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Abstract

There has been a growing interest in stochastic modelliddesarning with complex data,
whose elements are structured and interdependent. One ofidst successful methods
to model data dependenciesgisaphical modelswhich is a combination of graph theory
and probability theory. This thesis focuses on a specia tyfpgraphical models known
as Conditional Random Fields (CRFs) (Laffedyal, 2001), in which the output state
spaces, when conditioned on some observational inputal&aepresented hyndirected
graphical models. The contributions of thesis involve b@hbroadening the current ap-
plicability of CRFs in the real world and (b) deepening thelerstanding of theoretical
aspects of CRFs.

On the application side, we empirically investigate theligpgions of CRFs in two real
world settings. The first application is on a novel domain thameseccent restora-
tion, in which we need to restore accents of an accent-less Viwisa sentence. Exper-
iments on half a million sentences of news articles showtth@tCRF-based approach is
highly accurate. In the second application, we develop a@BW-basednovie recommen-
dationsystem calledPreference NetworkPN). The PN jointly integrates various sources
of domain knowledge into a large and densely connected Mamkbtwork. We obtained
competitive results against well-established methodkerré¢commendation field.

On the theory side, the thesis addresses three importanetical issues of CRF$eature
selection parameter estimatioandmodelling recursive sequential datéhese issues are
all addressed under a general settingaitial supervisionin that training labels are not
fully available.

For feature selection, we introduce a novel learning algoricalledAdaBoost.CRREhat
incrementally selects features out of a large feature pol@laning proceeds. AdaBoost.CRF
is an extension of the standard boosting methodology tatsired and partially observed
data. We demonstrate that the AdaBoost.CRF is able to diminrelevant features and
as a result, returns a very compact feature set withoutfsignt loss of accuracy.

Parameter estimation of CRFs is generally intractablebitrary network structures. This
thesis contributes to this area by proposing a learning ogathlledAdaBoost. MREwhich



XV

stands for AdaBoosted Markov Random Forests). As learninggeds AdaBoost.MRF
incrementally builds a tree ensemble (a forest) that cawersriginal network by selecting
the best spanning tree at a time. As a result, we can apprtedyri@arn many rich classes
of CRFs in linear time.

The third theoretical work is on modellingcursive, sequentiadata in that each level
of resolution is a Markov sequence, where each state in tipgesee is also a Markov
sequence at the finer grain. One of the key contributionsisthiesis iHierarchical Con-
ditional Random Field$HCRF), which is an extension to the currently popular setjake
CRF and the recent semi-Markov CRF (Sarawagi and Cohen)200dike previous CRF
work, the HCRF does not assume any fixed graphical structRather, it treats structure
as an uncertain aspect and it can estimate the structurmatitally from the data. The
HCRF is motivated by Hierarchical Hidden Markov Model (HHMNKFine et al., 1998).
Importantly, the thesis shows that the HHMM is a special cd$¢CRF with slight modi-
fication, and the semi-Markov CRF is essentially a flat versibthe HCRF.

Central to our contribution in HCRF is a polynomial-time @ghm based on the Asym-

metric Inside Outside (AIO) family developed in (Bei al., 2004) for learning and infer-

ence. Another important contribution is to extend the Al@ifg to address learning with

missing data and inference under partially observed labétsalso derive methods to deal
with practical concerns associated with the AlO familyuatng numerical overflow and

cubic-time complexity. Finally, we demonstrate good perfance of HCRF against rivals
on two applications: indoor video surveillance and nourapa chunking.
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Chapter 1

Introduction

1.1 Motivations

There has been a growing interest in stochastic modediingctural patternswith wide
spread application in many areas including language psaugsbioinformatics, computer
vision and social networks. For example, in Natural Languigpcessing (NLP) (Manning
and Schitze, 1999) we are often interested in inferrindpbetial or full) syntax tree of a
sentence, the hierarchical structure of a document, ansktingence of named entities (e.g.
person name, location) in a sentence. In image undersignti@ underlying scene of an
image can be modelled as a 2-D grid in which each node comelsgo the scene of a raw
image pixel. In consumer networks, preferences (e.g. dikkke) expressed by a set of
users on a set of common products and services are inteidiepethrough user-product
interactions.

