
∑

s∈S1 ∆̂1,s
1:T

• Z =
∑

s∈SD Λ̂D,s
i:i for anyi ∈ [1, T ]

• Z =
∑

s∈Sd

∑
i∈[1,t]

∑
j∈[t,T ] ∆

d,s
i:j Λd,s

i:jR
d,s
i:j for anyt ∈ [1, T ] andd ∈ [2, D − 1]

Figure 8.8: Computing the partition function from the full-inside mass and full-outside
mass.

Given the fact thatζd,s
i:j is separated from the rest of variables by the symmetric Markov

blanketΠd,s
i:j , we have Proposition 5.

Proposition 5. The following relations hold

Pr(ζd,s
i:j |Π

d,s
i:j ) =

1

∆d,s
i:j

Φ[ζ̂d,s
i:j ] (8.25)

Pr(ζd,s

i:j
|Πd,s

i:j ) =
1

Λd,s
i:j

Φ[ζ̂
d,s

i:j
] (8.26)

Pr(Πd,s
i:j ) =

1

Z
∆d,s

i:jR
d,s
i:j Λd,s

i:j (8.27)

The proof of this proposition is given in Appendix A.3.2.

8.3.1.4 Asymmetric Inside/Outside Masses

Recall that we have introduced the concept of asymmetric Markov blanketΓd,s
i:j (u) which

separatesζd,s
i:j (u) andζd,s

i:j
(u). Let us group all the local contextual clique potentials associ-

ated withζd,s
i:j (u) andΓd,s

i:j (u) into a joint potentialΦ[ζ̂d,s
i:j (u)]. Similarly, we group all local

potentials associated withζd,s

i:j
(u) andΓd,s

i:j (u) into a joint potentialΦ[ζ̂
d,s

i:j
(u)]. Note that

Φ[ζ̂
d,s

i:j
(u)]) includes the state-persistence potentialRd,s

i:j .

Definition 7. Given the asymmetric Markov blanketΓd,s
i:j (u), the asymmetric inside mass

αd,s
i:j (u) and the asymmetric outside massλd,s

i:j (u) are defined as follows

αd,s
i:j (u) =

∑

ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)] (8.28)

λd,s
i:j (u) =

∑

ζd,s

i:j
(u)

Φ[ζ̂
d,s

i:j
(u)] (8.29)
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The relationship between the asymmetric outside mass and asymmetric inside mass is anal-

ogous to that between the outside and inside masses. However, there is a small difference,

that is, the asymmetric outside mass ‘owns’ the segmentxd
i:j = s and the associated state-

persistence potentialRd,s
i:j , whilst the outside massΛd

i:j(s) does not.

8.3.2 Computing Symmetric/Asymmetric Inside Masses

dlevel

dlevel   +1

Figure 8.9: Decomposition with respect to symmetric/asymmetric Markov blankets.

In this subsection we show how to recursively compute the pair: inside mass and asymmet-

ric inside mass. The key idea here is to exploit the decomposition within the asymmetric

Markov blanket. As shown in Figure 8.9, an outer asymmetric Markov blanket can be

decomposed into a sub-asymmetric Markov blanket and a symmetric blanket.

8.3.2.1 Computing asymmetric inside mass from inside mass

Assume that within the asymmetric Markov blanketΓd,s
i:j (u), the childu starts somewhere

at t ∈ [i, j] and ends atj, i.e. xd+1
t:j = u, ed+1

t:j−1 = 0 anded+1:D−1
t−1 = 1. Let us consider two

cases:t > i andt = i.

Case 1. For t > i, denote byv = xd+1
t−1 . We have two smaller blankets withinΓd,s

i:j (u): the

symmetric blanketΠd+1,u
t:j associated with the childu = xd+1

t:j , and the asymmetric blanket

Γd,s
i:t−1(v) associated with the childv ending att−1 under the parents. Figure 8.9 illustrates

the blanket decomposition. The assignmentζd,s
i:j (u) can be decomposed as

ζd,s
i:j (u) = (ζd,s

i:t−1(v), ζ
d+1,u
t:j , u = xd+1

t:j , ed
t−1:j−1 = 0, ed+1:D

t−1 = 1) (8.30)

Thus, the joint potentialΦ[ζ̂d,s
i:j (u)] can be factorised as follows

Φ[ζ̂d,s
i:j (u)] = Φ[ζ̂d,s

i:t−1(v)]Φ[ζ̂d+1,u
t:j ]Ad+1,s

v,u,t−1R
d+1,u
t:j (8.31)

The transition potentialAd+1,s
v,u,t−1 is enabled in the contextc = (ed

t−1 = 0, ed+1
t−1 = 1, xd

t =
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s, xd+1
t−1 = v, xd+1

t = u), and the state-persistence potentialRd+1,u
t:j in the contextc =

(ed+1
t:j−1 = 0, ed+1:D

t−1 = 1, ed+1:D
j = 1, xd+1

t:j = u).

Case 2. For t = i, the asymmetric blanketΓd,s
i:t−1(v) does not exist sincei > t − 1. We

have the following decompositions of assignmentζ̂d,s
i:j (u) = (ζ̂d+1,u

i:j , ed
i−1 = 1, ed

i:j−1 = 0).

In the contextc = (ed
i−1 = 1), the state-initialisation potentialπd,s

u,i is activated. Thus we

have

Φ[ζ̂d,s
i:j (u)] = πd,s

u,iΦ[ζ̂d+1,u
i:j ]Rd+1,u

i:j (8.32)

Substituting Equations 8.31 and 8.32 into Equation 8.28, and together with the fact that

t can take any value in the interval[i, j], andv can take any value inSd+1, we have the

following relation

αd,s
i:j (u) =

∑

t∈[i+1,j]

∑

v∈Sd+1

∑

ζd,s
i:t−1(v)

∑

ζd+1,u
t:j

Φ[ζ̂d,s
i:t−1(v)]Φ[ζ̂d+1,u

t:j ]Ad+1,s
v,u,t−1R

d+1,u
t:j +

+
∑

ζd+1,u
i:j

πd,s
u,iΦ[ζ̂d+1,u

i:j ]Rd+1,u
i:j

=
∑

t∈[i+1,j]

∑

v∈Sd+1

αd,s
i:t−1(v)∆̂

d+1,u
t:j Ad+1,s

v,u,t−1 + ∆̂d+1,u
i:j πd,s

u,i (8.33)

As we can see, the asymmetric inside massα plays the role of aforward messagestarting

from the starting timei to the ending timej. There is a recursion where the asymmetric

inside mass ending at timej is computed from all the asymmetric inside masses ending at

time t− 1, for t ∈ [i+ 1, j.

There are special cases for the asymmetric inside mass: (1) wheni = j, we only have

αd,s
i:i (u) = ∆̂d+1,s

i:i πd,s
u,i (8.34)

and (2) whend = D− 1, the sum over the indext as in Equation 8.33 is not allowed since

at levelD the inside mass only spans a single index. We have the following instead

αD−1,s
i:j (u) =

∑

v∈Sd+1

αD−1,s
i:j−1 (v)∆̂D,u

j:j A
D,s
v,u,j−1

=
∑

v∈Sd+1

αD−1,s
i:j−1 (v)RD,u

j:j A
D,s
v,u,j−1 (8.35)
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8.3.2.2 Computing inside mass from asymmetric inside mass

Notice the relationship between the asymmetric Markov blanketΓd,s
i:j (u) and the symmetric

blanketΠd,s
i:j , whered < D. Whened

j = 1, i.e. the parents ends atj, andΓd,s
i:j (u) will

becomeΠd,s
i:j with u = xd+1

j . Then we have decompositionsζd,s
i:j = (ζd,s

i:j (u), u = xd+1
j ) and

ζ̂d,s
i:j = (ζ̂d,s

i:j (u), ed
j = 1, u = xd+1

j ). These lead to the factorisation

Φ[ζ̂d,s
i:j ] = Φ[ζ̂d,s

i:j (u)]Ed,s
u,j (8.36)

where the state-ending potentialEd,s
u,j is activated in the contextc = (ed

j = 1). Thus, the

inside mass in Equation 8.18 can be rewritten as

∆d,s
i:j =

∑

u∈Sd+1

∑

ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)]Ed,s

u,j

=
∑

u∈Sd+1

Ed,s
u,j

∑

ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)]

=
∑

u∈Sd+1

Ed,s
u,jα

d,s
i:j (u) (8.37)

This equation holds ford < D. Whend = D, we set∆D,s
i:i = 1 for all s ∈ SD and

i ∈ [1, T ], and whend = 1, we must ensure thati = 1 andj = T .

Remark: Equations 8.33, 8.34, 8.35 and 8.37 specify aleft-right andbottom-upalgorithm

to compute both the inside and asymmetric inside masses. Initially, at the bottom level

∆D,s
i:i = 1 for i ∈ [1, T ] and s ∈ SD. A pseudo-code of the dynamic programming

algorithm to compute all the inside and asymmetric inside masses and the partition function

is given in Figure 8.10.

8.3.3 Computing Symmetric/Asymmetric Outside Masses

In this subsection we show how to recursively compute the symmetric outside mass and

the asymmetric outside mass. We use the same blanket decomposition as in Section 8.3.2.

However, this time the view is reversed as we are interested in quantities outside the blan-

kets. For example, outside the inner symmetric Markov blanket in Figure 8.9, there exists

an outer asymmetric blanket and another sub-asymmetric blanket on the left.
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Input : D, T , all the potential function values.
Output : partition functionZ;

∆1,s
1:T , for s ∈ S1;

∆d,s
i:j , for d ∈ [2, D − 1], s ∈ Sd and1 ≤ i ≤ j ≤ T ;

∆D,s
i:i for s ∈ SD andi ∈ [1, T ];

αd,s
i:j (u) for d ∈ [1, D − 1], u ∈ Sd+1 and1 ≤ i ≤ j ≤ T

/* Initialisation */
∆D,s

i:i = 1 for all i ∈ [1, T ] ands ∈ SD

/* At the level d=D-1 */
For i = 1, 2, ..., T

For j = i, i+ 1, ..., T

ComputeαD−1,s
i:j (u) using Equation 8.35

Compute∆D−1,s
i:j using Equation 8.37

EndFor
EndFor
/* The main recursion loops: bottom-up and forward */
For d = D − 2, D − 3, ..., 1

For i = 1, 2, ..., T
For j = i, i+ 1, ..., T

Computeαd,s
i:i (u) using Equation 8.34If j = i

Computeαd,s
i:j (u) using Equation 8.33If j > i

Compute∆d,s
i:j using Equation 8.37If d > 1

EndFor
EndFor

EndFor
ComputeZ using Equation 8.22.

Figure 8.10: Computing the set of inside/asymmetric insidemasses and the partition func-
tion.

8.3.3.1 Computing asymmetric outside mass from outside mass

Let us examine the variablesζd,s

i:j
(u) associated with the asymmetric Markov blanketΓd,s

i:j (u),

for d ∈ [1, D − 1] and1 ≤ i ≤ j ≤ T (see Definition 5). Forj < T , assume that there

exists an outer asymmetric Markov blanketΓd,s
i:t (v) for somev ∈ Sd+1 andt ∈ [j + 1, T ],

and a symmetric Markov blanketΠd+1,v
j+1:t right next toΓd,s

i:j (u). Given these blankets we

have the decomposition̂ζ
d,s

i:j
(u) = (ζ̂

d,s

i:t
(v), ζ̂d+1,v

j+1:t , x
d+1
j = u), which leads to the following

factorisation

Φ[ζ̂
d,s

i:j
(u)] = Φ[ζ̂

d,s

i:t
(v)]Φ[ζ̂d+1,v

j+1:t ]Rd+1,v
j+1:tA

d+1,s
u,v,j (8.38)

The state transition potentialAd+1,s
u,v,j is enabled in the contextc = (ed

j = 0, ed+1
j = 1), and

the state persistence potentialRd+1,v
j+1:t in the contextc = (ed+1

j = 1, ed+1
j+1:t−1 = 0, ed+1

t = 1).

In addition, there exists a special case where the states ends atj. We have the decomposi-



8.3 Asymmetric Inside-Outside Algorithm 135

tion ζ̂
d,s

i:j
(u) = (ζ̂

d,s

i:j
, u = xd+1

j ) and the following factorisation

Φ[ζ̂
d,s

i:j
(u)] = Φ[ζ̂

d,s

i:j
]Rd,s

i:j E
d,s
u,j (8.39)

The ending potentialEd,s
u,j appears here because of the contextc = (ed

j = 1), i.e. s ends at

j.

Now we relax the assumption oft, v and allow them to receive all possible values, i.e.

t ∈ [j, T ] andv ∈ Sd+1. Thus we can replace Equation 8.29 by

λd,s
i:j (u) =

∑

v∈Sd+1

∑

t∈[j+1,T ]

∑

ζd,s

i:t
(v)

∑

ζd+1,v
j+1:t

Φ[ζ̂
d,s

i:t
(v)]Φ[ζ̂d+1,v

j+1:t ]Rd+1,v
j+1:tA

d+1,s
u,v,j

+
∑

ζd,s

i:j
(u)

Φ[ζ̂
d,s

i:j
]Rd,s

i:j E
d,s
u,j

=
∑

v∈Sd+1

∑

t∈[j+1,T ]

λd,s
i:t (v)∆̂d+1,v

j+1:tA
d+1,s
u,v,j + Λ̂d,s

i:jE
d,s
u,j (8.40)

for d ∈ [2, D − 2], and1 ≤ i ≤ j ≤ T . Thus, theλd,s
i:j (u) can be thought as a message

passedbackwardfrom j = T to j = i. Here, the asymmetric outside mass ending atj is

computed by using all the asymmetric outside masses ending at t for t ∈ [j + 1, T ].

There are two special cases. At the top level, i.e.d = 1, thenλd,s
i:j (u) is only defined at

i = 1, and the second term of the RHS of Equation 8.40 is included only if i = 1, j = T .

At the second lowest level, i.e.d = D− 1, we cannot sum overt as in Equation 8.40 since

∆̂D,v
j+1:t is only defined fort = j + 1. We have the following relation instead

λD−1,s
i:j (u) =

∑

v∈SD

λD−1,s
i:j+1 (v)∆̂D,v

j+1:j+1A
D,s
u,v,j + Λ̂D−1,s

i:j ED−1,s
u,j (8.41)

8.3.3.2 Computing outside mass from asymmetric outside mass

Given a symmetric Markov blanketΠd+1,u
i:j for d ∈ [1, D − 1], assume that there exists

an asymmetric Markov blanketΓd,s
t:j (u) at the parent leveld, wheret ∈ [1, i]. Clearly, for

t ∈ [1, i − 1] there exists some sub-asymmetric Markov blanketΓd,s
t:i−1(v). See Figure 8.9

for an illustration.

Let us consider two cases:t < i andt = i.

Case 1. For t < i, this enables the decompositionζ̂
d+1,u

i:j
= (ζ̂

d,s

t:j
(u), ζ̂d,s

t:i−1(v), u = xd+1
i:j ),

which leads to the following factorisation

Φ[ζ̂
d+1,u

i:j
] = Φ[ζ̂

d,s

t:j
(u)]Φ[ζ̂d,s

t:i−1(v)]A
d,s
v,u,i−1 (8.42)
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The state transition potentialAd,s
v,u,i−1 is activated in the contextc = (ed

i−1 = 0, ed+1
i−1 = 1).

Case 2. Fort = i, the decomposition reduces toζ̂
d+1,u

i:j
= (ζ̂

d,s

i:j
(u), u = xd+1

i:j ), which leads

to the following factorisation

Φ[ζ̂
d+1,u

i:j
] = Φ[ζ̂

d,s

i:j
(u)]πd,s

u,i (8.43)

The state-initialisation potentialπd,s
u,i plays the role in the contextc = (ed

i−1 = 1)

However, these decompositions and factorisations only hold given the assumption of spe-

cific values ofs ∈ Sd, v ∈ Sd+1, andt ∈ [1, i]. Without further information we have to

take all possibilities into account. Substituting these relations into Equation 8.19, we have

Λd+1,u
i:j =

∑

s∈Sd

∑

v∈Sd+1

∑

t∈[1,i−1]

∑

ζd,s

t:j
(u)

∑

ζd,s
t:i−1(v)

Φ[ζ̂
d,s

t:j
(u)]Φ[ζ̂d,s

t:i−1(v)]A
d+1,s
v,u,i−1 +

+
∑

s∈Sd

∑

ζd,s

i:j
(u)

Φ[ζ̂
d,s

i:j
(u)]πd,s

u,i

=
∑

s∈Sd

∑

t∈[1,i−1]

λd,s
t:j (u)

∑

v∈Sd+1

αd,s
t:i−1(v)A

d+1,s
v,u,i−1 +

∑

s∈Sd

λd,s
i:j (u)πd,s

u,i (8.44)

for d ∈ [2, D − 2].

There are three special cases. The first is the base case whered = 0 andΛ1,s
1:T = 1 for all

s ∈ S1. In the second case, ford = 1, we must fix the indext = 1 since the asymmetric

inside massαd,s
t:i−1 is only defined att = 1. Also the second term in the RHS is included

only if i = 1 for the asymmetric outside massλd,s
i:j (u) to make sense. In the second case,

for d+ 1 = D, we only havei = j.

Remark: Equations 8.40, 8.41 and 8.44 show a recursivetop-downand outside-inap-

proach to compute the symmetric/asymmetric outside masses. We start from the top with

d = 1 andΛ1,s
1:T = 1 for all s ∈ S1 and proceed downward untild = D. The pseudo-code

is given in Figure 8.11. Figure 8.12 summarises the quantities computed in Section 8.3.2

and 8.3.3.

Figure 8.13 summarises the AIO algorithm for computing all building blocks and the par-

tition function.

8.4 Parameter Estimation

In this section, we tackle the problem of parameter estimation by maximising the (con-

ditional) data likelihood. Typically we need some parametric form to be defined for a
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Input : D, T , all the potential function values, all inside/asymmetricinside masses.
Output : all outside/asymmetric outside masses
Initialise: Λ1,s

1:T = 1,
λ1,s

1:T (u) = E1,s
u,T for s ∈ S1, u ∈ S2

/* the main recursive loops: top-down and inside-out */
For d = 1, 2, ..., D− 1

For i = 1, 2, ..., T
For j = T, T − 1, ..., i

Compute the asymmetric outside massλd,s
i:j (u) using Equations 8.40,8.41

Compute the outside massΛd,s
i:j using Equation 8.44

EndFor
EndFor

EndFor

Figure 8.11: Computing the set of outside/asymmetric outside masses.

• ∆1,s
1:T ,Λ

1,s
1:T for s ∈ S1

• ∆d,s
i:j ,Λ

d,s
i:j for d ∈ [2, D − 1], s ∈ Sd, 1 ≤ i ≤ j ≤ T

• ∆D,s
i:i ,Λ

D,s
i:i for i ∈ [1, T ], s ∈ SD

• αd,s
1:j(u), λ

d,s
1:j(u) for d = 1, s ∈ S1, u ∈ S2, j ∈ [1, T ]

• αd,s
i:j (u), λd,s

i:j (u) for d ∈ [2, D − 1], s ∈ Sd, u ∈ Sd+1, 1 ≤ i ≤ j ≤ T

Figure 8.12: Summary of basic building blocks computed in Section 8.3.2 and 8.3.3.

particular problem and we need some numerical method to do the optimisation task.