These examples share a common setting in that given somevatiseal data:, which can

be easily observed or obtained, we are more interested ieliirggland inferring about the
structural patterns emerging from the data. In probabilistic modelling, infeg aboutz
involves computing the conditional distributiéq(z|z). There are two general approaches
to this problem. The first approach assumes that the undgrlyatternz generateghe
observational data in a generative procesgiven by Pr(z|z). To infer aboutr, we re-
sort to the Bayes rul®r(z|z) « Pr(x)Pr(z|z). Hence, the problem is broken into two
sub-problems: modelling the pattern itselfim(z) and modelling the data generation in
Pr(z|z).

The second approach is more direct as we model the requinaditiomal distribution

Pr(z|z) directly without worrying abouPr(z). This is particularly important when the
data generation distributidtr(z|z) is complex, whilstPr(x|z) can be quite simple. It also
eliminates the potential danger of the generative assompiihich we do not really know
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in practice. This approach is often referred ta&sriminative modelling

Given the discriminative setting the next important quests how can the structural pat-
terns be represented? The main requirements are that teenpagon should be both
expressive to incorporate various data aspects (e.g.leviaitdl hidden variables), to cap-
ture the inherent relationship between the datad the patternr, and formal enough to

characterise the nature of model estimation and inference.

Graphical modelqPearl, 1988; Lauritzen, 1996) are an important class obgidistic
methods that successfully meet these requirements. Thepine the probabilistic the-
ory and the graph theory in a seamless manner. Patternspreseated by a network in
which each pattern element is encoded by a node or a subsetleénand interactions
between pattern elements are materialised by edges betwels. There are two main
types of interaction:causalityis encoded indirected models (also known as Bayesian
Networks (BNs)), anatorrelationin undirectedmodels (also known as Markov Random
Fields (MRFs)). Corresponding to the interaction types,ittieraction strength is mate-
rialised by local conditional distributions in the diredteases and clique potentials in the
undirected cases.

This thesis focuses on a recently introduced sub-classdifested graphical models that
support discriminative modelling known as Conditional Bam Field (CRF) (Lafferty
et al, 2001). More specifically, given each observational datan CRF, the pattern

is represented as a standard MRF. Thus, given multiple datarices, we have multiple
graphical models and these models generally share the satnté parameters. CRFs
are often parameterised as conditional exponential digtans, which are also known as
multi-class logistic regression.

Given these properties, the CRF is at the conjunction betviwe major areas: proba-
bilistic data structure modelling and statistical macHesrning. As standard undirected
graphical models, inference in sequential CRFs is veryieffic Equipped with recent ad-
vances in numerical optimisation, this enables learningelscale CRFs with millions of
parameters and millions of data instances. Its uniqueipasg perhaps the reason beside
the success of the CRF in various areas, including bioindios, computer vision and
computational linguistics.

However, this position also poses many theoretical chgésrior the CRF as a structure
modelling and learning machinery. In what follows, we linatthose issues that will be
addressed in this thesis.

An issue which has received limited attention in the disarative setting isnissing pat-

There is a popular technique to discriminatively estinfatér|z) from the generative modelling using
the Bayes rule. (Minka, 2005a) has made clear that thi®isliscriminative modelling budiscriminative
training.
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tern variabledn the data (e.g. see (Quattatial., 2005)). In learning of standard discrim-
inative models, pattern labels are assumed to be fully @viail This style of learning is
often calledsupervised learning the statistical machine learning literature. This casts
with the other extreme known asmsupervised learningvhere patterns of interest are to-
tally missing. In this thesis, we are interested in the siturewhere partial pattern labels
are available, and thus we term it pgrtially supervised learning Typically, this issue
arises when there are intrinsic latent variables that atesmmwvn in the data, or there are
missing or damaged parts of the patterns due to environtresit®e or manual processing.

Another important issue igature selectionFeatures in the CRF framework are some as-
pects extracted from observational dajand often each feature is associated with a free
parameter. As we have mentioned, many domains involvesmnslbf features (and there-
fore parameters), and this is very computationally denrepndBesides, since we do not
have to modet, it can be tempting to generate as many features as possielewnany of
them can be irrelevant for the purpose of modelling the patteln those cases, selecting
a compact subset of features is very critical to the sucdebe CRF implementation.

Perhaps one of the biggest obstacles to adopt CRpar&meter estimation in networks
with arbitrary structuresbut there has been limited work in this area (e.g. see (Sutton
and McCallum, 2005, 2007b)). It is well-known that inferenn graphical models is only
efficient when the structures are chains or trees, but ittiagtable in general. It is even
worse in learning which typically involves many inferendeps in an iterative manner.
Typically, one resorts to approximate inference methoésailP1988; Geman and Geman,
1984; Jordaret al, 1999; Wainwrightet al, 2003a, 2005b), but these may corrupt the
parameter update steps because we generally assume timdietbace steps are exact.

In addition, most applications of the CRFs are limited tq Batjuential structures, possibly
due to the efficiency reason mentioned above. In many areasver, flat sequential
models are not adequate but rathésrarchical structuresare required. For example, a
syntactic parsing task in NLP known as noun-phrase chuni@agg and Buchholz, 2000)
requires joint modelling of both noun-phrases (NPs) anttplaspeech tags (POS) as two
layers of semantics associated with words in the senterejoint modelling is important
because on the one hand noun-phrases are often inforn@atnfertthe POS tags belonging
to them, and on the other hand, a sub-sequence of POS tagsetpagdéntify the nature
of the phrase for that sub-sequence.
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1.2 Aims and Scope

This thesis investigates further into CRFs, which are attrmgunction of the discrimina-
tive modelling framework and undirected graphical mod@lsr objectives are:

e To apply CRFs to new domains with different settings.

e To extend the theory of CRFs in three aspects: feature smledearning under
arbitrary structures, and modelling hierarchical data.

In the application line of work we study two specific areas:

e The accent restoration problem, in which given a sequen@xoént-less words,
we want to restore original accents without external infation. We have chosen
Vietnamese as the study subject. We approach the problesifny sequential CRFs
to model and learn the accent space.

e Movie recommendation systems in which viewers are providitd specific titles
that may interest them. We aim at integrating rich domainkedge together with
preferences expressed by viewers into a single CRF.

In the theoretical investigation we focus on the common thefmlearning and inference

in CRFs with missing variables. More specifically, the fallog three aspects are studied
in detail:

e The feature selection problem in which we need to select tbst miscriminative
subset of features. We extend the boosting framework (ferand Schapire, 1997,
Schapire and Singer, 1999) to embed the feature selectpatita into the learning
process.

¢ Intractability of parameter estimation of CRFs in arbyraetworks. We exploit the

fact that a network is a superimposition of trees and eaehigrefficient to learn and
infer.

e Generalisation of sequential CRFs to support modellingrnlieg and inference of
hierarchical data. We limit to recursive sequential type&latfa, in that a node in a
sequence at the parent level is a sub-sequence by itsedf ettilld level. We approach
the problem by extending the existing Hierarchical Hiddearkbv Models (Fine
et al, 1998).
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1.3 Significance and Contribution

There are two central lines of work that constitute the sigamnce of the thesis: (1) broad-
ening the applicability of CRFs in novel application donwiand (2) deepening the un-
derstanding of theory of CRFs in three sub-ardaature selectionparameter estimation
with general network structureandhierarchical data modellingin particular, our contri-
butions are:

e A demonstration that sequential CRFs, especially secoderahains, are suitable
for restoring lost accents. This is an important problenalose accents may be lost
due to formatting or they are not supported by standard kaytsoand many display
applications. On the algorithmic side languages like \detese pose significant
challenge because accent-less sentences are highly aubign our study we are
able to reach high level of accuracy that can be suitablesfairworld deployment.