Here we employ the log-linear parameterisation, which is commonly used in the CRF set-

ting. Recall from Section 3.2 that estimating parameters ofthe log-linear models using

gradient-based methods requires the computation of feature expectation, or expected suffi-

cient statistics (ESS). For our HCRFs we need to compute fourtypes of ESS corresponding

to the state-persistence, state-transition, state-initialisation and state-ending.

8.4.1 Log-Linear Parameterisation

In our HCRF setting there is a feature vectorf
d
σ(σ, z) associated with each type of contex-

tual cliqueσ, in thatφ(σd, z) = exp(w>
σdf

d
σ(σ, z)). Thus, the features are active only in the

Input : D, T , all the potential function values
Output : all building blocks and partition function
Compute all inside/asymmetric inside masses using the algorithm in Figure 8.10
Compute all outside/asymmetric outside masses using the algorithm in Figure 8.11

Figure 8.13: The AIO algorithm.
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context in which the corresponding contextual cliques appear.

For the state-persistence contextual clique, the featuresincorporatestate-duration, start

time i and end timej of the state. Other feature types incorporate the time indexin which

the features are triggered. Specifically,

Rd,s,z
i:j = exp(w>

σpersist,df
d,s
σpersist(i, j, z)) (8.45)

Ad,s,z
u,v,i = exp(w>

σtransit,df
d,s
σtransit,u,v

(i, z) (8.46)

πd,s,z
u,i = exp(w>

σinit,df
d,s
σinit ,u(i, z) (8.47)

Ed,s,z
u,i = exp(w>

σend,df
d,s
σend,u

(i, z) (8.48)

Denote byFd
σ(ζ, z) the global feature, which is the sum of all active featuresf

d
σ(z) at

level d in the duration[1, T ] for a given assignment ofζ and a clique typeσ. Recall that

τd = {ik}mk=1 is the set of ending time indices (i.e.ed
ik

= 1). The four feature types are

given in Equations 8.49-8.52.

F
d,s
σpersist(ζ, z) = f

d,s
σpersist(1, i1, z) +

∑

ik∈τd,k>1

f
d,s
σpersist(ik + 1, ik+1, z) (8.49)

F
d,s
σtransit,u,v

(ζ, z) =
∑

ik /∈τd−1,ik∈τd

f
d,s
σtransit,u,v

(ik, z) (8.50)

F
d,s
σinit ,u

(ζ, z) = f
d,s
σinit ,u,v

(1, z) +
∑

ik∈τd

f
d,s
σinit,u,v

(ik + 1, z) (8.51)

F
d,s
σend ,u

(ζ, z) =
∑

ik∈τd

f
d,s
σend ,u,v

(i, z) (8.52)

Substituting the global features into potentials in Equation. 8.1 and 8.2 we obtain the fol-

lowing log-linear model:

Pr(ζ |z) =
1

Z(z)
exp(

∑

c∈C

w
>
σcFσc(ζ, z)) (8.53)

whereC = {persist, transit, init, exit}.

Again, for clarity of presentation we will drop the notion ofz but implicitly assume that it

is still in the each quantity.
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8.4.2 ESS for State-Persistence Features

Recall from Section 8.4.1 that the feature function for the state-persistencefd,s
σpersist(i, j) is

active only in the context whereΠd,s
i:j ∈ ζ . Thus, Equation 8.49 can be rewritten as

F
d,s
σpersist(ζ) =

∑

i∈[1,T ]

∑

j∈[i,T ]

f
d,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ] (8.54)

The indicator function in the RHS ensures that the featuref
d,s
σpersist(i, j) is only active if there

exists a symmetric Markov blanketΠd,s
i:j in the assignment ofζ . Consider the following

expectation

E[fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ]] =

∑

ζ

Pr(ζ)fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ] (8.55)

=
1

Z

∑

ζ

Φ[ζ ]fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ] (8.56)

Using the factorisation in Equation 8.17 we can rewrite

E[fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ]] =

1

Z

∑

ζ

Φ[ζ̂d,s
i:j ]Φ[ζ̂

d,s

i:j
]Rd,s

i:j f
d,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ] (8.57)

Note that the elements inside the sum of the RHS are only non-zeros for those assignment

of ζ that respect the persistent statesd
i:j and the factorisation in Equation 8.17, i.e.ζ =

(ζd,s
i:j , ζ

d,s

i:j
,Πd,s

i:j ). Thus, the equation can be simplified to

E[fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ]] =

1

Z

∑

ζd,s
i:j

∑

ζd,s

i:j

Φ[ζ̂d,s
i:j ]Φ[ζ̂

d,s

i:j
]Rd,s

i:j f
d,s
σpersist(i, j) (8.58)

=
1

Z
∆d,s

i:j Λd,s
i:jR

d,s
i:j f

d,s
σpersist(i, j) (8.59)

Using Equation 8.54 we obtain the ESS for the state-persistence features

E[F d,s
k (ζ)] =

∑

i∈[1,T ]

∑

j∈[i,T ]

E[fd,s
σpersist(i, j)δ[Π

d,s
i:j ∈ ζ ]]

=
1

Z

∑

i∈[1,T ]

∑

j∈[i,T ]

∆d,s
i:j Λd,s

i:jR
d,s
i:j f

d,s
σpersist(i, j) (8.60)

There are two special cases: (1) whend = 1, we do not sum overi, j but fix i = 1, j = T ,

and (2) whend = D then we keepj = i.
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8.4.3 ESS for Transition Features

Recall that in Section 8.4.1 we definef
d,s
σtransit,u,v

(t) as a function that is active in the context

ctransit = (ed−1
t = 0, ed

t = 1), in which the child stateud finishes its job at timet and

transits to the child statevd under the same parentsd−1 (that issd−1 is still running). Thus

Equation 8.50 can be rewritten as

F
d,s
σtransit,u,v(ζ) =

∑

t∈[1,T−1]

f
d,s
σtransit,u,v(t)δ[c

transit ∈ ζ ] (8.61)

We now consider the following expectation

E[fd,s
σtransit,u,v

(t)δ[ctransit ∈ ζ ]] =
∑

ζ

Pr(ζ)fd,s
σtransit,u,v

(t)δ[ctransit ∈ ζ ] (8.62)

=
1

Z

∑

ζ

Φ[ζ ]fd,s
σtransit,u,v

(t)δ[ctransit ∈ ζ ] (8.63)

Assume that the parents starts ati. Sinceed
t = 1, the childv must starts att+ 1 and ends

some time later atj ≥ t+ 1. We have the following decomposition of the configurationζ

that respects this assumption

ζ = (ζ̂
d−1,s

i:j
(v), ζ̂d−1,s

i:t (u), ζ̂d,v
t+1:j) (8.64)

and the following factorisation of the joint potential

Φ[ζ ] = Φ[ζ̂
d−1,s

i:j
(v)]Φ[ζ̂d−1,s

i:t (u)]Φ[ζ̂d,v
t+1:j]R

d,v
t+1:jA

d,s
u,v,t (8.65)

The state persistent potentialRd,v
t+1:j is enabled in the contextc = (ed

t = 1, ed
t+1:j−1 =

0, ed
j = 1) and the state transition potentialAd,s

u,v,t in the contextctransit.

Substituting this factorisation into the RHS of Equation 8.63 gives us

1

Z

∑

i∈[1,t]

∑

j∈[t+1,T ]

∑

ζd−1,s
i:t (u)

∑

ζd−1,s

i:j
(v)

∑

ζd,v
t+1:j

Φ[ζ̂
d−1,s

i:j
(v)]Φ[ζ̂d−1,s

i:t (u)]Φ[ζ̂d,v
t+1:j]R

d,v
t+1:jA

d,s
u,v,tf

d,s
σtransit,u,v

(t)

which can be simplified to

1

Z

∑

i∈[1,t]

∑

j∈[t+1,T ]

λd−1,s
i:j (v)αd−1,s

i:t (u)∆̂d,v
t+1:jA

d,s
u,v,tf

d,s
σtransit,u,v(t) (8.66)
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Using Equations 8.61 and 8.66 we obtain the ESS for the state-transition features

E[Fd,s
σtransit,u,v

(ζ)] =
∑

t∈[1,T−1]

E[fd,s
σtransit,u,v

(t)δ[ctransit ∈ ζ ]]

=
1

Z

∑

t∈[1,T−1]

Ad,s
u,v,tf

d,s
σtransit,u,v(t)

∑

i∈[1,t]

∑

j∈[t+1,T ]

αd−1,s
i:t (u)λd−1,s

i:j (v)∆̂d,v
t+1:j (8.67)

Whend = 2 we must fixi = 1 sinceα1,s
i:t (u) andλ1,s

i:j (v) are only defined ati = 1.

8.4.4 ESS for Initialisation Features

Recall that in Section 8.4.1 we definefd,s
σinit,u(i) as a function at leveld that is triggered at

time i when a parents at leveld initialises a childu at leveld+1. In this event, the context

cinit = (ed
i−1 = 1) must be activated fori > 1. Thus, Equation 8.51 can be rewritten as

F
d,s
σinit ,u

(ζ) =
∑

i∈[1,T ]

f
d,s
σinit ,u

(i)δ[cinit ∈ ζ ] (8.68)

Now we consider the following feature expectation

E[fd,s
σinit ,u(i)δ[c

init ∈ ζ ]] =
∑

ζ

Pr(ζ)fd,s
σinit,u(i)δ[c

init ∈ ζ ]

=
1

Z

∑

ζ

Φ[ζ ]fd,s
σinit,u(i)δ[c

init ∈ ζ ] (8.69)

For each assignment ofζ that enablesfd,s
σinit,u(i), we have the following decomposition

ζ = (ζ̂
d,s

i:j
(u), ζ̂d+1,u

i:j ) (8.70)

where the contextcinit activates the emission froms tou and the feature functionfd,s
σinit,u

(i).

Thus the joint potentialΦ[ζ ] can be factorised as

Φ[ζ ] = Φ[ζ̂
d,s

i:j
(u)]Φ[ζ̂d+1,u

i:j ]Rd+1,u
i:j πd,s

u,i (8.71)

Using this factorisation and noting that the elements within the summation in the RHS

of Equation 8.69 are only non-zeros with such assignments, we can simplify the RHS of
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Equation 8.69 to

1

Z

∑

j∈[i,T ]

∑

ζd,s

i:j
(u)

∑

ζd+1,u
i:j

Φ[ζ̂
d,s

i:j
(u)]Φ[ζ̂d+1,u

i:j ]Rd+1,u
i:j πd,s

u,i f
d,s
σinit ,u

(i)

=
1

Z

∑

j∈[i,T ]

λd,s
i:j (u)∆̂d+1,u

i:j πd,s
u,i f

d,s
σinit ,u

(i) (8.72)

The summation overj ∈ [i, T ] is due to the fact that we do not know this index.

Using Equation 8.68 and 8.72 we obtain the ESS for the initialisation features

E[Fd,s
σinit ,u(ζ)] =

∑

i∈[1,T ]

E[fd,s
σinit ,u(i)δ[c

init ∈ ζ ]]

=
1

Z

∑

i∈[1,T ]

πd,s
u,i f

d,s
σinit ,u

(i)
∑

j∈[i,T ]

λd,s
i:j (u)∆̂d+1,u

i:j (8.73)

There are two special cases: (1) whend = 1, there must be no scanning ofi but fix i = 1

since there is only a single initialisation at the beginningof sequence, (2) whend = D−1,

we fix j = i for ∆̂D,u
i:j is only defined ati = j.

8.4.5 ESS for Ending Features

Recall that in Section 8.4.1 we definefd,s
σend,u

(j) as a function that is activated when a child

u at leveld + 1 returns the control to its parents at leveld and timej. This event also

enables the contextcend = (ed
j = 1). Thus Equation 8.52 can be rewritten as

F
d,s
σend ,u

(ζ) =
∑

j∈[1,T ]

f
d,s
σend ,u

(j)δ[cend ∈ ζ ] (8.74)

Now we consider the following feature expectation

E[fd,s
σend ,u

(j)δ[cend ∈ ζ ]] =
∑

ζ

Pr(ζ)fd,s
σend,u

(j)δ[cend ∈ ζ ]

=
1

Z

∑

ζ

Φ[ζ ]fd,s
σend ,u

(j)δ[cend ∈ ζ ] (8.75)

Assume that the states starts ati and ends atj. For each assignment ofζ that enables

f
d,s
σend ,u

(j) and respects this assumption, we have the following decomposition

ζ = (ζ̂
d,s

i:j
, ζ̂d,s

i:j (u)) (8.76)
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This assignment has the contextcend that activates the ending ofu. Thus the joint potential

Φ[ζ ] can be factorised as

Φ[ζ ] = Φ[ζ̂
d,s

i:j
]Φ[ζ̂d,s

i:j (u)]Rd,s
i:jE

d,s
u,j (8.77)

Substituting this factorisation into the summation of the RHS of Equation 8.75 yields

∑

i∈[1,j]

∑

ζd,s

i:j

∑

ζd,s
i:j (u)

Φ[ζ̂
d,s

i:j
]Φ[ζ̂d,s

i:j (u)]Rd,s
i:j Ed,s

u,jf
d,s
σend ,u

(j) =
∑

i∈[1,j]

Λ̂d,s
i:j αd,s

i:j (u)Ed,s
u,jf

d,s
σend ,u

(j) (8.78)

Using Equations 8.74 and 8.78 we obtain the ESS for the exiting features

E[Fd,s
σend ,u

(ζ)] =
∑

j∈[1,T ]

E[fd,s
σend ,u

(j)δ[ed
i−1 ∈ ζ ]]

=
1

Z

∑

j∈[1,T ]

Ed,s
u,jf

d,s
σend ,u

(j)
∑

i∈[1,j]

Λ̂d,s
i:j α

d,s
i:j (u) (8.79)

There is a special case: whend = 1 there must be no scanning ofi, j but fix i = 1, j = T .

8.5 Generalised Viterbi Algorithm

By definition the MAP assignment is the maximiser of the conditional distribution given

an observation sequencez

ζMAP = arg max
ζ

Pr(ζ |z)

= arg max
ζ

Φ[ζ, z] (8.80)

For clarity, let us drop the notationz and assume that it is implicitly there.

The process of computing the MAP assignment is very similar to that of computing the

partition function. This similarity comes from the relation between the sum-product and

max-product algorithm (a generalisation of the Viterbi algorithm) of Pearl (1988), and from

the fact that inside/asymmetric inside procedures described in Section 8.3.2 are essentially

a sum-product version. What we need to do is to just convert all the summations into

corresponding maximisations. The algorithm is a two-step procedure:

• In the first step the maximum joint potential is computed and local maximum states

and ending indicators are saved along the way. These states and ending indicators
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are maintained in abookkeeper.

• In the second step we decode the best assignment bybacktrackingthrough saved

local maximum states.

We make use of the contextual decompositions and factorisations from Section 8.3.2.

Notations

This section, with some abuse, uses some slight modifications to the notations used in the

rest of the chapter. See Table 8.2 for reference.

Notation Description

∆max,d,s
i:j The optimal potential function of the subset of variablesζd,s

i:j

∆̂max,d,s
i:j The ‘full’ version of∆max,d,s

i:j

αmax,d,s
i:j (u) The optimal potential function of the subset of variablesζd,s

i:j (u)

∆arg,d,s
i:j The optimal childud+1

j of s
αarg,d,s

i:j (u) The optimal childvd+1
t−1 that transits toud+1

t:j and the time indext.
Id The set of optimal ‘segments’ at each leveld.

Table 8.2: Notations used in this section.

We now describe the first step.

8.5.1 Computing the Maximum Joint Potential, Maximal States and

Time Indices

As Φ[ζ ] = Φ[ζ̂1,s
1:T ]R1,s

1:T for s ∈ S1 we have

max
ζ

Φ[ζ ] = max
s∈S1

R1,s
1:T max

ζ1,s
1:T

Φ[ζ̂1,s
1:T ] (8.81)

Now, for a sub-assignmentζd,s
i:j for 1 ∈ [1, D − 1], Equation 8.36 leads to

max
ζd,s
i:j

Φ[ζ̂d,s
i:j ] = max

u∈Sd+1
Ed,s

u,j max
ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)] (8.82)

With some slight abuse of notation we introduce∆max,d,s
i:j as the optimal potential function

of the subset of variablesζd,s
i:j , andαmax,d,s

i:j (u) as the optimal potential function of the subset

of variablesζd,s
i:j (u).
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Definition 8. We define∆max,d,s
i:j andαmax,d,s

i:j (u) as follows

∆max,d,s
i:j = max

ζd,s
i:j

Φ[ζ̂d,s
i:j ] (8.83)

∆̂max,d,s
i:j = ∆max,d,s

i:j Rd,s
i:j (8.84)

αmax,d,s
i:j (u) = max

ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)] (8.85)

The Equations 8.81 and 8.82 can be rewritten more compactly as

Φ[ζMAP ] = max
s∈S1

∆̂max,1,s
1:T (8.86)

∆max,d,s
i:j = max

u∈Sd+1
Ed,s

u,jα
max,d,s
i:j (u) (8.87)

for d ∈ [1, D−1]. Whend = D, we simply set∆max,D,s
i:i = 1 for all s ∈ SD andi ∈ [1, T ].

From the factorisation in Equation 8.31 and 8.32, we have

max
ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u)] = max

{(
max

v∈Sd+1
max

t∈[i+1,j]
Rd+1,u

t:j Ad+1,s
v,u,t−1 max

ζd,s
i:t−1(v)

Φ[ζ̂d,s
i:t−1(v)]×

× max
ζd+1,u
t:j

Φ[ζ̂d+1,u
t:j ]

)
;

(
Rd+1,u

i:j max
ζd+1,u
i:j

πd,s
u,iΦ[ζ̂d+1,u

i:j ]

)}
(8.88)

and

αmax,d,s
i:j (u) = max

{(
max

v∈Sd+1
max

t∈[i+1,j]
αmax,d,s

i:t−1 (v)∆̂max,d+1,u
t:j Ad,s

v,u,t−1

)
;

(
∆̂max,d+1,u

i:j πd+1,s
u,i

)}
(8.89)

for d ∈ [1, D − 2] andi < j. Ford = D − 1, we cannot scan the indext in the interval

[i + 1, j] because the maximum inside∆max,D,u
t:j is only defined att = j. We have the

following instead

αmax,D−1,s
i:j (u) = max

v∈SD
αmax,D−1,s

i:j−1 (v)∆̂max,D,u
j:j AD,s

v,u,j−1 (8.90)

There is a base case fori = j, where the contextc = (ed
i−1 = 1) is active, then

αmax,d,s
i:i (u) = ∆̂max,d+1,u

i:i πd,s
u,i (8.91)

Of course, what we are really interested in is not the maximumjoint potentials but the

optimal states and time indices (or ending indicators). We need some bookkeepers to
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hold these quantities along the way. With some abuse of notation let us introduce the

symmetric inside bookkeeper∆arg,d,s
i:j associated with Equation 8.87, and the asymmetric

inside bookkeeperαarg,d,s
i:j (u) associated with Equations 8.89, 8.90 and 8.91.