e Construction of a novel model calldeteference Network@Ns), which is a large
and densely-connected CRF for relational databases. RNa discriminative re-
lational model that support various queries in recommesgsiems - an important
element in current e-commerce sites. Different from mosvipus studies in the
recommendation field, our model is both formal and expressivthat it supports
probabilistic inference and incorporates rich domain kieolge, such as user pro-
file, product content, and collaborative user preferengés evaluate this model on
the movie domain and show that it is competitive against-ketiwn techniques.

e A novel algorithm called AdaBoost.CRF that addresses bedlitufe selection and
missing training variables. It is well-known that featuedestion is required to elim-
inate irrelevant information, to improve the predictiorta@cy, to aid human inter-
pretation of data and to speed up model execution. AdaBoRS§tis an extension
of the celebrated boosting methodology to the area of stredtprediction. It is an
efficient algorithm in that feature selection is integrated the learning process pro-
viding a good trade-off between speed and prediction padoce. We demonstrate
that it is able to select small amounts of features out of geldeature pool while
maintaining reasonable accuracy.

e A new parameter estimation algorithm called AdaBoost.MBFGRFs with arbi-
trary network structures under missing variables. This/iges an answer to the
intractability problem in maximum likelihood learning. ABoost.MRF is efficient
in that it requires only inference in trees, therefore adhig linear complexity in
network size. Its predictive power is comparable with welbwn parameter estima-
tion methods.
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e Adiscriminative framework called Hierarchical ConditadfRandom Fields (HCRFs)
for modelling, inference and learning recursive sequédaga. The data at differ-
ent resolutions can be jointly modelled in a formal fashidimis eliminates some
drawbacks in the popular layered approach by preventirggeto propagate from
the lower layer to the higher. This also enables recursita ttabe represented
as graphical models, allowing rich probabilistic inferend@he framework is based
on, and is an extension of a generative counterpart knowniestdhical Hidden
Markov Models (Fineet al, 1998; Buiet al,, 2004). As a result, it includes a version
of Asymmetric Inside-Outside (AlO) algorithm (Bet al., 2004) for learning and a
Generalised Viterbi algorithm for inference.

e A set of techniques to deal with practical issues associtddHCRFs. In partic-
ular we have (1) developed a scaling algorithm that is affed¢h reducing numer-
ical overflow; (2) extended the AIO and the Generalised Yitatgorithm to cope
with arbitrary partial labels; (3) derived an efficient apgmate inference scheme
based on Rao-Blackwellisation (e.g. see (Casella and RA®€6)) and Gibbs sam-
pling (Geman and Geman, 1984); (4) proposed an approxireataihg algorithm
based on pseudo-likelihood (Besag, 1975); (5) represenspecial case of HCRFs
with exponential duration distribution as a factor-graplsc¢hischanget al.,, 2001);
and (6) shown how to convert discriminative HCRFs to the gaihe counterparts.

e Two applications of HCRFs in human activity recognition aralin-phrase chunk-
ing. We demonstrate that HCRFs are competitive againdtmethods.

1.4 Thesis Structure

This thesis is organised into 10 chapters and a number ohajpges, in which 6 chapters
make up the main contribution of the thesis and the rest gpasting materials. The rest
of the thesis is arranged in the following order:

e Chapter 2 selectively reviews background materials theeasential for further de-
velopment of the thesis. These include general statistizathine learning with
structured output spaces, the Maximum Entropy principlé graphical models.
The formulation of the principle of Maximum Entropy (MaxErShannon, 1948;
Jaynes, 1957; Cover and Thomas, 1991) supports the logrlmedel utilised in
the multi-class logistic classifiers and CRFs. Backgroumdm@phical modelling in
general, and undirected graphical models in particularpaesented to support the
understanding of the theory of CRFs. Finally, we provideoaef look at hierarchical
modelling of data, the area that covers a major contribusidhe thesis.
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e Chapter 3 describes in more detail the main subject of tkasish the Conditional
Random Field. We present common aspects such as modedatgré selection and
parameter estimation and review the most important agmits of CRFs. More
advanced developments and issues are also discussed.

e Chapter 4 presents a novel application of CRFs in Vietnamesent restoration.
We propose to use sequential CRFs to model and learn thetaace of the Viet-
namese accent sequences. We apply the stochastic graseemit #or parameter
estimation and compare the performance of CRFs with sevigedlmethods on a
large Viethamese newswire dataset.

e Chapter 5 details the construction of Preference Netwd?Pkss] for recommenda-
tion systems. PNs are large-scale and very densely comheeteorks that require
fast local learning algorithms such pseudo-likelihooaf Besag (1975). We show
that the PNs are capable of representing the whole ratirapdaé provided by a
set of users on a set of products or services, and of encomgpassieties of do-
main knowledge to improve system performance. The chapderevaluates the
PNs against several well-known methods in the area.

e Feature selection is covered in Chapter 6. The chapterseae extension of boost-
ing called AdaBoost.CRF for parameter estimation of stmext models with miss-
ing training labels. The chapter documents experimenideexce that suggests the
proposed algorithm is effective in selecting a small sub$déeatures from a large
feature pool.

e Chapter 7 addresses the problem of parameter estimatioiRifs @Qvith arbitrary
network structures. We introduce a novel algorithm calle@Boost.MRF, which is
efficient and capable of handling missing labels.

e Hierarchical extensions to the modelling theory of CRFsivergin Chapter 8, and
is continued through Chapter 9. Chapter 8 introduces Hibreal CRF (HCRF)
for recursive sequential data. Model definition, represtom, and an efficient al-
gorithm for learning and inference in HCRFs are includechm¢hapter. Chapter 9
addresses practical issues associated with the HCRFse Hubsde numerical over-
flow, approximate learning and inference. The chapter a¢stribes experimental
evaluations on two different problems: human activity ggation and noun-phrase
chunking.

e Chapter 10 summarises the main content of the thesis andesituture work.



Chapter 2
Related Background

In this chapter, we provide the background on which the ghisdbuilt. As the material is
somewhat mathematical, we provide a list of notations irléfatl.

2.1 Statistical Machine Learning

2.1.1 Common Setting

Statistical Machine Learning (e.g. see (Hagtial, 2001)), an intersection of Computer
Science and Statistics, aims to build systems that ‘leaomftraining examples to perform
tasks on unseen data. When the training example includesitheme pattern € X of a
given inputz € Z, the learning is said to beupervisedThe goal is to estimate a classifier
h(z)

hz): Z2 - X (2.1)

that outputs the predictiof for a future inputz, i.e. z = h(z). Another learning type is
unsupervisedh that no outcomes are available for a given input. Thisigeads limited to
reviewing supervised learning algorithms that are apple#o the thesis’s focus.

Assuming that the data is randomly drawn from a fixed but umkndistributionPr(z, z).
Learning searches fdr(z) that minimises thexpected risk

R(h) = / L(z, h(2)) Pr(z, =)dad> (2.2)

whereL(x, h(z)) is the measure of mismatch between true outpand the predictiort
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Notation

Description
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(Joint) state variables

Space of state variables, or output space

State variables other than

Ending indicators

Observables

Model probability

The partition function

Free energy

Shannon’s entropy of distributioR

Expectation of a functio” with respect to distributio®®
Index of the graph vertex

Level, counting from the root alsdown to bottom
Time index

Model depth and length

Index of the cliques in graph

Graph size

Index of feature and parameter

Feature size

Index of data instance

Data size

Visible and hidden components of the joint state variableespectively
The data set

The graph

Set of vertices and edges of the graph, respectively
Neighbourhood of nodée

Parameter vector

Local feature vector

Global feature vector (sum of all actif¢.)) in the configuration
Potential functions.