Definition 9. We define the symmetric inside bookkeeper∆arg,d,s
i:j as follows

∆arg,d,s
i:j = u∗ = arg maxu∈Sd+1E

d,s
u,jα

max,d,s
i:j (u) (8.92)

Similarly, we define the asymmetric inside bookkeeperαarg,d,s
i:j (u) associated with Equa-

tion 8.89 ford ∈ [1, D − 2] as

αarg,d,s
i:j (u) = (v, t)∗ = arg maxt∈[i+1,j],v∈Sd+1α

max,d,s
i:t−1 (v)∆̂max,d+1,u

t:j Ad,s
v,u,t−1 (8.93)

if maxv∈Sd+1,t∈[i+1,j] α
max,d,s
i:t−1 (v)∆̂max,d+1,u

t:j Ad,s
v,u,t−1 > ∆̂max,d+1,u

i:j πd+1,s
u,i andi < j; and

αarg,d,s
i:j (u) = undefined (8.94)

otherwise. Ford = D − 1, theαarg,d,s
i:j (u) is associated with Equation 8.90

αarg,D−1,s
i:j (u) = arg maxv∈SDα

max,d,s
i:j−1 (v)∆̂max,D,u

j:j Ad,s
v,u,j−1 (8.95)

The Equations 8.86,8.87,8.89,8.90 and 8.91 provide a recursive procedure to compute max-

imum joint potential in a bottom-up and left-right manner. Initially we just set∆max,D,s
i:i = 1

for all s ∈ SD andi ∈ [1, T ]. The procedure is summarised in Figure 8.14.

8.5.2 Decoding the MAP Assignment

The proceeding of the backtracking process is opposite to that of the max-product. Specif-

ically, we start from the root and proceed in atop-downandright-left manner. The goal

is to identify the right-most segment at each level. Formally, a segment is a triple(s, i, j)

wheres is the segment label, andi andj are start and end time indices, respectively. From

the maximum inside∆max,d,s
i:j at leveld, we identify the best childu and its ending timej

from Equation 8.87. This gives rise to the maximum asymmetric insideαmax,d,s
i:j (u). Then

we seek for the best childv that transits tou under the same parents using Equation 8.89.

Since the starting timet for u has been identified the ending time forv is t−1. We now have

a right-most segment(u, t, j) at leveld + 1. The procedure is repeated until we reach the

starting timei of the parents. The backtracking algorithm is summarised in Figure 8.15.

Finally, the generalised Viterbi algorithm is given in Figure 8.16.
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Working in log-space to avoid numerical overflow

With long sequence and complex topology we may run into the problem of numerical over-

flow, i.e. when the numerical value of the maximum joint potential is beyond the number

representation of the machine. To avoid this, we can work in the log-space instead, using

the monotonic property of the log function. The equations inthe log-space are summarised

in Table 8.3.

Log-space equations Ref. equations

log ∆max,d,s
i:j = maxu∈Sd+1{logEd,s

u,j + logαmax,d,s
i:j (u)} Equation 8.87

logαmax,d,s
i:j (u) = max

{
maxt∈[i+1,j] maxv∈Sd+1{logαmax,d,s

i:t−1 (v)+

+ log ∆̂max,d+1,u
t:j + logAd,s

v,u,t−1}; log ∆̂max,d+1,u
i:j + log πd+1,s

u,i

}
Equation 8.89

logαmax,D−1,s
i:j (u) = maxv∈SD{logαmax,D−1,s

i:j−1 (v)+

+ log ∆̂max,D,u
j:j + logAD,s

v,u,j−1} Equation 8.90
logαmax,d,s

i:i (u) = log ∆̂max,d+1,u
i:i + log πd,s

u,i Equation 8.91

Table 8.3: MAP equations in the log-space.

8.6 Complexity Analysis

It can be seen from Figure 8.10 and 8.11 that the AIO algorithmtakesO(T 3) time to

compute all the inside and outside masses and the partition function forD > 3. For

D = 3, the complexity isO(T 2).

For the ESS (Section 8.4), using the calculated building blocks, it is not difficult to see

that the the ESS for state-persistence features takesO(T 2) times (see Equation 8.60), the

transitionO(T 3) (see Equation 8.67), the initialisationO(T 2) (see Equation 8.73) and the

endingO(T 2) (see Equation 8.79). The overall complexity is thereforeO(T 3).

The MAP estimation in Section 8.5 is basically the max-product version of the sum-product

algorithm used in the AIO, thus it has the same cubic time complexity as the partition

function.

8.7 Closing Remarks

In this chapter, we have presented a major extension to the theory of CRFs by proposing a

novel model called Hierarchical Conditional Random Field to deal with recursive sequen-

tial data. The model is capable of representing complex hierarchy with flexible structures
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and encoding rich domain knowledge in a discriminative framework.

We have developed a graphical model-like dynamic representation of the HCRF. This ap-

pears similar to the DBN representation of the HHMMs in (Murphy and Paskin, 2002),

and somewhat resembles a dynamic factor graph (Kschischanget al., 2001). However, it is

not exactly the standard graphical model because the contextual cliques in HCRFs are not

fixed during inference. In addition, the ability to represent state duration in the HCRFs is

not replicated in the HHMMs.

For learning and inference we have introduced an efficient Asymmetric Inside Outside

algorithm that exhibits cubic time complexity. We have shown how to compute various

essential quantities such as the partition function, the MAP assignment and the expected

sufficient statistics of feature functions. There are otherquantities and special cases we

have not covered in the main text of the chapter, but they are included as appendices. These

include state marginalsPr(xd
t ) (Appendix A.4), the ‘mirrored’ AIO (Appendix A.5), and

the proof that the semi-Markov CRF of (Sarawagi and Cohen, 2004) is a special case of

our HCRF (Appendix A.6).

In the next chapter we will address many practical issues including numerical overflow,

partial labels and efficiency and demonstrate the HCRFs framework in some applications.
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Input : D, T , all the potential function values.
Output : the bookkeepers;

∆arg,1,s
1:T , for s ∈ S1 and1 ≤ i ≤ j ≤ T ;

∆arg,d,s
i:j , for d ∈ [2, D − 1], s ∈ Sd;

∆arg,D,s
i:i for s ∈ SD andi ∈ [1, T ];

αarg,d,s
i:j (u) for d ∈ [1, D − 1], u ∈ Sd+1 and1 ≤ i ≤ j ≤ T

/* Initialisation */
∆max,D,s

i:i = 1 for all i ∈ [1, T ] ands ∈ SD

/* At the level d=D-1 */
For i = 1, 2, ..., T

For j = i, i+ 1, ..., T

Computeαmax,D−1,s
i:j (u) using Equation 8.90 and

αarg,D−1,s
i:j (u) using Equation 8.95

Compute∆max,D−1,s
i:j using Equation 8.87 and

∆arg,D−1,s
i:j using Equation 8.92

EndFor
EndFor
/* The main recursion loops: bottom-up and forward */
For d = D − 2, D − 3, ..., 1

For i = 1, 2, ..., T
For j = i, i+ 1, ..., T

If j = i

Computeαmax,d,s
i:i (u) using Equation 8.91

Else
Computeαmax,d,s

i:j (u) using Equation 8.89 and
αarg,d,s

i:i (u) using Equation 8.93
EndIf
If d > 1

Compute∆max,d,s
i:j using Equation 8.87 and

∆arg,d,s
i:j using Equation 8.92

EndIf
EndFor

EndFor
EndFor
Compute∆max,1,s

1:T using Equation 8.87 and
∆arg,1,s

1:T using Equation 8.92

Figure 8.14: Computing the bookkeepers.
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Input : D, T , all the filled bookkeepers.
Output : the optimal assignmentζMAP

s∗ = arg maxs∈S1∆̂
max,1,s
1:T

Initialise triple bucketsI1 = {(s∗, 1, T )} andId = {} for d ∈ [2, D]
For d = 1, 2, ..., D − 1

For each triple(s∗, i, j) in Id

Let u∗ = ∆arg,d,s∗

i:j

For i ≤ j

If αarg,d,s∗

i:j (u∗) is definedThen
(t∗, v∗) = αarg,d,s∗

i:j (u∗)
Add the triple(v∗, t∗, j) to Id+1 and Setj = t∗ − 1 andu∗ = v∗

Else
Add the triple(u∗, i, j) to Id+1 and Break this loop

EndIf
EndFor

EndFor
EndFor
For each stored triple(s∗, i, j) in the bucketId, for d ∈ [1, D],
create a corresponding set of variables(xd

i:j = s∗, ed
i−1 = 1, ed

j = 1, ed
i:j−1 = 0).

The joining of these sets is the optimal assignmentζMAP

Figure 8.15: Backtracking for optimal assignment (nested Markov blankets).

Input : D, T , all the potential function values.
Output : the optimal assignmentζMAP

Run the bottom-up discrete optimisation procedure described in Figure 8.14.
Run the top-down backtracking procedure described in Figure 8.15.

Figure 8.16: The generalised Viterbi algorithm.



Chapter 9

Extensions to HCRF and Applications

9.1 Introduction

In Chapter 8 we have introduced a novel model for recursive sequential data and derived

a polynomial time algorithm called Asymmetric Inside Outside (AIO) for learning and

inference. However, the AIO has some important drawbacks that prevent scalability.

First, the computation may be unstable because the magnitude of the partition function,

which is the sum of exponentially many positive potentials,increases exponentially fast in

the sequence lengthT , and thus goes beyond the numerical capacity of most machines for

moderateT .

Second, the AIO algorithm cannot deal with the situation when the training data is partially

labeled. On the other hand, the generalised Viterbi is basedon the assumption that the test

data does not have any labels. It does not make use of partial labels that may be obtained

externally. We term the process of training with partial labelspartial-supervision, and the

process of inference with partial labelsconstrained inference. Both the processes require

the construction of appropriate constrained inference algorithms.

The third problem is that the AIO generally takesO(T 3) time, which quickly becomes

impractical for non-trivial problems with largeT (e.g. about 100 or larger). Approximation

techniques that trade some accuracy for speed must be formulated.

In this chapter we present a number of extensions to the basicHCRF to address these three

problems

• Following the work of (Buiet al., 2004) we derive in Section 9.2 a scaling algorithm

that is effective in reducing numerical overflow.
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• In Section 9.3 we extend the AIO algorithm and the generalised Viterbi algorithm to

cope with arbitrary partial labels.

• In Section 9.4 we derive an efficient approximate inference scheme based on Rao-

Blackwellisation (e.g. see (Casella and Robert, 1996)), Gibbs sampling (e.g. see

Section 2.4.6).

• An approximate learning algorithm based on pseudo-likelihood (see Section 3.5.1.2)

is presented in Section 9.5.

• Section 9.6 exploits a special case of exponential distribution of state duration, and

introduces a factor-graph representation which enables efficient sum-product infer-

ence (see Section 2.4.8).

The rest of the chapter is organised as follows

• In Section 9.7.2 we will discuss the unconditional case of HCRF, and how it relates

to the HHMM.

• Section 9.8 will evaluate the effectiveness of HCRFs in two applications: human

activity recognition using the same data as in Chapters 6 and7, and noun-phrase

chunking (Sang and Buchholz, 2000). The HCRFs are run under varying conditions

and tested against several competitive CRFs.

• Section 9.9 concludes the chapter.

Notations

The current chapter makes use of several mathematical notations beside those introduced

in the previous chapter. These are included in Table 9.1 for reference.

Notation Meaning
lt Level which the transition occurs at timet
κ Scaling factors

ψ(.) Potential functions
αt(.) Rao-Blackwellised forward
βt(.) Rao-Blackwellised backward

Table 9.1: Notations used in this chapter.
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9.2 Numerical Overflow and the Scaling Algorithm

In this section we present a scaling method to reduce numerical overflow. The idea can be

traced back to belief propagation by normalising (or reducing) messages at each step (see

Equation 2.75). In the context of HHMMs with which the numericalunderflowproblem is

associated, a similar idea has been proposed in (Buiet al., 2004). Fortunately, the overflow

problem in the undirected models is closely related to the underflow issue of the directed

counterparts and thus, a similar strategy can be used.

9.2.1 Scaling the Symmetric/Asymmetric Inside Masses

Before proceeding to algorithmic details let us revisit Equation 8.37. If we scale down the

asymmetric inside massαd,s
i:j (u) by a factorκj > 1, i.e.

α
′d,s
i:j (u)←

αd,s
i:j (u)

κj
(9.1)

then the symmetric inside mass∆d,s
i:j is also scaled down by the same factor. Similarly, as

we can see from Equation 8.33 that

αd,s
i:j (u) =

j∑

t=i+1

∑

v∈Sd+1

αd,s
i:t−1(v)∆̂

d+1,u
t:j Ad,s

v,u,t−1 + ∆̂d+1,u
i:j πd,s

u,i

where∆̂d+1,u
t:j = ∆d+1,u

t:j Rd+1,u
t:j , if ∆d+1,u

t:j for t ∈ [1, j] is reduced byκj , thenαd,s
i:j is also re-

duced by the same factor. In addition, using the set of recursive relations in Equations 8.33

and 8.37, any reduction at the bottom level of∆D,s
j:j will result in the reduction of the sym-

metric inside mass∆d,s
i:j and of the asymmetric inside massαd,s

i:j (u), for d < D, by the same

factor.

Suppose∆D,s
i:i for all i ∈ [1, j] is reduced by a factor ofκi > 1, the quantities∆d,s

1:j and

αd,s
1:j(u) will be reduced by a factor of

∏j
i=1 κi. That is

∆̂
′d,s
1:j ←

∆̂d,s
1:j∏j

i=1 κi

(9.2)

α
′d,s
1:j (u) ←

αd,s
1:j(u)∏j
i=1 κi

(9.3)

It follows immediately from Equation 8.22 that the partition function is scaled down by a
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factor of
∏T

i=1 κi

Z ′ =
∑

s∈S1

∆̂
′1,s
1:T =

Z
∏T

j=1 κj

(9.4)

where∆̂
′1,s
1:T = ∆

′1,s
1:TB

1,s
1:T . Clearly, we should deal with the log of this quantity to avoid

numerical overflow. Thus, the log-partition function can becomputed as

log(Z) = log
∑

s∈S1

∆̂
′1,s
1:T +

T∑

j=1

log κj (9.5)

where∆
′1,s
1:T has been scaled appropriately.

One question is how to choose the set of meaningful scaling factors{κj}T1 . The simplest

way is to choose a relatively large number for all scaling factors but making the right

choice is not straightforward. Here we describe a more natural way to do so. Assume that

we have chosen all the scaling factors{κi}
j−1
1 . Using the original Equations 8.33, 8.34,

and 8.35, where all the sub-components have been scaled appropriately, we compute the

partially-scaledinside mass∆
′′d,s
i:j for d ∈ [2, D] and asymmetric inside massα

′′d,s
i:j (u), for

d ∈ [1, D − 1] andi ∈ [1, j]. Then the scaling factor at timej is computed as

κj =
∑

s,u

α
′′1,s
1:j (u) (9.6)

The next step is to rescale all the partially-scaled variables:

α
′d,s
i:j (u) ←

α
′′d,s
i:j (u)

κj

for s ∈ Sd, d ∈ [1, D − 1] (9.7)

∆
′d,s
i:j ←

∆
′′d,s
i:j

κj

for s ∈ Sd, d ∈ [2, D − 1] (9.8)

∆
′D,s
j:j ←

∆
′′D,s
j:j

κj

for s ∈ SD (9.9)

wherei ∈ [1, j].

9.2.2 Scaling the Symmetric/Asymmetric Outside Masses

In a similar fashion we can work out the set of factors from thederivation of symmet-

ric/asymmetric outside masses since these masses solely depend on the inside masses as

building blocks. In other words, after we finish scaling the inside masses we can com-

pute the scaled outside masses directly, using the same set of equations described in Sec-
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tion 8.3.3.

The algorithm is summarised in Figure 9.1. Note that the order of performing the loops in

this case is different from that in Figure 8.10.

Input : D, T and all the contextual potentials.
Output : Scaled quantities: inside/asymmetric inside masses,

outside/asymmetric outside masses.
For j = 1, 2, .., T

Computeαd,s
1:j(u), d ∈ [1, D − 1] using Equations 8.33, 8.34 and 8.35

Computeκj using Equation 9.6
Rescaleα1,s

1:j(u) using Equation 9.7
For i = 1, 2, .., j

For d = 2, 3, .., D − 1

Rescaleαd,s
i:j (u) using Equation 9.7

Rescale∆d,s
i:j using Equation 9.8

EndFor
EndFor
Rescale∆D,s

j:j using Equation 9.9
EndFor
Compute true log-partition function using Equation 9.5.
Compute the outside/asymmetric outside masses using the

scaled inside/asymmetric inside masses instead of the original
inside/asymmetric inside in Equations 8.40 and 8.44.

Figure 9.1: Scaling algorithm to avoid numerical overflow.

9.3 Partially Observed Data and Algorithms with Con-

straints

So far we have assumed that training data is fully labeled, and that testing data does not

have any labels. In this section we extend the AIO to handle the cases in which these

assumptions do not hold. Specifically, it may happen that thetraining data is not completely

labeled, possibly due to lack of labeling resources. In thiscase, the learning algorithm

should be robust enough to handle missing labels. On the other hand, during inference, we

may partially obtain high quality labels from external sources. This requires the inference

algorithm to be responsive to that data.
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9.3.1 The Constrained AIO algorithm

In this section we consider the general case whenζ = (ϑ, h), whereϑ is the visible set

labels, andh the hidden set. Since our HCRF is also an exponential model itshares the

same computation required for general CRFs (Equations 3.11and 3.12). We have to com-

pute four quantities: the partial log-partition functionZ(ϑ, z), the partition functionZ(z),

the ‘constrained’ ESSEh|ϑ,z[F(ϑ, h, z)], and the ‘free’ ESSEζ|z[F(ζ, z)]. The partition

function and the ‘free’ ESS has been computed in Sections 8.3and 8.4, respectively. This

section describes the other two quantities.

Let the set of visible labels beϑ = (x̃, ẽ) wherex̃ is the visible set of state variables andẽ

is the visible set of ending indicators. The basic idea is that we have to modify procedures

for computing the building blocks such as∆d,s
i:j andαd,s

i:j (u), to address constraints imposed

by the labels. For example,∆d,s
i:j implies that the states at leveld starts ati and persists

till terminating atj. Then, if any labels (e.g. there is añxd
k 6= s for k ∈ [i, j]) are seen,

causing this assumption to be inconsistent,∆d,s
i:j will be zero. Therefore, in general, the

computation of each building block is multiplied by an identity function that enforces the

consistency between these labels and the required constraints for computation of that block.

As an example, we consider the computation of∆d,s
i:j andαd,s

i:j (u).

The symmetric inside mass∆d,s
i:j is consistent only if all of the following conditions are

satisfied:

1. If there are state labels̃xd
k at leveld within the interval[i, j], thenx̃d

k = s,

2. If there is any label of ending indicatorẽd
i−1, thenẽd

i−1 = 1,

3. If there is any label of ending indicatorẽd
k for somek ∈ [i, j − 1], thenẽd

k = 0, and

4. If any ending indicator̃ed
j is labeled, theñed

j = 1.

These conditions are captured by using the following identity function:

I[∆d,s
i:j ] = δ[x̃d

k∈[i,j] = s]δ[ẽd
i−1 = 1]δ[ẽd

k∈[i:j−1] = 0]δ[ẽd
j = 1] (9.10)

When labels are observed, Equation 8.37 is thus replaced by

∆d,s
i:j = I[∆d,s

i:j ]

( ∑

u∈Sd+1

αd,s
i:j (u)Ed,s

u,j

)
(9.11)

Note that we do not need to explicitly enforce the state consistency in the summation

overu since in the bottom-up and left-right computation,αd,s
i:j (u) is already computed and

contributes to the sum only if it is consistent.
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Analogously, the asymmetric inside massαd,s
i:j (u) is consistent if all of the following con-

ditions are satisfied:

1. The first three conditions for the symmetric inside mass∆d,s
i:j hold,

2. If the state at leveld at timej is labeled, it must beu, and

3. If any ending indicator̃ed+1
j is labeled, theñed+1

j = 1.

These conditions are captured by the identity function

I[αd,s
i:j (u)] = δ[x̃d

k∈[i,j] = s]δ[ẽd
i−1 = 1]δ[ẽd

k∈[i:j−1] = 0]δ[x̃d+1
j = u]δ[ẽd+1

j = 1] (9.12)

Thus Equation 8.33 becomes

αd,s
i:j (u) = I[αd,s

i:j (u)]

(
j∑

k=i+1

∑

v∈Sd+1

αd,s
i:k−1(v)∆̂

d+1,u
k:j Ad,s

v,u,k−1 + ∆̂d+1,u
i:j πd+1,s

u,i

)
(9.13)

Note that we do not need to explicitly enforce the state consistency in the summation over

v and time consistency in the summation overk since in bottom-up computation,αd,s
i:j (u)

and∆d+1,u
k:j are already computed and contribute to the sum only if they are consistent.

Finally, the constrained partition functionZ(ϑ, z) is computed using Equation 8.22 given

that the inside mass is consistent with the observations.

Other building blocks, such as the symmetric outside massΛd,s
i:j and the asymmetric outside

massλd,s
i:j (u), are computed in an analogous way. SinceΛd,s

i:j and∆d,s
i:j are complementary

and they share(d, s, i, j), the same indicator functionI[∆d,s
i:j ] can be applied. Similarly,

the pair asymmetric inside massαd,s
i:j (u) and asymmetric outside massλd,s

i:j (u) are com-

plementary and they shared, s, i, j, u, thus the same indicator functionI[αd,s
i:j (u)] can be

applied.

Once all constrained building blocks have been computed they can be used to calculate

constrained ESS as in Section 8.4 without any further modifications. The only difference

is that we need to replace the partition functionZ(z) by the constrained versionZ(ϑ, z).

9.3.2 The Constrained Viterbi Algorithm

Recall that in the Generalised Viterbi Algorithm describedin Section 8.5 we want to find

the most probable configurationζMAP = arg maxζ Pr(ζ |z). When some variablesϑ of

ζ are labeled, it is not necessary to estimate them. The task isnow to estimate the most
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probable configuration of the hidden variablesh given the labels:

hMAP = arg max
h

Pr(h|ϑ, z)

= arg max
h

Pr(h, ϑ|z)

= arg max
h

Φ[h, ϑ, z] (9.14)

It turns out that the constrained MAP estimation is identical to the standard MAP except

that we have to respect the labeled variablesϑ.

Since the Viterbi algorithm is just the max-product versionof the AIO, the constrained

Viterbi can be modified in the same manner as in the constrained AIO (Section 9.3.1).

Specifically, for each auxiliary quantities such as∆max,s
i:j andαmax,s

i:j (u), we need to main-

tain a set of indicator functions that ensures the consistency with labels. Equations 9.10

and 9.11 become

I[∆max,d,s
i:j ] = δ[x̃d

k∈[i,j] = s]δ[ẽd
i−1 = 1]δ[ẽd

k∈[i:j−1] = 0]δ[ẽd
j = 1]

∆max,d,s
i:j = I[∆max,d,s

i:j ]

(
max

u∈Sd+1
αmax,d,s

i:j (u)Ed,s
u,j

)
(9.15)

Likewise, we have the modifications to Equation 9.12 and Equation 9.13, respectively.

I[αmax,d,s
i:j (u)] = δ[x̃d

k∈[i,j] = s]δ[ẽd
i−1 = 1]δ[ẽd

k∈[i:j−1] = 0]δ[x̃d+1
j = u]δ[ẽd+1

j = 1]

αmax,d,s
i:j (u) = I[αmax,d,s

i:j (u)] max

{
max

k∈[i+1,j]
max

v∈Sd+1
αmax,d,s

i:k−1 (v)∆̂max,d+1,u
k:j Ad,s

v,u,k−1;

∆̂max,d+1,u
i:j πd+1,s

u,i

}
(9.16)

Other tasks in the Viterbi algorithm including bookkeepingand backtracking are identical

to those described in Section 8.5.

9.3.3 Complexity Analysis

The complexity of the constrained AIO and constrained Viterbi has an upper bound of

O(T 3), when no labels are given. It also has a lower bound ofO(T ) when all ending in-

dicators are known and the model reduces to the standard tree-structured graphical model.

In general, the complexity decreases as more labels are available, and we can expect a

sub-cubic time behaviour.
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9.4 Approximate Inference using Rao-Blackwellised Gibbs

Sampling

Recall that the AIO algorithm derived in Chapter 8 generallytakesO(T 3) time. This

quickly becomes impractical for non-trivial problems withlarge T (e.g. about 100 or

larger). In this section we develop an approximation schemefor inference of the HCRFs

that may help improve the speed. The main idea is to combineGibbs sampling(e.g. see

Section 2.4.6) andRao-Blackwellisation(e.g. see (Casella and Robert, 1996)). Before

proceeding into algorithmic details let us make several observations that simplify the HCRF

computation

• The set of ending indicatorse1:D1:T can be made simpler by noticing that for each time

step there is only one transition at a certain level because all the states above it must

remain unchanged, and all the states below it must finish. Thus, the entire slice of

indicatorse1:Dt can be replaced by a single variablelt ∈ [2, D], wherelt is the level

at which a transition occurs at timet.

• The complete free variable set is now(x1:D
1:T , l) which has two components, the sub-

set of state variablesx1:D
1:T and the subset of transition indicatorsl1:T−1. Under the

restrictions of hierarchical consistency,when all the transition indicators are known,

the entirex1:D
1:T can be collapsed into a Markov tree(Figure 9.2b).

• It is well-known that inference in tree structures is efficient (see Section 2.4.5), and

marginalising out all the state variables takes linear timewith respect to number of

tree edges. In our HCRF case with observed ending indicators, the time isO(DT ).

For presentation clarity, we will usex as a shorthand forx1:D
1:T , xt as a shorthand forx1:D

t ,

andl as a shorthand forl1:T−1.

(a) (b)

Figure 9.2: An HCRF with knownl: (a) links between unrelated states are removed, and
(b) the collapsed version into a Markov tree.
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9.4.1 Rao-Blackwellised Gibbs Sampling

Rao-Blackwellisation is a technique that can improve the quality of sampling methods by

only sampling some variables and marginalising out the rest. In our HCRFs, for example,

we can samplel and marginalise outx

l ∼ Pr(l)

=
∑

x

Pr(x, l)

=
1

Z
Z(l) (9.17)

whereZ(l) =
∑

x Φ[x, l]. However, there are problems with this strategy. First, computing

Pr(l) still requiresZ, which is expensive. Second, the size of state space ofPr(l) is

(D − 1)T−1, which is difficult to sample directly.

Fortunately, Gibbs sampling allows us to samplel not fromPr(l) but from the local distri-

butions

lt ∼ Pr(lt|l−t) for t ∈ [1, T − 1], lt ∈ [2, D] (9.18)

wherel−t = {l\lt} = l1:t−1,t+1:T , and

Pr(lt|l−t) =
Pr(l)∑

l′t
Pr(l′t, l−t)

=
Z(l)∑

l′t
Z(l′t, l−t)

(9.19)

The main efficiency comes from the fact that, as we will show inSection 9.4.3,Z(l) and

therefore,Pr(lt|l−t), can be computed exactly in linear time.

In what follows we borrow the idea ofwalking chainfrom (Bui et al., 2002) in the context

of the Abstract Hidden Markov Model (AHMM) and adapt it to ourHCRFs. The main

source of complication in the adaption is that the HCRF is capable of modelling duration

whilst the AHMM is not. Moreover, the HCRF is strictly nestedwhilst the AHMM is not.

As the HCRF is undirected its factorisation of potentials does not have any probabilistic

interpretation as in the AHMM.

Givenl, the temporal evolution of the HCRFs can be visualised as a walking chain, either

moving forward (Figure 9.3b), or backward (Figure 9.3c). The height of the forward leg at

time t corresponds to the transition levellt. Since the states abovelt are unchanged att,

the ‘body’ of the walking chain is copied from the previous time index.

In the proposition below we show that the walking chain can beflattened into a standard
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(a) A HCRF fragment (b) Forward (c) Backward (d) Merge

Figure 9.3: The walking chains. Given a fragment of the HCRF at time t, the states above
the transition levellt stay unchanged so they can be collapsed into a single node.

sequential chain.

Proposition 6. Givenl, the joint potentialΦ[x, l] can be factorised as follows

Φ[x, l] =
∏

t∈[1,T−1]

ϕt(xt, xt+1|l) (9.20)

whereϕt(xt, xt+1|l) are non-negative functions.

Proof: This can be derived by construction. Indeed there is more than one way to do this.

Let

ϕ̂t(xt, xt+1|l) =

[D−1∏

d=lt

Ed,s
u,t

]
Alt,s

u,v,t

[D−1∏

d=lt

πd,s
v,t+1

]
(9.21)

where we have usedEd,s
u,t as a shorthand forEd,xd

t

xd+1
t ,t

,Alt,s
u,v,t as a shorthand forA

lt,x
lt−1
t+1

x
lt
t ,x

lt
t+1,t

, and

πd,s
v,t+1 for π

d,xd
t+1

xd+1
t+1 ,t+1

. Now let

−→ϕ 1(x1, x2|l) = ϕ̂1(x1, x2|l)

[ D∏

d=l1

Rd,s
1:1

][D−1∏

d=1

πd,s
u,1

]
(9.22)

−→ϕ T−1(xT−1, xT |l) = ϕ̂T−1(xT−1, xT |l)

[D−1∏

d=1

Ed,s
v,T

]
×

×

[ D∏

d=lT−1

Rd,s
i:T−1

][ lT−1−1∏

d=1

Rd,s
i:T

][ D∏

d=lT−1

Rd,s
T :T

]
(9.23)

−→ϕ t(xt, xt+1|l) = ϕ̂t(xt, xt+1|l)

[ D∏

d=lt

Rd,s
i:t

]
, ∀t ∈ [2, T − 2] (9.24)

where we have usedRd,s
i:t as a shorthand forRd,xd

t

i:t , andi is the starting time of the seg-
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ment of leveld that ends att. We have assumed that the computation proceeds from left

to right and the indexi is recorded for each leveld along the way (e.g. whenever the ini-

tialisation potentialπd,s
u,i is triggered). Then the first construction is completed by setting

ϕt(xt, xt+1|l) = −→ϕ t(xt, xt+1|l).

Alternatively, let

←−ϕ 1(x1, x2|l) = ϕ̂1(x1, x2|l)

[D−1∏

d=1

πd,s
u,1

]
×

×

[ D∏

d=l1

Rd,s
2:j

][ l1−1∏

d=1

Rd,s
1:j

][ D∏

d=l1

Rd,s
1:1

]
(9.25)

←−ϕ T−1(xT−1, xT |l) = ϕ̂T−1(xT−1, xT |l)

[ D∏

d=lT−1

Rd,s
T :T

][D−1∏

d=1

Ed,s
v,T

]
(9.26)

←−ϕ t(xt, xt+1|l) = ϕ̂t(xt, xt+1|l),

[ D∏

d=lt

Rd,s
t+1:j

]
∀t ∈ [2, T − 2] (9.27)

wherej in Rd,s
t+1:j is the ending time of the segment that starts att + 1 and leveld. We

have assumed that the computation proceeds from right to left and the indexj is recorded

for each leveld along the way (e.g. whenever the state ending potentialEd,s
u,j is triggered).

Then we have another construction by settingϕt(xt, xt+1|l) =←−ϕ t(xt, xt+1|l) �

Remark: Proposition 6 suggests that computation in the HCRFs, whenl is known, should

be be similar to that on Markov chains, because the factorisation of Equation 9.20 is a case

of Markov chain factorisation of Equation 2.47. The complication is that the state space of

xt in the case of HCRFs is not usually small and that the straightforward forward-backward

procedure described in Section 2.4.3 is not applicable. This will be the subject of the next

subsection.

9.4.2 Rao-Blackwellised Forward/Backward

Let Φα,t[x1:t|l1:t−1] be the product of all contextual clique potentials that are enabled in the

corresponding contexts caused byl1:t−1. More specifically, we have

Φα,t[x1:t|l1:t−1] =
∏

i∈[1,t−1]

−→ϕ i(xi, xi+1|l) (9.28)

where−→ϕ i(xi, xi+1|l) is defined in Equations 9.22-9.24.

Similarly, let Φβ,t[xt:T |lt:T−1] be the product of all contextual clique potentials that are
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enabled in the corresponding contexts caused bylt:T−1. More specifically,

Φβ,t[xt:T |lt:T−1] =
∏

j∈[t,T−1]

←−ϕ j(xj, xj+1|l) (9.29)

where←−ϕ j(xj , xj+1|l) is defined in Equations 9.25-9.27.

With some abuse of notations, denote byαt(xt|l1:t−1) the RB-Forward, andβt(xt|lt:T−1)

theRB-Backward.

Definition 10. Letα1(x1) = 1 andβT (xT ) = 1. For general time indices the RB-Forward

and RB-Backward are defined as follows

αt(xt|l1:t−1) =
∑

x1:t−1|{xd

id:t−1
=xd

t }
lt−1−1

d=1

Φα,t[x1:t|l1:t−1] (9.30)

βt(xt|lt:T−1) =
∑

xt+1:T |{xd

t+1:jd
=xd

t }
lt−1−1

d=1

Φβ,t[xt:T |lt:T−1] (9.31)

whereid andjd are the start and end time for the segment of statexd
t .

In performing these two sums one must keep these states at level d ∈ [1, lt−1 − 1] stay the

same in the interval[i, j] for somei ≤ t and t ≤ j. These states are fixed tox1:lt−1−1
t .

The indices{i} are known when we scan forward and the indices{j} are known when

we scan backward. In the following we will develop a recursive procedure that finds and

stores these indices as we compute the RB-Forward and RB-Backward sequentially. The

main results of this section are summarised in Proposition 7.

Proposition 7. The RB-Forward and RB-Backward can be expressed compactly as follows

αt(xt|l1:t−1) =
D−1∏

d=lt−1

ψd
α,t(x

d
t , x

d+1
t ) (9.32)

βt(xt|lt:T−1) =

D−1∏

d=lt

ψd
β,t(x

d
t , x

d+1
t ) (9.33)

whereψd
α,t(.) andψd

β,t(.) are some positive function of(xd
t , x

d+1
t ). In addition, the compu-

tation ofαt(.) andβt(.) for all t ∈ [1, T ] costsO(DT ) time and space.

Remark: The significance of Proposition 7 is that the vertical chainxt is enough to rep-

resent the RB-Forward and RB-Backward without worrying about the past. More impor-

tantly the factorisation in Equations 9.32 and 9.33 impliesthat we never need to explicitly

storeαt(.) andβt(.) as a function ofxt, which is expensive withO(|S|D) memory. We only

need to store the local potential functionsψd
α,t(.) andψd

β,t(.) which requireO((D−1)|S|2)

space.
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Proof: Let us first work with the RB-Forward and prove Equation 9.32. We will proceed

by induction.

Base Case. At t = 2, from the definition of the RB-Forward in Equation 9.30

α2(x2|l1) =
∑

x1|{xd
1=xd

2}
l1−1
d=1

Φα,2[x1:2|l1] (9.34)

=
∑

x
l1:D
1

Φα,2[x1:2|l1] (9.35)

subject to{xd
1 = xd

2}
l1−1
d=1 . Consider the forward ‘walking chain’ in Figure 9.3b. It consists

of three elements: (1) the upper bodyx1:l1
1 , where the variables at the first slice are copied

forward to those at the second slice, i.e.x1:l1
1 = x1:l1

2 , (2) the ‘left-leg’ xl1+1:D
1 , and (3)

the ‘right-leg’xl1+1:D
2 . Φα,2[x1:2|l1] is the product of local potentials distributed along the

body, the left-leg and the right-leg. Thus summing overxl1:D
1 is equivalent to marginalising

out the left-leg of the walking chain. This can be done inD− l1 + 1 steps. The result after

marginalisation are the body and the right-leg, which are parts of the vertical chain at time

t = 2. Thus,α2(x2|l1) is a product of local potentials along the vertical chainx2.

Induction. The argument runs in a similar fashion to the base case. Assume that the RB-

Forwardαt−1(xt−1|l1:t−2) is a product of local potentials along the vertical chainxt−1.

From Equation 9.30, we have

αt(xt|l1:t−1) =
∑

x1:t−1|{xd

id:t−1
=xd

t }
lt−1−1

d=1

Φα,t−1[x1:t−1|l1:t−2]
−→ϕ t−1(xt−1, xt|l) (9.36)

=
∑

x
lt−1:D

t−1

−→ϕ t−1(xt−1, xt|l)
∑

x1:t−2|{xd

kd:t−2
=xd

t−1}
lt−2−1

d=1

Φα,t−1[x1:t−1|l1:t−2]

=
∑

x
lt−1:D

t−1

−→ϕ t−1(xt−1, xt|l)αt−1(xt−1|l1:t−2) (9.37)

subject to{xd
id:t−1 = xd

t }
lt−1−1
d=1 . In Equation 9.36, we have used the following factorisation

Φα,t[x1:t|l1:t−1] = Φα,t−1[x1:t−1|l1:t−2]
−→ϕ t−1(xt−1, xt|l) (9.38)

which is a result of Equation 9.28. Recall thatαt−1(xt−1|l1:t−2) and−→ϕ t−1(xt−1, xt|l) are

products of local potentials along the left-legxlt−1+1:D
t−1 , the right-legxlt−1+1:D

t and the body

x1:lt
t−1:t. Summarising over

∑
x

lt−1:D

t−1

is equivalent to marginalising over the left-leg, which

can be done efficiently inD− lt +1 steps. After marginalisation, the body and the right-leg

form a vertical chain at timet. Thusαt(xt|l1:t−1) is a product of local potentials along the

vertical chainxt.

The forward process is illustrated as a forward walking chain in Figure 9.3b. As the tran-
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sition occurs at levellt−1, the left-leg is marginalised out, the right-leg is createdwhile the

body stays the same.

Overall it is now clear that the computation of the RB-Forward costsO(DT ) time and

space.

The proof of Equation 9.33 in the case of RB-Backward is analogous to that of RB-

Forward. The process is illustrated as a backward walking chain in Figure 9.3c, where

the right-leg is a summarisation of theβt+1(.). As the transition occurs at levellt, only the

left-leg below it is created, while the part above it stays the same. This completes the proof

�

The implementation of forward-walking and backward-walking is summarised in Fig-

ure 9.4 and Figure 9.5, respectively.

Input : ψα,t−1(.) andlt−1

Output : ψα,t(.)
/* Integrating out the left leg using upward message passing*/
µD(s) = 1
For d = D − 1, .., lt

µd(s)←
∑

u ψ
d
α,t−1(s, u)E

d,s
u,t−1R

d+1,u
i:t−1 µ

d+1(u)
EndFor

/* Integrating overu at lt−1 */
ψ

lt−1−1
α,t (s, v) =

∑
u µ

lt−1(u)Rlt,u
i:t A

lt−1,s
u,v,t−1

/* Creating the forward-walk (the right-leg) */
For d = lt, .., D − 1

ψd
α,t(s, u)← πd,s

u,t

EndFor

/* Keeping the higher potentials */
For d = 1, .., lt − 1

ψd
α,t(s, u)← ψd

α,t−1(s, u)
EndFor

Figure 9.4: Forward-walking chain.

Of course, computing the RB-Forward and RB-Backward is not the main point. As we

can see by analogy to the Markov chains (Section 2.4.3), theyare essential ingredients for

inference, which we will cover next.
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Input : ψβ,t+1(.) andlt
Output : ψβ,t(.)
/* Integrating out the right leg using upward message passing */
µD(s) = 1
For d = D − 1, .., lt

µd(s)←
∑

v ψ
d
β,t+1(s, u)π

d,v
u,t+1R

d+1,v
t+1:j µ

d+1(v)
EndFor

/* Integrating over atlt */
ψlt−1

t (s, u) =
∑

u µ
lt(v)Rlt,v

t+1:jA
lt,s
u,v,t

/* Creating the backward-walk (the left-leg) */
For d = lt, .., D − 1

ψd
t (s, u)← Ed,s

u,t

EndFor

/* Keeping the higher potentials */
For d = 1, .., lt − 1

ψd
t (s, u)← ψd

t+1(s, u)
EndFor

Figure 9.5: Backward-walking chain.

9.4.3 Efficient Computation ofPr(lt|l−t)

Now we show how to compute the quantity of interest for Gibbs sampling Pr(lt|l−t).

Proposition 8 summaries the computation.

Proposition 8. We can expressPr(lt|l−t) as follows

Pr(lt|l−t) ∝
∑

x1:D
t

D−1∏

d=lt

ψd
t (x

d
t+1, x

d+1
t+1 ) (9.39)

whereψd
t (.) is some positive function of(xd

t+1, x
d+1
t+1 ). In addition, the computation of

Pr(lt|l−t) for all t ∈ [1, T − 1] costsO(DT ) time and space.

Proof: Recall from Equation 9.19 that we just have to computeZ(l) in order to estimate

Pr(lt|l−t).

Recall that the joint potentialΦ[x, l] (see Equation 8.1) is the product of all local potentials

that are enabled in the contexts caused byl. Thus the joint potential can be factorised as

follows

Φ[x, l] = Φα,t+1[x1:t+1|l1:t]Φβ,t+1[xt+1:T |lt+1:T−1]

[ 1∏

d=1

Rd,s
i:j

][ D∏

d=lt

Rd,s
t+1:j

]
(9.40)
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for t ∈ [1, T −1], whered > li−1, d > lj, andi ≤ t ≤ j. To visualise this relation, imagine

a merge between the forward-walk and the backward-walk, as depicted in Figure 9.3d. As

we walk in both directions we already know the starting timei and the ending timej of the

segment with persistence potentialRd,s
i:j .

Consider the decomposition:x = (x1:t, xt+1, xt+2:T ). Given the factorisation in Equa-

tion 9.40 and the definition of RB-Forward/Backward in Equations 9.30 and 9.31 we have

Z(l) =
∑

x

Φ[x, l] =
∑

x1:t

∑

xt+1

∑

xt+2:T

Φ[x, l]

=
∑

xt+1

([ lt−1∏

d=1

Rd,s
i:j

][ D∏

d=lt

Rd,s
t+1:j

]
αt+1(xt+1|l1:t)βt+1(xt+1|lt+1:T−1)

)
(9.41)

Notice that by Proposition 7 the RB-Forward and RB-Backwardhave the factorised form

along the vertical chainxt+1 = (x1
t+1, x

2
t+1, ..., x

D
t+1). Hence Equation 9.41 has the form of

the sum-product along the chain, which can be computed inD steps (see Section 2.4.3).

We can even compute and store all the values ofPr(l) for all lt ∈ [2, D] in D time using

the same dynamic algorithm along chain. This implies aO(2DT |S|2) time complexity to

compute all the conditional probabilitiesPr(lt|l−t) for t ∈ [1, T − 1] andlt ∈ [2, D].

Substituting Equations 9.32 and 9.33 into Equation 9.41 andgrouping local quantities into

appropriate function of(xd
t+1, x

d+1
t+1 ), for d ∈ [1, D − 1] will give us Equation 9.39�

9.4.4 Estimating State Marginals

We have shown that Gibbs sampling the time indicesl can be carried out efficiently. In this

section, we show how to approximately estimate the probability of a state at given leveld

and timet, a quantity often used in smoothing:

P̂r(xd
t ) =

1

N

∑

n∈[1,N ]

Pr(xd
t |l

(n)
1:T−1) (9.42)

whereN is the number of samples.

We have

Pr(xd
t , l) =

∑

x\xd
t

Pr(x, l)

=
1

Z

∑

x\xd
t

Φ[x, l]

=
Z(xd

t , l)

Z
(9.43)
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whereZ(xd
t , l) =

∑
x\xd

t
Φ[x, l]. Using Equation 9.17, we have

Pr(xd
t |l) =

Pr(xd
t , l)

Pr(l)

=
Z(xd

t , l)

Z(l)
(9.44)

We have computedZ(l) in Section 9.4.3. Using the same logic we have an expression

similar to Equation 9.41

Z(xd
t , l) =

∑

xt\xd
t



[ lt−1−1∏

d=1

Rd,s
i:j

][ D∏

d=lt−1

Rd,s
t:j

]
αt(xt|l1:t−1)βt(xt|lt:T−1)


 (9.45)

This equation is almost identical to Equation 9.41 except that now we sum overxt\xd
t

instead ofxt. Thus, likeZ(l) in Equation 9.41, we can computeZ(xd
t , l) in 2D|S|2 steps.

We propose the following sampling procedure to estimateP̂r(xd
t ). First we compute all the

RB-BackwardβT
t=1. Then we proceed from left to right to estimate the RB-Forward αt.

Sinceαt only depends onl1:t−1, we can samplelt using Equation 9.18,xd
t for d ∈ [1, D]

using Equation 9.42 and updateαt as we go. Then the process is repeated until convergence

criteria are met. It means the statesxd
t are only updated after everyTD Gibbs samples. The

intuition is that since successive states sampled by the Gibbs sampler are highly correlated

and the marginals may not change significantly after each step, we can also wait for quite

a bit of time before picking a value. Finally, the complete procedure to compute Rao-

Blackwellised smoothing probabilitŷPr(xd
t ) is summarised in Figure 9.6.

Input : Model parameters
Output : Smooth marginalŝPr(xd

t ) t ∈ [1, T ], d ∈ [1, D]
/* Initialisation */
Samplel
/* Main MCMC loop */
For i = 1, ., N

For t = T, T − 1, ..., 1
Computeβt using the backward-chain of Figure 9.5

EndFor
For t = 1, 2, ..., T − 1

Resamplelt
Computeαt+1 using the forward-chain of Figure 9.4
Update the smooth marginalŝPr(xd

t+1)
EndFor

EndFor

Figure 9.6: Computing the Rao-Blackwellised smoothing probability.
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9.5 Learning based on Pseudo-Likelihood

Learning in HCRFs using the standard maximum likelihood with the AIO algorithm as

the underlying inference is expensive. This subsection investigates the application of Be-

sag’s pseudo-likelihood (see Section 3.5.1.2) as an alternative to the true likelihood for our

HCRFs:

Lpseudo = log


Pr(x|l, z)

∏

t∈[t,T−1]

Pr(lt|l−t, z)


 (9.46)

≈ log Pr(x, l|z) (9.47)

Again, let us dropz for clarity. In Section 9.4 we have shown how to efficiently compute

Pr(lt|l−t) for all t ∈ [1, T − 1] in linear time. Similarly, for thePr(x|l) we have

Pr(x|l) =
Pr(x, l)∑
x Pr(x, l)

=
Φ[x, l]∑
x Φ[x, l]

=
1

Z(l)
Φ[x, l] (9.48)

Here,Z(l) has been computed in Equation 9.41 (Section 9.4) in linear time.

Now we need to compute the gradient of the pseudo-likelihoodfor parameter estimation:

∇Lpseudo = ∇ log Pr(x|l) +
∑

t∈[1,T−1]

∇ log Pr(lt|l−t) (9.49)

Using Equation 9.48, the first term of the RHS reads

∇ log Pr(x|l) = ∇ log Φ[x, l]−∇ logZ(l) (9.50)

The term∇ log Φ[x, l] is straightforward due to the factorisation in Proposition6.

∇ log Φ[x, l] =
∑

t∈[1,T−1]

∇ logϕt(xt:t+1|l) (9.51)

Now we proceed to estimate∇ log Pr(lt|l−t) in the RHS of Equation 9.49. Recall from
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Equation 9.19 thatPr(lt|l−t) = Z(l)/
∑

l′t
Z(l′t, l−t), we have

∇ log Pr(lt|l−t) = ∇ logZ(l)−∇ log
∑

l′t

Z(l′t, l−t)

= ∇ logZ(l)−
1∑

l′t
Z(l′t, l−t)

∑

l′t

∇Z(l′t, l−t)

= ∇ logZ(l)−
∑

l′t

Z(l′t, l−t)∑
l′t
Z(l′t, l−t)

∇Z(l′t, l−t)

Z(l′t, l−t)

= ∇ logZ(l)−
∑

l′t

Pr(l′t|l−t)∇ logZ(l′t, l−t) (9.52)

Thus, both Equations 9.50 and 9.52 require estimation of∇ logZ(l). Recall the factorisa-

tion in Proposition 6, soPr(x|l) is a standard sequential CRF (see Chapter 3) with local

clique potentialsϕt(xt:t+1|l). Then from Proposition 1 we have

∇ logZ(l) =
∑

t∈[1,T−1]

∑

xt:t+1

Pr(xt:t+1|l)∇ logϕt(xt:t+1|l) (9.53)

Estimating the local expectation in Equation 9.53

∑

xt:t+1

Pr(xt:t+1|l)∇ logϕt(xt:t+1|l) (9.54)

by directly summing overxt:t+1 is not a good choice because we end up with the sum of

|S|2D terms. Fortunately, the factorisation given in Proposition 9 below greatly simplifies

the computation.

Proposition 9. Pr(xt:t+1|l) can be factorised as follows

Pr(xt:t+1|l) =
1

Z(l)

D−1∏

d=1

ψt(x
d:d+1
t:t+1 |l) (9.55)

whereψt(x
d:d+1
t:t+1 |l) are some non-negative functions.

Proof: We have

Pr(xt:t+1|l) =
∑

x\xt:t+1

Pr(x|l)

=
1

Z(l)

∑

x\xt:t+1

Φ[x, l]

=
Z(xt:t+1, l)

Z(l)
(9.56)
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whereZ(xt:t+1, l) =
∑

x\xt:t+1
Φ[x, l]. As(x, l) = (x1:t−1, xt:t+1, xt+2:T , l1:t−1, lt, lt+1:T−1),

Φ[x, l] can be factorised as

Φ[x, l] = Φα,t[x1:t|l1:t−1]Φβ,t+1[xt+1:T |lt+1:T−1]×

×Ad,s
u,v,t

lt−1∏

d=1

Rd,s
i:j

D−1∏

d=lt

Ed,s
u,t

D∏

d=lt

Rd,s
i:t

D−1∏

d=lt

πd,s
u,t+1

D∏

d=lt

Rd,s
t+1:j (9.57)

This gives rise to

Z(xt:t+1, l) = αt(xt|l1:t−1)βt+1(xt+1|lt+1:T−1)×

×Ad,s
u,v,t

lt−1∏

d=1

Rd,s
i:j

D−1∏

d=lt

Ed,s
u,t

D∏

d=lt

Rd,s
i:t

D−1∏

d=lt

πd,s
u,t+1

D∏

d=lt

Rd,s
t+1:j (9.58)

Due to Proposition 7, the RB-Forwardαt(xt|l1:t−1) and the RB-Backwardβt+1(xt+1|lt+1:T−1)

are factorisable along the vertical chains ofxt andxt+1, respectively. As a resultZ(xt:t+1, l)

is also factorisable in the same manner. With appropriate arrangement of the local factors

of Z(xt:t+1, l) into potentials of the formψt(x
d:d+1
t:t+1 |l), Proposition 9 follows. This com-

pletes the proof�

As a result of Proposition 9 the local marginalPr(xt:t+1|l) can be represented by a vertical

chain. More precisely, since below levellt, there are no links between nodes, we have a

three-branch tree. The expectation in Equation 9.54 is therefore efficient to compute in

O(D) time. Overall we can compute the gradient of the log-pseudo-likelihood inO(DT 2)

time due to Equation 9.53.

9.6 Representing HCRF with Exponential Duration using

Dynamic Factor Graphs

This subsection describes a method to represent the idea of hierarchical topology of the

HCRF in the form of a dynamic CRF (Suttonet al., 2007), analogous to what Murphy

and Paskin (2002) have done to convert the HHMMs (Fineet al., 1998) into DBNs (see

also Section 2.5.1). The dynamic CRF is a standard graphicalmodel with fixed cliques

and connectivity. This allows many efficient approximate inference methods, which may

require sub-cubic time in practice.

The main source of difficulty is that in general, the HCRF doesnot have fixed cliques and

connectivity, as we have already seen in previous sections.Fortunately, there is a special

case of HCRFs which gives us a way to represent the HCRF using adynamic CRF. This

is whenthe duration distribution is precisely exponential, so we can factorise the state-
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persistence potentialRd,s
i:j into product of node potentials at each time stept ∈ [i, j]:

Rd,s
i:j =

∏

t∈[i,j]

φd
t (s) (9.59)

We show how to create a factor graph (see Section 2.4.8) with this special case. This can be

considered as an undirected version of the DBN/HHMM. Approximate inference in factor

graphs such as loopy sum-product can therefore be used. Thismethod (possibly) allows

linear time inference, as opposed to cubic time using the exact AIO method, so it may scale

better when the sequence is long.

initialisation/transition−factor

node−factor

ending−factor

Figure 9.7: Dynamic factor graph representation of HCRFs. Filled squares represent factor
nodes, big circles represent variable nodes, and small circles represent ending indicators.
We ignore the observation for presentation clarity since itcan be thought as being absorbed
into the node potentials.

Figure 9.7 depicts the resulting factor graph. There is a root node to represent the top level

because the top state persists during the whole sequence. Ending indicators at the bottom

level are not used since they are always triggered. There arethree types of factors:node,

initialisation/transitionandending. The last three capture the corresponding events, and

more importantly, ensure the hierarchical consistency of the model. Associated with these

factor types are corresponding potential functions:

• Node potentialφd
t (x

d
t ), for d ∈ [1, D], t ∈ [1, T ]

• Initialisation/transition potentialψd
t (x

d−1
t+1 , x

d
t:t+1, e

d−1:d
t ) for d ∈ [2, D], t ∈ [1, T −1]

with an additionalψd
0(x

d−1
1 , xd

1) for d ∈ [2, D] at the beginning of sequence.

• ending potentialψd
t (x

d:d+1
t , ed

t ) for d ∈ [1, D − 1], t ∈ [1, T ].

Now we describe the potentials in more detail.
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Initialisation/Transition Factor: At the beginning of the sequence:ψd
0(x

d−1
1 , xd

1) = πd−1,s
u,1

for d ∈ [2, D], wheres = xd−1
1 , u = xd

1. For other time indices, fort ∈ [1, T − 1], there are

three sub-cases:

• At the second level the potential is

– A2,r
u,v,t if e2t = 1, wherer is the root variable,u = x2

t , v = x2
t+1.

– δ[u = v], otherwise

• At the bottom level the potential is

– AD,s
u,v,t if eD−1,t = 0, wheres = xD−1

t+1 , u = xD
t , v = xD

t+1.

– πD−1,s
u,t , otherwise.

• At other levels, ford ∈ [3, D − 1], the potential is

– 0 if ed−1:d
t = (1, 0). The constraint here is that if a parent finishes then its child

must also finish.

– δ[xd
t = xd

t+1] if ed−1:d
t = (0, 0). Here the both the parent and child continues so

at least the child state must stay the same.

– πd−1,s
u,t+1 if ed−1:d

t = (1, 1), wheres = xd−1
t+1 , u = xd

t+1,

– Ad,s
u,v,t, otherwise, wherev = xd

t+1.

Ending Factor: At the end of sequence all states end so the potential isEd,s
u,T for d ∈

[1, D − 1], wheres = xd
T , u = xd+1

T . For t ∈ [1, T − 1], the potential is

• Ed,s
u,t if ed

t = 1, wheres = xd
t , u = xd+1

t ,

• 1, otherwise.

9.7 Hierarchical HMMs as HCRFs

In this section we show that with slight modification to the HCRF it covers the HHMM

(see Section 2.5.1 for a general review, and see (Phung, 2005, Chapter 5) for elaborated

details) as a special case.



9.7 Hierarchical HMMs as HCRFs 174

9.7.1 From HCRFs toUnconditional HCRFs

We have worked exclusively with the conditional distribution Pr(ζ |z) of Equation 8.2,

where we simply ignore modellingPr(z). Now, let us modify the HCRF in the way that

each state at the bottom level (also called production levelin HHMMs) xD
t is associated

with an observablezt. States at other levels are not directly associated withz. For sim-

plicity we only consider the discrete case, wherezt ∈ Z = {1, 2, ..., |Z|}. We turn our

attention to the unconditional case where we want to modelPr(ζ, z)

Pr(ζ, z) =
1

Z
Φ[ζ, z] (9.60)

Note that we have only a single partition functionZ =
∑

ζ,z Φ[ζ, z] for all data instances.

We shall use the same contextual cliques as in the definition of the HCRF in Section 8.2.

However, the potentials associated with those contextual cliques listed in Figure 8.6 are

not functions of the observational sequencez except for the the persistence potential at the

bottom levelRD,s,zt

t:t , with t ∈ [1, T ].

Like in most undirected graphical models, the most important quantity is the partition

function. For anyζ we alway have the following factorisation

Φ[ζ, z] = Φ[ζ\xD
1:T ]

∏

1∈[1,T ]

RD,s,zt

t:t (9.61)

whereΦ[ζ\xD
1:T ] is the product of all local potentials other than the state persistence at the

bottom level ands is a shorthand forxD
t . Then the partition function can be computed as

Z =
∑

ζ


Φ[ζ\xD

1:T ]
∑

z

∏

1∈[1,T ]

RD,s,zt

t:t


 (9.62)

=
∑

ζ


Φ[ζ\xD

1:T ]
∏

1∈[1,T ]

∑

zt

RD,s,zt

t:t


 (9.63)

=
∑

ζ


Φ[ζ\xD

1:T ]
∏

1∈[1,T ]

R̄D,s
t:t


 (9.64)

whereR̄D,s
t:t =

∑
zt
RD,s,zt

t:t . IndeedR̄D,s
t:t plays the role of a state persistence potential. Then

the computation ofZ can proceed in the same way as in the AIO algorithm (Section 8.3).
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9.7.2 From Unconditional HCRFs to HHMMs

Now we turn into converting this unconditional HCRF to an HHMM in a similar way

to converting a chain MRF into an HMM (Section 2.4.3.1). We reuse the concepts of

symmetric and asymmetric Markov blankets, which are depicted in Figure 9.8. .

x

e

z

x

e

z

Figure 9.8: Symmetric (left) and asymmetric (right) Markovblankets for HHMMs.

Note that, the unconditional HCRFs are strictly more general than the HHMMs in that

HCRFs allow arbitraryduration modelling, and the local potentials aretime dependent,

which are not present in HHMMs.

Let us drop all these extra elements, and an HHMM is an unconditional HCRF with fol-

lowing constraints

∑

u∈Sd+1

πd,s
u = 1, πd,s

u ≥ 0 for all s ∈ Sd, d ∈ [1, D − 1] (9.65)

∑

v∈Sd

Ad,s
u,v + Ed−1,s

u = 1, Ad,s
u,v ≥ 0, Ed−1,s

u ≥ 0

for all s ∈ Sd, u ∈ Sd+1, d ∈ [2, D] (9.66)
∑

zt∈Z

RD,s,zt

t:t = 1, RD,s,zt

t:t ≥ 0 for all s ∈ SD (9.67)

and other state persistence potentials are not modelled. Inother words,πd,s
u plays the role

of the initialisation probability of a childu given the parents at leveld; Ad,s
u,v the transition

probability from stateu to statev at leveld under the parents; Ed−1,s
u the probability

that the childu will exit under the parents; andRD,s,zt

t:t the emission probability of an

observable at timet by the production states. Notice the relationship of the transition and

ending potentials which says that under the parents, the childu has two choices: to transit

to a new childv or to return the control to its parent. Formally, these potentials are defined
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as follows (Phung, 2005, Chapter 5)

πd,s
u = Pr(xd+1

t = u|xd
t = s, ed

t = 1) (9.68)

Ad,s
u,v = Pr(xd

t+1 = v, ed−1
t = 0|xd−1

t = s, xd
t = u, ed

t = 1) (9.69)

Ed,s
u = Pr(ed

t = 1|xd
t = s, xd+1

t = u, ed+1
t = 1) (9.70)

RD,s,zt

t:t = Pr(zt|x
D
t = s) (9.71)

It is straightforward to verify that with these definitions the set of constraints in Equa-

tions 9.65-9.67 are satisfied.

In the HHMM setting these potentials (or probabilities) themselves are parameters. In what

follows we draw the probabilistic interpretation of the building blocks under this setting.

The concept of Markov blankets and conditional independence need to be modified to

incorporatez. Denote byzi:j = z1:i−1,j+1:T , i.e. z = (zi:j , zi:j). With some abuse of

notation, let us define(ζd,s
i:j , zi:j) as the set of variables falling inside the symmetric Markov

blanketΠd,s
i:j , and(ζd,s

i:j
, zi:j) falling outside.

The symmetric inside mass now becomes

∆d,s
i:j =

∑

ζd,s
i:j

Φ[ζ̂d,s
i:j , zi:j]

=
∑

ζd,s
i:j

Pr(ζd,s
i:j , zi:j, e

d
i:j−1 = 0, ed:D

j = 1|ed:D
i−1 = 1, xd

i:j = s)

= Pr(zi:j, e
d
i:j−1 = 0, ed:D

j = 1|ed:D
i−1 = 1, xd

i:j = s) (9.72)

The symmetric outside mass can be expressed as

Λd,s
i:j =

∑

ζd,s

i:j

Φ[ζ̂
d,s

i:j
, zi:j]

=
∑

ζd,s

i:j

Pr(ζd,s

i:j
, zi:j, e

d:D
i−1 = 1, xd

i:j = s|ed:D
j = 1, ed

i:j−1 = 0)

= Pr(zi:j, e
d:D
i−1 = 1, xd

i:j = s|ed:D
j = 1, ed

i:j−1 = 0) (9.73)

Similarly, we define(ζd,s
i:j (u), zi:j) as the set of variables falling inside the asymmetric

Markov blanketΓd,s
i:j (u), and (ζd,s

i:j
(u), zi:j) falling outside. The new asymmetric inside
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mass is defined as

αd,s
i:j (u) =

∑

ζd,s
i:j (u)

Φ[ζ̂d,s
i:j (u), zi:j]

=
∑

ζd,s
i:j (u)

Pr(ζd,s
i:j (u), zi:j, e

d
i:j−1 = 0, xd+1

j = u, ed+1:D
j = 1|ed:D

i−1 = 1, xd
i:j = s)

= Pr(zi:j, e
d
i:j−1 = 0, xd+1

j = u, ed+1:D
j = 1|ed:D

i−1 = 1, xd
i:j = s) (9.74)

Coupled with this is the asymmetric outside mass

λd,s
i:j (u) =

∑

ζd,s

i:j
(u)

Φ[ζ̂
d,s

i:j
(u)]

=
∑

ζd,s

i:j
(u)

Pr(ζd,s

i:j
(u), zi:j, e

d:D
i−1 = 1, xd

i:j = s|ed+1:D
j = 1, ed

i:j−1 = 0, xd+1
j = u)

= Pr(zi:j, e
d:D
i−1 = 1, xd

i:j = s|ed+1:D
j = 1, ed

i:j−1 = 0, xd+1
j = u) (9.75)

We now examine several relations between those building blocks. Suppose we want to

infer the conditional probabilityPr(xd
t = s|z) of certain state at timet ∈ [1, T ] and level

d ∈ [2, D − 1] given the observation sequencez

Pr(xd
t = s|z) =

Pr(xd
t = s, z)

Pr(z)
(9.76)

Naturally, the statesd
i:j must start and end somewhere so thatt ∈ [i, j], so we can expand

Pr(xd
t = s, z) as

Pr(xd
t = s, z) =

∑

i∈[1,t],j∈[t,T ]

Pr(xd
i:j = s, ed:D

i−1 = 1, ed
i:j−1 = 0, ed:D

j = 1, zi:j, zi:j)

=
∑

i∈[1,t],j∈[t,T ]

Pr(zi:j, e
d
i:j−1 = 0, ed:D

j = 1|ed:D
i−1 = 1, xd

i:j = s)×

×Pr(zi:j, e
d:D
i−1 = 1, xd

i:j = s|ed:D
j = 1, ed

i:j−1 = 0)

=
∑

i∈[1,t],j∈[t,T ]

∆d,s
i:j Λd,s

i:j (9.77)

which naturally leads to the data likelihood

Pr(z) =
∑

s∈Sd

Pr(xd
t = s, z)

=
∑

s∈Sd

∑

i∈[1,t],j∈[t,T ]

∆d,s
i:j Λd,s

i:j (9.78)

for anyt ∈ [1, T ] andd ∈ [2, D − 1].
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Another relation is between the inside and asymmetric inside masses. Expanding the RHS

of Equation 9.72 we arrive at

∆d,s
i:j = Pr(zi:j , e

d
i:j−1 = 0, ed:D

j = 1|ed:D
i = 1, xd

i:j = s)

=
∑

u∈Sd+1

Pr(zi:j, e
d
i:j−1 = 0, xd+1

j = u, ed+1:D
j = 1, ed

j = 1|ed:D
i = 1, xd

i:j = s)

=
∑

u∈Sd+1

Pr(zi:j, e
d
i:j−1 = 0, xd+1

j = u, ed+1:D
j = 1|ed:D

i = 1, xd
i:j = s)×

×Pr(ed
j = 1|xd

j = s, xd+1
j = u, ed+1

j = 1)

=
∑

u∈Sd+1

αd,s
i:j (u)Ed,s

u (9.79)

where the asymmetric inside mass is from Equation 9.74 and the exiting potential from

Equation 9.70. This result is identical to Equation 8.37 as expected.

9.8 Evaluation

9.8.1 Recognising Indoor Activities

In this experiment we evaluate the HCRFs on the home video surveillance dataset (see

Chapter 6 and Chapter 7). Recall that the data has a hierarchyof activities: each complex

activity is a sequence of simpler activities. Thus, we builda three-level HCRF in which

the top level is just a dummy node, the second level has 3 states (representing complex

activities), and the bottom level has 12 states (representing simple activities).

At the bottom level (simple activities), we reuse the feature set used in Chapter 6 and

Chapter 7. At the second level (complex activities), we use average velocities and a

vector of positions visited in the state duration. To encodethe duration into the state-

persistence potentials, we employ the sufficient statistics of thegammadistribution as fea-

turesfk(s, i, j) = I(s) log(j − i+ 1) andfk+1(s, i, j) = I(s)(j − i+ 1).

At each leveld and timet we count an error if the predicted state is not the same as the

ground-truth. Firstly, we examine the fully observed case where the HCRF is compared

against the grid-structured CRF (known as Factorial CRF (FCRF) (Suttonet al., 2007))

at both data levels, and against the sequential CRF (SCRF) (Lafferty et al., 2001) at the

bottom level. Table 9.2 (the left half) shows that (a) both the multilevel models significantly

outperform the flat model and (b) the HCRF outperforms the FCRF.

We also test the ability of the model to learn the hierarchical topology and state transitions.

We find that it is very informative to examine parameters which correspond to the state
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Alg. d = 2 d = 3 Alg. d = 2 d = 3

HCRF 100 93.9 Po-HCRF 80.2 90.4
FCRF 96.5 89.7 Po-SCRF - 83.5
SCRF - 82.6 - - -

Table 9.2: Accuracy (%) for fully observed data (left), and partially observed (Po) data
(right).

transition features. Typically, negative entries in the transition parameter matrix means

that the transition is impossible. This is because state features are non-negative, so nega-

tive parameters mean the probabilities of these transitions are very small, compared to the

positive ones. For the transition at the second level (the complex activity level), we obtain

all negative entries. This clearly matches the training data where each sequence already

belongs to one of three complex activities. With this methodwe are able to construct the

correct hierarchical topology as in Figure 9.9. The state transition model is presented in

Figure 9.10. There is only one wrong transition, from state 12 to state 10, which is not

presented in the training data. The rest is correct.

2 8

2

1 d=1

d=3

d=21

1 3

3

4 5 6 7 9 10 11 12

Figure 9.9: The topo learned from data.

Next we consider partially-supervised learning in that about 50% of start/end times of a

state and state labels are observed at the second level. All ending indicators are known at

the bottom level. The results are reported in Table 9.2 (the right half). As can be seen,

although only 50% of the state labels and state start/end times are observed, the model

learned is still performing well with accuracy of 80.2% and 90.4% at levels 2 and 3, re-

spectively.

We now consider the issue of partially observing labels during decoding and test the effect

using degraded learned models. Such degraded models (emulating noisy training data or

lack of training time) are extracted from the 10th iterationof the fully observed data case.

The labels are provided at random times. Figure 9.11 shows the decoding accuracy as a

function of available labels. It is interesting to observe that a moderate amount of observed

labels (e.g.20− 40%) causes the accuracy rate to go up considerably.
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Figure 9.10: The state transition model learned from data. Primitive states are duplicated
for clarity only. They are shared among complex states.
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Figure 9.11: Performance of the constrained max-product algorithm described in Sec-
tion 9.3.2 as a function of available information on label/start/end time.

9.8.2 POS Tagging and Noun-Phrase Chunking

In this experiment we apply the HCRF to the task of noun-phrase chunking. The data

is from the CoNLL-2000 shared task (Sang and Buchholz, 2000), in which 8926 English

sentences from the Wall Street Journal corpus are used for training and 2012 sentences are

for testing. Each word in a pre-processed sentence is labeled by two labels: the part-of-

speech (POS) and the noun-phrase (NP). There are 48 POS different labels and 3 NP labels

(B-NP for beginning of a noun-phrase, I-NP for inside a noun-phrase or O for others). Each

noun-phrase generally has more than one word. To reduce the computational burden, we

reduce the POS tag-set to 5 groups:noun, verb, adjective, adverb and others. Since in our

HCRFs we do not have to explicitly indicate which node is at the beginning of a segment,
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the NP label set can be reduced further into NP for noun-phrase, and O for anything else.

The POS tags are actually the output of the Brill’s tagger (Brill, 1995), while the NPs

are manually labeled. We extract raw features from the text in the way similar to that in

(Suttonet al., 2007). However, we consider only a limited vocabulary extracted from the

training data in that we only select words with more than 3 occurrences. This reduces the

vocabulary and the feature size significantly. We also make use of bi-grams with similar

selection criteria. Furthermore, we use the contextual window of 5 instead of 7 as in

(Suttonet al., 2007). This setting gives rise to about 32K raw features. The model feature

is factorised asf(xc, z) = I(xc)gc(z), whereI(xc) is a binary function on the assignment

of the clique variablesxc, andgc(z) are the raw features.

We build an HCRF topology of 3 levels where the root is just a dummy node, the second

level has 2 NP states and the bottom level has 5 POS states. Forcomparison, we implement

a FCRF, a SCRF, and a semi-Markov CRF (SemiCRF) (Sarawagi andCohen, 2004). The

FCRF has grid structure of depth 2, one for modelling the NP process and another for the

POS process. Since the state spaces are relatively small, weare able to run exact inference

in the FCRF by collapsing both the NP and POS state spaces to a combined state space of

size3×5 = 15. The SCRF and SemiCRF model only the NP process, taking the POS tags

as input.

The raw feature set used in the FCRF is identical to those in our HCRF. However, the set

shared by the SCRF and the SemiCRF is a little more elaborate since it takes the POS tags

into account (Suttonet al., 2007).

Although both the HCRF and the SemiCRF are capable of modelling arbitrary segment

durations, we use a simple exponential distribution as it can be processed sequentially

and thus is very efficient. For learning, we use a simple online stochastic gradient ascent

method since it has been shown to work relatively well and fast in CRFs (Vishwanathan

et al., 2006). At test time, as the SCRF and the SemiCRF are able to use the Brill’s POS

tags as input, it is not fair for the FCRF and HCRF to predict those labels during inference.

Instead, we also give the POS tags to the FCRF and HCRF and perform constrained in-

ference to predictonly the NP labels. This boosts the performance of the two multi-level

models significantly.

The performance of these models is depicted in Figure 9.12 and we are interested in only

the prediction of the noun-phrases since this data has Brill’s POS tags. Without Brill’s POS

tags given at test time, both the HCRF and the FCRF perform worse than the SCRF. This is

not surprising because the Brill’s POS tags are always givenin the case of SCRF. However,

with POS tags the HCRF consistently works better than all other models. The FCRF does

worse than the SCRF, even with POS tags given. This does not share the observation made

in (Suttonet al., 2007). However, we use a much smaller POS tag set than (Sutton et al.,
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2007) does. Our explanation is that the SCRF is able to make use of wider context of the

given POS tags (here, within the window of 5 tags) than the FCRF (limited to 1 POS tag

per NP chunk). The SemiCRF, although in theory it is more expressive than the SCRF,

does not show any advantage under current setting. Recall that the SemiCRF is a special

case of HCRF in that the POS level is not modelled, it is possible to conclude that joint

modelling of NP and POS levels is important.
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Figure 9.12: Performance of various models on Conll2000 noun-phrase chunking.
HCRF+POS and FCRF+POS mean HCRF and FCRF with POS given at test time, re-
spectively.

9.9 Closing Remarks

In this chapter we have presented a number of extensions to the HCRF to address three

important issues: numerical overflow in computing the partition function, learning and

inference with partial labels (partial supervision and constrained inference, respectively),

and the cubic time complexity of the AIO family. We have derived a scaling algorithm

that helps to minimise the overflow. For the second issue the AIO algorithm is extended

so that it is consistent with the known labels. And for the last issue we have proposed a

number of approximation techniques based on Rao-Blackwellisation and Gibbs sampling

for inference, and pseudo-likelihood for learning. We havealso shown how to represent an

HCRF with exponential duration by a factor graph, in which inference can be carried out

approximately by using the sum-product algorithm. We have demonstrated the capacity

of the HCRFs on home video surveillance data and the shallow parsing of English text, in

which the hierarchical information inherent in the contexthelps to increase the recognition.



Chapter 10

Conclusions

10.1 Summary

This thesis has presented a study of various aspects of the recently introduced Conditional

Random Field, a probabilistic and discriminative framework for modelling and learning

structured outputs. First, we have demonstrated the strength of CRFs in the area of Natu-

ral Language Processing with the application ofstatistical Vietnamese accent restoration

(Chapter 4), and in the area ofrecommendation systems(Chapter 5). Motivated by these

applications we have provided a deeper investigation into the theory of CRF in the area

of feature selection(Chapter 6),learning with arbitrary structures(Chapter 7), and mod-

elling recursive sequential data(Chapter 8 and Chapter 9). The common theme of these

theoretical contributions is learning with missing labelsin apartially supervisedmanner.

In Chapter 4, the thesis contributes to the existing literature of CRFs by a novel applica-

tion in the area of accent restoration with the focus in Vietnamese. Given a sequence of

accent-less Vietnamese words, the problem is to restore theoriginal accents without fur-

ther information. This is a common problem in computationallinguistics of Vietnamese, in

which texts may not have appropriate accents, causing a comprehension problem to read-

ers. This problem is challenging as the raw texts are highly ambiguous even with native

speakers. To the best of our knowledge there has been no publicly reported work to solve

this problem. We propose the use of a second-order chain CRF to model the output space

of the restored sequence of accents. The result is excellentwith 94% word accuracy when

tested in a diverse news domain.

The second motivating application of the CRFs is reported inChapter 5 where we propose

to model theentire rating databaseof recommendation systems by a single novel CRF-

based framework calledPreference Networks. Different from most existing work in the

literature of automatic recommenders, our modelling is formal and can seamlessly incor-
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porate varieties of domain knowledge, including the content of the products and services,

the user attributes like demographics and historical profiles and the correlations between

users and between products. More importantly we have empirically shown that our Pref-

erence Networks outperform well-known methods. Our study also clearly demonstrates

efficiency issues associated with large-scale and densely connected CRFs. Specifically, the

network in our study has hundreds of thousands of nodes and each node has thousands of

neighbours.

Chapter 6 investigates the issue of feature selection as an embedded process of partially su-

pervised learning CRFs. Feature selection, as evidenced inour empirical work Chapter 4

and Chapter 5, is an issue of great practical importance and it critically affects the final

performance of the CRF-based systems. To this end we have proposed a boosting-based

method called AdaBoost.CRF that extends the current boosting methodology to structured

output with missing labels. Experiments have shown that theproposed algorithm is ca-

pable of selecting a small subset of features from a large feature pool with little loss in

performance.

Chapter 7 presents an attempt to deal with the efficiency issue with arbitrary structures,

as evidenced in the empirical study in our Preference Networks (Chapter 5), and in the

assumption of the underlying inference made in Chapter 6. Based on the boosting method-

ology we propose an alternative loss that requires only inference over a set of spanning

trees. The trees are co-learned in an iterative fashion and finally re-combined to recover

the original network. The result is a scalable algorithm called AdaBoost.MRF that can

handle missing training labels and exhibits linear time complexity.

The third theoretical contribution is presented in Chapter8 where we introduce a major

extension to the theory of CRFs for modelling recursive sequential data. This data type is

inherent in many domains such as signal and image processing, human activities and natu-

ral language processing, where the semantics can be decomposed in different resolutions.

Motivated by the early work of HHMMs we propose a novel Hierarchical CRF to address

the problem. We introduce a graphical model based representation that helps to visualise

the temporal evolution of the model and to encode varieties of domain knowledge into the

system. Finally, an efficient algorithm based on the Asymmetric Inside Outside family is

derived for learning and inference.

Chapter 9 continues the framework outlined in Chapter 8 through several important exten-

sions for practical application of HCRFs. First, we derive ascaling procedure to avoid nu-

merical overflow in the computation of the partition function. Second, the AIO algorithm is

modified to handle partial labels occurring in learning (partial supervision) and inference

(constrained inference). Third, based on Rao-Blackwellisation and Gibbs samplingwe

propose a sub-cubic time approximate procedure for inference. Likewise, a sub-cubic time
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pseudo-likelihood learning style is also offered in the chapter. For the HCRF with expo-

nential state duration distributions, we have shown that itcan be represented as a standard

factor-graph which allows fast approximate inference based on the Pearl’s sum-product al-

gorithm. Finally, the HCRFs with partial labels are evaluated on two datasets: the human

activity recognition, and noun-phrase chunking. Experimental results validate the expres-

siveness and usefulness of the HCRF formulation in these domains when compared with

rival methods.

10.2 Future Directions

There are issues associated with the CRFs which have not beenaddressed in this thesis and

are left for future investigation. The most important one isperhaps efficient inference and

learning algorithms to compute various aspects of the CRF-based systems with arbitrary

structures. In Chapter 7 we have put forward an effort into fast parameter learning of the

CRFs by decomposing the network into superimposing spanning trees. However, the trees

are still manually specified and thus the algorithm may be only effective for network with

highly regular structures (e.g. grids, as in our study). It is best to automatically select the

best spanning tree at each boosting step.

Most parameter learning work in CRFs, including this thesis, only deals with non-Bayesian

setting. Although regularisation is often used we do not integrate over the parameters.

Bayesian learningmay be important for controlling overfitting and incorporating prior

knowledge of the parameters. The only work addressing this problem that we are aware of

is Bayesian CRF by Qiet al. (2005).

Beside parameter learning,structure learningof CRFs has not received adequate attention,

although it is much more popular in the directed Bayesian networks. From the connection

of this problem with the spanning tree selection in our studyof AdaBoost.MRF, we con-

jecture that the main difficulty is associated with the conditional nature of the CRFs. More

specifically, the structures of the CRFs sometimes depend onthe conditioning variables

even in the same domain.

The main argument for sole use of conditional distributionPr(x|z) is that we do not waste

effort in modellingPr(z). However, whilePr(x|z) addresses the output directly, a sig-

nificant amount of information is thrown away withPr(z). When labeled training data is

sufficient, learning onlyPr(x|z) is of great practical advantage. In many real world situ-

ations, unfortunately, labels are too expensive while unlabeled data is cheap. In this case

Pr(z) provides important information to infer about the nature ofdata, i.e. theintrinsic

manifold of the data. Recent advances insemi-supervised, activeandtransductivelearning
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have proven that unlabeled data can be very valuable to improve the classification perfor-

mance. Current work is mostly carried out with unstructuredoutput models. We expect

that the graphical structure of CRFs will offer new insightsinto the problem.

Regarding HCRFs, we have introduced several approximationmethods for inference and

learning in Chapter 9. It remains to investigate into their behaviour and effectiveness for

real applications. In addition, we have shown in Section 9.7.2 that the HHMM can be

derived from the unconditional version of HCRF. The HHMM canbe shown to be a special

case of the Probabilistic Context-Free Grammar (PCFG). Theconditional version of PCFG

has been investigated elsewhere in the literature of NatureLanguage Processing. Thus, it

may be interesting to study the relationship between the HCRF and the conditional PCFG.

To the best of our knowledge, the numerical scaling issue, which we have addressed in the

HCRF, has not been explicitly raised and solved.

As a modelling tool, HCRFs are designed for the recursive sequential data. This gives rise

to the question that to what extent can HCRFs be still applicable for generic hierarchical

data, i.e. the assumption of nested Markov chains does not strictly hold? For example, in

noun-phrase chunking the POS tags do not belong exclusivelyto any noun and non-noun

phrases. Another interesting issue is that given the data isinherently spatial as in images,

how can we convert it into a sequential form to which HCRFs canbe applied?
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Garg, A., Pavlović, V., and Rehg, J. (2003). Boosted learning in dynamic Bayesian net-

works for multimodal speaker detection.Proceedings of the IEEE, 91(9).

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 6(6), 721–742.

Golding, A. and Roth, D. (1999). Winnow-based approach to context-sensitive spelling

correction.Machine Learning, 34(1/3), 107–130.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination.Biometrika, 82(4), 711–732.

Gregory, M. L. and Altun, Y. (2004). Using conditional random fields to predict pitch

accents in conversational speech. InProceedings of the 42nd Annual Meeting on As-

sociation for Computational Linguistics (ACL), pages 677–683, Morristown, NJ, USA.

Association for Computational Linguistics.

Gross, S., Russakovsky, O., Do, C., and Batzoglou, S. (2007). Training conditional random

fields for maximum labelwise accuracy. In B. Schölkopf, J. Platt, and T. Hoffman,

editors,Advances in Neural Information Processing Systems, volume 19, pages 529–

536. MIT Press, Cambridge, MA.

Gunawardana, A., Mahajan, M., Acero, A., and Platt, J. (2005). Hidden conditional random

fields for phone classification. InProceedings of the International Conference on Speech

Communication and Technology, pages 1117–1120, Lisbon, Portugal.

Gupta, R., Diwan, A., and Sarawagi, S. (2007). Efficient inference with cardinality-based

clique potentials. InProceedings of the 24th international conference on Machine learn-

ing (ICML), pages 329–336. ACM Press New York, NY, USA.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157–1182.
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Appendix

A.1 Derivation of Variational Updates

In this appendix we will show how to obtain Equations 2.85 and2.86, which we repeat

here for convenience

µβ→α(xc,α) = exp


∑

xc,β

Qc,β(xc,β) logψc,α,β(xc,α,β)


 (A.1)

Qα(xα) ∝ Φα(xα)
∏

β∈N (α)

∏

c∈α∩β

µβ→α(xc,α) (A.2)

whereα, β are two subnetworks that share the common clique variablesxc,α,β, xc,α is the

part of this subset that exclusively belongs toα; µβ→α(xc,α) is the message sending from

β to xc,α; andN (α) is the set of neighbouring sub-networks ofα.

Recall that we want to minimise the KL-divergence between the approximate distribution

Q(x) and the true distributionPr(x)

Q̂ = arg min
Q
KL(Q||Pr) (A.3)

= arg min
Q

∑

x

Q(x) log
Q(x)

Pr(x)
(A.4)

whereQ(x) is constrained to the factorised distribution

Q(x) =
∏

α

Qα(xα) (A.5)
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Now let us expand the KL-divergence

KL(Q||Pr) =
∑

x

Q(x) logQ(x)−
∑

x

Q(x) log Φ(x) + logZ (A.6)

where we have usedPr(x) = Φ(x)/Z. Since we are only interested in findingQ(x), the

last term can be neglected. The first term is the negative entropy of the new network, which

is the negative sum of entropies of independent sub-networks

∑

x

Q(x) logQ(x) =
∑

α

∑

xα

Qα(xα) logQα(xα) (A.7)

The factorisation in Equation A.5 implies thatQ(x) = Q(x\xα)Qα(xα). As we need to

ensure that
∑

xα
Qα(xα) = 1, adding a Lagrangian term to the KL-divergence and then

taking derivative of Equation A.6 with respect toQα(xα) yields

∂KL(Q||Pr)

∂Qα(xα)
= logQα(xα) + 1−

∑

x\xα

Q(x\xα) log Φ(x) + λα (A.8)

whereλα is the Lagrangian factor. Setting this gradient to zero, we achieve

Qα(xα) ∝ exp



log Φα(xα) +

∑

x\xα

Q(x\xα) log Φ(x)



 (A.9)

Sinceα is assumed to be a tractable sub-network, it remains to efficiently compute∑
x\xα

Q(x\xα) log Φ(x).

Due to network partitioning,x = (xα1 , xα2 , ...), we can decomposex into three parts:

those belong exclusively to a sub-networkα, those to other sub-networks, and those at the

boundary betweenα and other sub-networks. Thus we have the following factorisation

Φ(x) = Φα(xα)Φ−α(x\xα)
∏

β∈N (α)

∏

c∈α∩β

ψc,α,β(xc,α,β) (A.10)

whereΦα(xα) is the product of local clique potentials belonging the to sub-networkα. and

Φ−α(x\xα) is the product of local clique potentials of other sub-networks.

Then the third term of the RHS of Equation A.8 becomes

∑

x\xα

Q(x\xα) log Φ(x) = log Φα(xα) +
∑

x\xα

Q(x\xα) log Φ−α(x\xα) +

+
∑

x\xα

Q(x\xα)
∑

β∈N (α)

∑

c∈α∩β

logψc,α,β(xc,α,β) (A.11)
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The second term of the RHS of Equation A.11 is a constant with respect toQα(xα), while

the third term reduces to

∑

x\xα

Q(x\xα)
∑

β∈N (α)

∑

c∈α∩β

logψc,α,β(xc,α,β) =

∑

β∈N (α)

∑

c∈α∩β

∑

xc,β

Qc,β(xc,β) logψc,α,β(xc,α,β) (A.12)

In the last equation we have splitx\xα into xc,β and the rest, which are integrated out with

Q(x\xα).

Substituting Equation A.12 into Equation A.11 and then Equation A.11 into Equation A.9,

and setting the gradient to zero, we have

Qα(xα) ∝ exp



log Φα(xα) +

∑

β∈N (α)

∑

c∈α∩β

∑

xc,β

Qc,β(xc,β) logψc,α,β(xc,α,β)



 (A.13)

Rearranging the terms in the RHS into the appropriate messages, we obtain the Equa-

tions A.1 and A.2.

A.2 General Hölder’s inequality

Let us start with the elementary Hölder’s inequalities (Hardy et al., 1952, Theorem 13).

For r ≥ 1, a ≥ 0, b ≥ 0 and1/r + 1/r′ = 1, the following holds

n∑

i=1

aibi ≤ (

n∑

i=1

ar
i )

1/r(

n∑

i=1

br
′

i )1/r′ (A.14)

The sign of equality hold iffar
i = αbr

′

i , ∀i, for some scalarα . The caseα = 0 is trivial,

thus we do not consider here. The Cauchy’s inequality is a special case ifr = r′ = 2.

By induction, we can obtain the following extension to this basic inequality (Hardyet al.,

1952, Theorem 11).If aij ≥ 0, for i = 1, 2, .., n and j = 1, 2, .., m , and if rj > 1 with∑m
j=1 1/rj = 1, denotingAj = {aij}ni=1, then

n∑

i=1

m∏

j=1

aij ≤
m∏

j=1

(
n∑

i=1

a
rj

ij )
1/rj , (A.15)

and the sign of equality holding iffAj = αjj′Aj′ 6=j for some scalarsαjj′. In other words,

the equality sign holds iff all vectorsAj are proportional.

Let us proceed by induction to prove the ‘inequality’ part.
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Base Case: For j = 1, Equation A.15 holds trivially.

Induction: Assume Equation A.15 holds for any1 ≤ j ≤ l, we will prove that it also holds

for j = l + 1. Then

∑

i

l+1∏

j=1

ai,j =
∑

i

ai,l+1

l∏

j=1

ai,j

≤

(
∑

i

ar
i,l+1

)1/r(∑

i

{
l∏

j=1

ai,j}
r′

)1/r′

=

(
∑

i

ar
i,l+1

)1/r(∑

i

l∏

j=1

ar′

i,j

)1/r′

(A.16)

using the basic Hölder inequality (A.14) forr > 1; r′ > 1; 1/r + 1/r′ = 1. Let βi,j = ar′

i,j,

then the applying our assumption that Equation A.15 holds for j ≤ l to the second factor

in the RHS of Equation A.16 yields

(
∑

i

l∏

j=1

βi,j

)1/r′

≤

(
l∏

j=1

{
∑

i

β
r′j
i,j}

1/r′j

)1/r′

=
l∏

j=1

{
∑

i

β
r′j
i,j}

1/r′jr′

=
l∏

j=1

{
∑

i

a
r′jr′

i,j }
1/r′jr′ (A.17)

where
∑l

j=1 1/r′j = 1. Substituting Equation A.17 back into Equation A.16, we have

∑

i

l+1∏

j=1

ai,j ≤

(
∑

i

ar
i,l+1

)1/r l∏

j=1

{
∑

i

a
r′jr′

i,j }
1/r′jr′ (A.18)

As
∑l

j=1 1/r′j = 1, we then have1/r +
∑l

j=1 1/r′jr
′ = 1/r + 1/r′ = 1. Now we change

the notation asr′l+1 ← r andr′j ← r′jr
′, we have

∑l+1
j=1 1/r′j = 1. Thus Equation A.18

becomes

∑

i

l+1∏

j=1

ai,j ≤
l+1∏

j=1

{
∑

i

a
r′j
i,j}

1/r′j (A.19)

This means that the inequality Equation A.15 holds forj = l+1. By the induction principle

the inequality Equation A.15 holds for allj ≥ 1. This completes the proof�
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A.3 Proofs

A.3.1 Proof of Propositions 3 and 4

Before proving Proposition 3 and 4 let us introduce a lemma.

Lemma 1. Given a distribution of the form

Pr(x) =
1

Z
Φ[x] (A.20)

wherex = (xa, xs, xb), if there exists a factorisation

Φ[x] = Φ[xa, xs]Φ[xs]Φ[xs, xb] (A.21)

thenxa andxb are conditionally independent givenxs.

Proof: We want to prove that

Pr(xa, xb|xs) = Pr(xa|xs) Pr(xb|xs) (A.22)

SincePr(xa, xb|xs) = Pr(xa, xb, xs)/
∑

xa,xb
Pr(xa, xb, xs), the LHS of Equation A.22

becomes

Pr(xa, xb|xs) =
Φ[xa, xs]Φ[xs]Φ[xs, xb]∑

xa,xb
Φ[xa, xs]Φ[xs]Φ[xs, xb]

=
Φ[xa, xs]∑
xa

Φ[xa, xs]

Φ[xs, xb]∑
xb

Φ[xs, xb]
(A.23)

where we have used the following fact

∑

xa,xb

Φ[xa, xs]Φ[xs]Φ[xs, xb] = Φ[xs]

(∑

xa

Φ[xa, xs]

)(∑

xb

Φ[xs, xb]

)
(A.24)

and canceled out the normalisation factorZ andΦ[xs].

To provePr(xa|xs) = Φ[xa, xs]/
∑

xa
Φ[xa, xs], we need only to showPr(xa|xs) ∝

Φ[xa, xs] since the normalisation overxa is due to
∑

xa
Pr(xa|xs) = 1. Using the Bayes
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rule, we have

Pr(xa|xs) ∝ Pr(xa, xs)

=
∑

xb

Pr(xa, xs, xb)

=
1

Z
Φ[xa, xs]Φ[xs]

∑

xb

Φ[xs, xb]

∝ Φ[xa, xs] (A.25)

where we have ignored all the factors that do not depend onxa.

A similar proof givesPr(xb|xs) = Φ[xs, xb]/
∑

xb
Φ[xs, xb]. Combining this result and

Equation A.25 with Equation A.23 gives us Equation A.22. This completes the proof�

In fact,xs acts as a separator betweenxa andxb. In standard Markov networks there are no

paths fromxa to xb that do not go throughxs. Now we proceed to proving Proposition 3

and 4.

Given the symmetric Markov blanketΠd,s
i:j , there are no potentials that are associated with

variables belonging to bothζd,s
i:j andζd,s

i:j
. The blanket completely separates theζd,s

i:j and

ζd,s

i:j
. Therefore, Lemma 1 ensures the conditional independence betweenζd,s

i:j andζd,s

i:j
.

Similarly, the asymmetric Markov blanketΓd,s
i:j (u) separatesζd,s

i:j (u) andζd,s

i:j
(u) and thus

these two variable sets are conditionally independent due to Lemma 1�

A.3.2 Proof of Proposition 5

Here we want to derive Equations 8.25, 8.26 and 8.27. With thesame conditions as in

Lemma 1, in Equation A.25 we have shown thatPr(xa|xs) ∝ Φ[xa, xs]. Similarly, this

extends to

Pr(ζd,s
i:j |Π

d,s
i:j ) ∝ Φ[ζd,s

i:j ,Π
d,s
i:j ]

= Φ[ζ̂d,s
i:j ] (A.26)

which is equivalent to

Pr(ζd,s
i:j |Π

d,s
i:j ) =

1
∑

ζd,s
i:j

Φ[ζ̂d,s
i:j ]

Φ[ζ̂d,s
i:j ]

=
1

∆d,s
i:j

Φ[ζ̂d,s
i:j ] (A.27)



A.4 Computing the State Marginals of HCRF 214

The last equation follows from the definition of the symmetric inside mass in Equation 8.18.

Similar procedure will yield Equation 8.26.

To prove Equation 8.27, notice the Equation 8.14 that says

Pr(ζ) = Pr(Πd,s
i:j ) Pr(ζd,s

i:j |Π
d,s
i:j ) Pr(ζd,s

i:j
|Πd,s

i:j ) (A.28)

or equivalently

Pr(Πd,s
i:j ) = Pr(ζ)

1

Pr(ζd,s
i:j |Π

d,s
i:j )

1

Pr(ζd,s

i:j
|Πd,s

i:j )
(A.29)

=
1

Z
Φ[ζ ]

∆d,s
i:j

Φ[ζ̂d,s
i:j ]

Λd,s
i:j

Φ[ζ̂
d,s

i:j
]

(A.30)

=
1

Z
Φ[ζ̂d,s

i:j ]Rd,s
i:j Φ[ζ̂

d,s

i:j
]

∆d,s
i:j

Φ[ζ̂d,s
i:j ]

Λd,s
i:j

Φ[ζ̂
d,s

i:j
]

(A.31)

=
1

Z
∆d,s

i:jR
d,s
i:j Λd,s

i:j (A.32)

In the proof proceeding, we have made use of the relation in Equation 8.17. This completes

the proof�

A.4 Computing the State Marginals of HCRF

We are interested in computing the marginals of state variablesPr(xd
t ). We have

Pr(xd
t ) =

∑

ζ\xd
t

Pr(xd
t , ζ\x

d
t )

=
∑

ζ

Pr(ζ)δ(xd
t ∈ ζ)

=
1

Z

∑

ζ

Φ[ζ ]δ(xd
t ∈ ζ) (A.33)

Let s = xd
t and assume that the states starts ati and end atj, andt ∈ [i, j]. For each

configurationζ that respects this assumption, we have the factorisation ofEquation 8.17

that says

Φ[ζ ] = Φ[ζ̂d,s
i:j ]Φ[ζ̂

d,s

i:j
]Rd,s

i:j (A.34)
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Then Equation A.33 becomes

Pr(xd
t = s) =

1

Z

∑

ζ

Φ[ζ̂d,s
i:j ]Φ[ζ̂

d,s

i:j
]Rd,s

i:j δ(t ∈ [i, j])

=
1

Z

∑

i∈[1,t]

∑

j∈[t,T ]

∆d,s
i:j Λd,s

i:jR
d,s
i:j (A.35)

The summing overi andj is due to the fact that we do not know these indices.

There are two special cases, (1) whend = 1 we cannot scan the left and right indices, the

marginals are simply

Pr(x1
t = s) =

1

Z
∆̂1,s

1:T (A.36)

sinceΛ1,s
1:T = 1 for all s ∈ S1; and (2) whend = D, the start and end times must be the

same (i = j), thus

Pr(xD
t = s) =

1

Z
Λ̂D,s

t:t (A.37)

since∆D,s
t:t = 1 for all t ∈ [1, T ] ands ∈ SD.

Since
∑

s∈Sd Pr(xd
t = s) = 1, it follows from Equation A.35 that

Z =
∑

s∈Sd

∑

i∈[1,t]

∑

j∈[t,T ]

∆d,s
i:j Λd,s

i:jR
d,s
i:j (A.38)

This turns out to be the most general way of computing the partition function. Some special

cases have been shown earlier. For example, whend = 1, i = 1 andj = T , Equation A.38

becomes Equation 8.22 sinceΛ1,s
1:T = 1. Similarly, whend = D, i = j = t, Equation A.38

recovers Equation 8.23 since∆D,s
i:i = 1.

A.5 The Mirrored Version of AIO

Due to the fact that the HCRFs are undirected there is actually no bias in the direction

where the time indices are scanned. It is therefore straightforward to derive a mirrored

and equivalent version of the AIO algorithm described in Section 8.3. In what follows we

present only building blocks for the mirrored AIO algorithmand some variants of ESS

computation. Other computation including the MAP estimation, learning and inference

with partially observed state information and numerical scaling can be derived straightfor-

wardly using these blocks and methods described in the main text.
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A.5.1 Mirrored Markov Blankets

level d+1

level d

Figure A.1: A mirrored asymmetric Markov blanket.

Let us define amirrored asymmetric Markov blanket(Figure A.1) as follows:

Definition 11. A mirrored asymmetric Markov blanket at leveld for a parent states ending

at j and a child stateu starting ati, is the following set

I
d,s
i:j (u) = (xd

i:j = s, xd+1
i = u, ed+1:D

i−1 = 1, ed:D
j = 1, ed

i:j−1 = 0) (A.39)

Further, let us define the following sets of variables that are associated with the blanket

ξd,s
i:j (u) = (xd+1:D

i+1:j , x
d+2:D
i , ed+1:D

i:j−1 ) (A.40)

ξd,s

i:j
(u) = ζ\(ξd,s

i:j (u), Id,s
i:j (u)) (A.41)

We definêξd,s
i:j (u) and ξ̂

d,s

i:j
(u) as follows

ξ̂d,s
i:j (u) = (ξd,s

i:j (u), Id,s
i:j (u)) (A.42)

ξ̂
d,s

i:j
(u) = (ξd,s

i:j
(u), Id,s

i:j (u)) (A.43)

Remark: I
d,s
i:j (u) is a ‘mirrored’Γd,s′

i:j (v) in the sense thatu is the starting child ofs while

v is the ending child ofs′. We also know thats ends atj while s′ starts ati. The similar

relation holds for the pairsξd,s
i:j (u) versusζd,s′

i:j (v) andξd,s

i:j
(u) versusζd,s′

i:j
(v).

A.5.2 Mirrored Asymmetric Inside

We group all the local potentials associated with variablesin ξd,s
i:j (u) and in the blanket

I
d,s
i:j (u) into a joint potentialΦ[ξ̂d,s

i:j (u)], and define a quantity calledmirrored asymmetric
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level d

level d+1

Figure A.2: Decomposition with respect to symmetric/mirrored asymmetric Markov blan-
kets.

inside mass(or ‘mirrored asymmetric inside’ for short) as follows

βd,s
i:j (u) =

∑

ξd,s
i:j (u)

Φ[ξ̂d,s
i:j (u)] (A.44)

Analogous to the derivation in Section 8.3.2, let us examinea mirrored decomposition (see

Figure A.2). Using the same argument as in Section 8.3.2 we have the following recursive

relations. A mirrored version of Equation 8.37 reads

∆d,s
i:j =

∑

u∈Sd+1

πd,s
u,iβ

d,s
i:j (u) (A.45)

A mirrored version of Equation 8.33

βd,s
i:j (u) =

∑

t∈[i,j−1]

∑

v∈Sd+1

βd,s
t+1:j(v)∆̂

d+1,u
i:t Ad,s

u,v,t + ∆̂d+1,u
i:j Ed,s

u,j (A.46)

A mirrored version of Equation 8.34

βd,s
i:i (u) = ∆̂d+1,s

i:i Ed,s
u,i (A.47)

A mirrored version of Equation 8.35

βD−1,s
i:j (u) =

∑

v∈Sd+1

βD−1,s
i+1:j (v)RD,u

i:i A
D,s
u,v,i (A.48)

The Equations A.45,A.46,A.47 and A.48 specify abottom-upandright-left algorithm to

compute the symmetric inside masses and mirrored asymmetric inside masses. Initially, at

the bottom level∆D,s
i:i = 1 for i ∈ [1, T ] ands ∈ SD.
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A.5.3 Mirrored Asymmetric Outside

Recall that in Section A.5.1 we have introduced a notion of mirrored asymmetric Markov

blanketId,s
i:j (u). GivenI

d,s
i:j (u), we can group all the local potentials which are defined on

ξd,s

i:j
(u) and on the blanket into a joint potentialΦ[ξ̂

d,s

i:j
(u)]. Let’s define a quantity called

mirrored asymmetric outside mass(or ‘mirrored asymmetric outside’ for short) as follows

µd,s
i:j (u) =

∑

ξd,s

i:j
(u)

Φ[ξ̂
d,s

i:j
(u)] (A.49)

The relation between the mirrored asymmetric outside and mirrored asymmetric inside is

analogous to that between the asymmetric outside and asymmetric inside.

Using the same techniques used in Section 8.3.3, we have the following relations. A mir-

rored version of Equation 8.44 reads

Λd+1,u
i:j =

∑

s∈Sd

∑

t∈[j+1,T ]

µd,s
i:t (u)

∑

v∈Sd+1

βd,s
j+1:t(v)A

d+1,s
u,v,j +

∑

s∈Sd

µd,s
i:j (u)Ed,s

u,j (A.50)

for d ∈ [1, D − 2]. At the bottom level, i.e.d+ 1 = D, we only havei = j.

A mirrored version of Equation 8.40

µd,s
i:j (u) =

∑

v∈Sd+1

∑

t∈[1,i−1]

µd,s
t:j (v)∆̂d+1,v

t:i−1 A
d+1,s
v,u,i−1 + Λ̂d,s

i:j π
d,s
u,i (A.51)

for d ∈ [2, D − 1].

A mirrored version of Equation 8.41

µD−1,s
i:j (u) =

∑

v∈SD

µD−1,s
i−1:j (v)∆̂D,v

i−1:i−1A
D,s
v,u,i−1 + Λ̂D−1,s

i:j πD−1,s
u,i (A.52)

Equations A.50,A.51 and A.52 show a recursivetop-downandoutside-inapproach to com-

pute the symmetric outside masses and the mirrored asymmetric outside masses. We start

from the top withd = 1 andΛ1,s
1:T = 1 for all s ∈ S1 and proceed downward untild = D.
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level d+1

level d

Figure A.3: The symmetric Markov blanket contains an asymmetric blanket and a mirrored
asymmetric blanket.

A.5.4 Variants of Expected Sufficient Statistics

ESS for transition features:

As a mirrored version of Equation 8.67 we have

E[Fd,s
σtransit ,u,v(ζ)] =

1

Z

∑

t∈[1,T−1]

Ad,s
u,v,tf

d,s
σtransit,u,v(t)

∑

i∈[1,t]

∑

j∈[t+1,T ]

βd−1,s
t+1:j (v)µd−1,s

i:j (u)∆̂d,u
i:t

There exists another variant that makes use of both the asymmetric inside and mirrored

asymmetric inside. Given a symmetric Markov blanketΠd−1,s
i:j , the set of variablesζd−1,s

i:j

within the blanket can be decomposed into smaller components, which include those falling

within the sub-asymmetric Markov blanketΓd−1,s
i:t (u) and those within the sub-mirrored

asymmetric Markov blanketId−1,s
t+1:j (v) (see Figure A.3). Forj > i, there is a context

c = (ed−1
t = 0, ed

t = 1). Following the similar derivation as in Section 8.4, we obtain

E[Fd,s
σtransit ,u,v

(ζ)] =
1

Z

∑

t∈[1,T−1]

Ad,s
u,v,tf

d,s
σtransit,u,v

(t)
∑

i∈[1,t]

∑

j∈[t+1,T ]

αd−1,s
i:t (u)βd−1,s

t+1:j (v)Λ̂d,s
i:j

for d ∈ [3, D]. Ford = 2, we must fixi = 1 andj = T .

Since everything here is just a mirrored version of the AIO algorithm the roles of initiali-

sation and of ending potentials can be swapped.
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ESS for initialisation features:

As a mirrored version of Equation 8.73 we have

E[Fd,s
σinit ,u(ζ)] =

1

Z

∑

i∈[1,T ]

πd,s
u,i f

d,s
σinit,u(i)

∑

j∈[i,T ]

Λ̂d,s
i:j β

d,s
i:j (u) (A.53)

ESS for ending features:

As a mirrored version of Equation 8.79 we have

E[Fd,s
σend ,u

(ζ)] =
1

Z

∑

i∈[1,T ]

∑

j∈[i,T ]

µd,s
i:j (u)∆̂d+1,u

i:j Ed,s
u,jf

d,s
σend ,u

(j) (A.54)

A.6 Semi-Markov CRF as a Special Case of HCRF

In this Appendix we first describe the semi-Markov CRF (SemiCRF) (Sarawagi and Co-

hen, 2004) in our HCRF framework and show how to convert a SemiCRF into an HCRF.

Then under the light of HCRF inference we show how to modify the original SemiCRF to

handle (a) partial supervision and constrained inference,and (b) numerical scaling to avoid

overflow. The modifications are of interest in their own right.

A.6.1 SemiCRF as an HCRF
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ex

state persistence state transition

Figure A.4: The SemiCRFs in our contextual clique framework.

SemiCRF is an interesting flat segmental undirected model that generalises the chain CRF.

In the SemiCRF framework the Markov process operates at the segment level, where a

segment is a non-Markovian chain of nodes. A chain of segments is a Markov chain.

However, since each segment can potentially have arbitrarylength, inference in SemiCRFs

is more involved than the chain CRFs.

Represented in our HCRF framework (Figure A.4), each nodext of the SemiCRF is asso-

ciated with an ending indicatoret, with the following contextual cliques
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• Segmental state, which corresponds to a single segmentsi:j and is essentially the

state persistencecontextual clique in the contextc = (ei−1:j = (1, 0, .., 0, 1)) in the

HCRF’s terminology.

• State transition, which is similar to the state transition contextual cliquein the HCRFs,

corresponding to the contextc = (et = 1).

Associated with the segmental state clique is the potentialRs
i:j, and with the state transition

is the potentialAs′,s,t, wheres, s′ ∈ S, andS = {1, 2, ..., |S|}.

A SemiCRF is a three-level HCRF, where the root and bottom aredummy states. This

gives a simplified way to compute the partition function, ESS, and the MAP assignment

using the AIO algorithms. Thus, techniques developed in this paper for numerical scaling

and partially observed data can be applied to the SemiCRF. Tobe more consistent with the

literature of flat models such as HMMs and CRFs, we call the asymmetric inside/outside

masses by theforward/backward, respectively. Since the model is flat, we do not need the

inside and outside variables.

Forward

With some abuse of notation, letζs
1:j = (x1:j−1, e1:j−1, xj = s, ej = 1). In other words,

there is a segment of states ending atj. We write the forwardαt(s) as

αj(s) =
∑

ζs
1:j

Φ[ζs
1:j , z] (A.55)

As a result the partition function can be written in term of the forward as

Z(z) =
∑

ζ1:T

Φ[ζ1:T , z] =
∑

s

∑

ζs
1:T

Φ[ζs
1:T , z]

=
∑

s

αT (s) (A.56)

We now derive a recursive relation for the forward. Assume that the segment ending at

j starts somewhere ati ∈ [1, j]. Then fori > 1, there exists the decompositionζs
1:j =

(ζs′

1:i−1, xi:j = s, ei:j−1 = 0) for somes′, which leads to the following factorisation

Φ[ζs
1:j , z] = Φ[ζs′

1:i−1]As′,s,i−1R
s
i:j (A.57)

The transition potentialAs′,s,i−1 occurs in the contextc = (ei−1 = 1), and the segmental

potentialRs
i:j in the contextc = (xi:j = s, ei−1 = 1, ei:j−1 = 0).
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For i = 1, the factorisation reduces toΦ[ζs
1:j, z] = Rs

1:j . Since we do not know the starting

i, we must consider all possible values in the interval[1, j. Thus, Equation A.55 can be

rewritten as

αj(s) =
∑

i∈[2,j]

∑

s′

∑

ζs′

1:i−1

Φ[ζs′

1:i−1]As′,s,i−1R
s
i:j +Rs

1:j (A.58)

=
∑

i∈[2,j]

∑

s′

αi−1(s
′)As′,s,i−1R

s
i:j +Rs

1:j (A.59)

Backward

The backward is the ‘mirrored’ version of the forward. In particular, let

ζs

j:T
= (xj+1:T , ej:T , xj = s, ej−1 = 1)

and we define the backwardβt(s) as

βj(s) =
∑

ζs

j:T

Φ[ζs

j:T
, z] (A.60)

Clearly, the partition function can be written in term of thebackward as

Z(z) =
∑

s

β1(s) (A.61)

The recursive relation for the backward

βi(s) =
∑

j∈[i,T−1]

∑

s′

Rs
i:jAs,s′,jβj+1(s

′) +Rs
i:T (A.62)

Typically, we want to limit the segment to the maximum lengthof L ∈ [1, T ]. This lim-

itation introduces some special cases when performing recursive computation of the the

forward and backward. Equation A.58 and A.62 are rewritten as follows

αj(s) =
∑

i∈[j−L+1,j],i>1

∑

s′

αi−1(s
′)As′,s,i−1R

s
i:j +Rs

1:j (A.63)

βi(s) =
∑

j∈[i,i+L−1],j<T

∑

s′

Rs
i:jAs,s′,jβj+1(s

′) +Rs
i:T (A.64)

Since it is a bit clumsy to represent a SemiCRF as a three-level HCRF, we can extend the

HCRF straightforwardly by allowing the bottom level statesto persist. With this relaxation
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we have anested SemiCRF modelin the sense that each segment in a Markov chain is also

a Markov chain of sub-segments.

A.6.2 Partially Supervised Learning and Constrained Inference

Following the intuition in Section 9.3.1, we require that all the forward and backward

quantities and the potentialsRs
i:j used in Equations A.63 and A.64 must beconsistentwith

the labels in the case of partial supervision and constrained inference.

Specifically, any quantities that are not consistent are setto zero. Let the labels beϑ =

(x̃, ẽ). Then the potentialRs
i:j is consistent if it satisfies the following requirements:

• if there are any labeled states in the interval[i, j], they must bes,

• if there is any labeled ending indicatorẽi−1, thenẽi−1 = 1,

• if there is any labeled ending indicatorẽk for somek ∈ [i, j − 1], thenẽk = 0, and

• if any ending indicator̃ej is labeled, theñej = 1.

These conditions are captured by using the following identity function:

I[Rs
i:j] = δ[x̃k∈[i,j] = s]δ[ẽi−1 = 1]δ[ẽk∈[i:j−1] = 0]δ[ẽj = 1] (A.65)

Notice how these conditions and equation resembles those inthe Equation 9.10. This is

because a SemiCRF is just a simplified version of an HCRF wherethe potentialRs
i:j plays

the role of the inside∆2,s
i:j .

Similarly, the forwardαj(s) is consistent if the following conditions are satisfied:

• if there is a labeled ending indicator atj, thenẽj = 1, and

• if there is a labeled state atj, thenx̃j = s.

The consistency is captured in the following identity function:

I[αj(s)] = δ[ẽj = 1]δ[x̃j = s] (A.66)

Furthermore, the backwardβi(s) is consistent where:

• if there is a labeled ending indicator ati− 1, thenẽi−1 = 1, and
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• if there is a labeled state ati thenx̃i = s.

And again, we have the following identity function

I[βi(s)] = δ[ẽi−1 = 1]δ[x̃i = s] (A.67)

By installing the consistency identity functions in Equations A.65, A.66 and A.67 into

Equations A.63 and A.64, we now arrive at

αj(s) = I[αj(s)]


 ∑

i∈[j−L+1,j],i>1

∑

s′

αi−1(s
′)As′,s,i−1I[R

s
i:j]R

s
i:j + I[Rs

1:j]R
s
1:j


 (A.68)

βi(s) = I[βi(s)]


 ∑

j∈[i,i+L−1],j<T

∑

s′

I[Rs
i:j]R

s
i:jAs,s′,jβj+1(s

′) + I[Rs
i:j]R

s
i:T


 (A.69)

A.6.3 Numerical Scaling

We have already shown that a SemiCRF is indeed a 3-level HCRF where the top and the

bottom levels are dummy states, that is, the state size is oneand all the potentials associated

with them have a value of one. To apply the scaling method described in Section 9.2, we

notice that

• αt(s) plays the role of the asymmetric inside massα1,1
1:j (s)

• βt(s) plays the role of the asymmetric outside massλ1,1
1:j(s)

What we do not have here is the explicit notion of inside mass∆2,s
i:j , but it can be considered

as having a value of one. So to apply the scaling algorithm in Figure 9.1 we may scale the

state-persistence potentialRs
i:j instead. The simplified version of Figure 9.1 is given in

Figure A.5.

Of course, the partial scaling step can be the source of numerical overflow with
∏j−1

k=i κk.

The trick here is to realise thatb/
∏

k ak = exp(log b−
∑

k log ak) so that we never compute

b/
∏

k ak directly but the equivalenceexp(log b−
∑

k log ak).
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Input : T , the transition potentials and the state-persistence potentials.
Output : Scaled quantities: state-persistence potentials, forward/backward.
For j = 1, 2, .., T

/*Partial scaling*/
For i = j − L+ 1, .., j − 1

RescaleRs
i:j−1 ← Rs

i:j−1/
∏j−1

k=i κk

EndFor
Computeαj(s) using Equation A.55
Computeκj =

∑
s αj(s)

/*Full scaling*/
Rescaleαj(s)← αj(s)/κj

For i = j − L+ 1, .., j
RescaleRs

i:j ← Rs
i:j/κj

EndFor
EndFor
Compute true log-partition function using Equation 9.5.
Compute the backward/ESSes using the scaled potentials.

Figure A.5: Scaling SemiCRF.