Message from nodgto nodei

Returnl is the predicaté¢] is true,0 otherwise

Table 2.1: Notations used in this chapter.

returned byh(z). For example, we may be interested in the error measure

L{z, h(2)) = 8z # h(2)] (2.3)

whered[z # h(z)] returns 1 ifz # h(z) and 0 otherwise.

However, sincePr(z, z) is unknown, one resorts to minimise thenpirical risk (or the
loss) on the training dat® = {(z®, 2W)}r_,

R(h) = % i L(z®_ h(z"0)) (2.4)
=1
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Depending on the loss we can roughly classify the statisti@chine learning methods
into probabilisticandnon-probabilisticmethods. Probabilistic methods aim at arriving at
the conditional distributioPr(x|z) for prediction. Typically, minimising the empirical
loss is converted into maximising the conditional likelitao

L= ! E log Pr(z]21) (2.5)
n
=1

Non-probabilistic methods, on the other hand, employ séwkiferent loss functions such
as quadratic loss, exponential loss (as in boosting (FrenddSchapire, 1996)), or hinge
loss (as in Support Vector Machines - SVMs (Burges, 1998)).

In this thesis we are interested in tharametricsetting, in which 4 is parameterised by
some parameter. In particular, we will study the linear classification plem in that we
want to estimate the following functional

G(z,2) = w'F(z,2) (2.6)

whereF is the vector of features that encode dependency betweeih irgnd outputr.
The prediction of a new input is given as

T = h(z) = arg max G(x,z) (2.7)

The type of probabilistic models we are studying in this ihésthemulti-class logistié,
whose distribution is given as

exp(w'F(x,2))
2o exp(w (2, 2))

In Section 2.2 we will present a theoretical justificationdboosing this type of model.

(2.8)

Pr(z|z;w) =

2.1.2 Learning in Structured Output Spaces

Until recent years the field of statistical learning had fdionly on unstructured output
spaces, in that, there are no direct relations between bugsiables. However, most
of the real world domains involve interdependent variableghat the output spaces of
interest arestructured Learning and predicting structured patterns pose neweriges
and opportunities that have attracted much interest rggastevidenced in past workshops
(Table 2.2). In fact, structured prediction is now consédleas one of the top challenges in

1This is opposed to theon-parametrisetting where no underlying models with specific paramsaéion
are assumed.
2This is also known as (conditional) softmax, exponentialifg, Gibbs distribution and log-linear model.
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statistical machine learning (Lafferty and Wassermang200

Remarkable work in this area includes (McCallwenal, 2000; Laffertyet al, 2001,
Collins, 2002; Taskaet al., 2002) (Altunet al,, 2003a, 2004; Taskat al., 2004; Tsochan-
taridiset al,, 2005), and (Richardson and Domingos, 2006). These worisiexhe fact
that structured prediction is a multi-class problem soddiath machine learning algorithms
such as logistic regression, boosting, and SVMs can beexpplihe major challenge liesin
the size of the output space, which is often exponentiatlydan the number of variables.
For example, if we havéV discrete variables, each of which takepossible values, then
the total number of classes that these variables can jaiepisesent isS™V. Therefore, the
main problem is how to efficiently represent and performreay and inference in these
spaces.

To date, the most successful modelling tools for structggaices argraphical mod-

els (Lauritzen, 1996). This is a unified framework that includasious previous models
such as Markov random fields (MRFs) (Lauritzen, 1996), Bayesetworks (BNs) (Peatrl,
1988), hidden Markov models (HMMs) (Rabiner, 1989), Kalrfidars and several neural
network architectures (Saet al., 1996; Hinton and Salakhutdinov, 2006), and the recent
factor graphs (FGs) (Kschischamg al, 2001). Generally, graphical models represent
variables as vertices in a network and probabilistic irepehdencies between variables as
edges. The global property of the whole network is achietedugh local interactions.
We will provide more details about these models in Secti@n 2.

Previous machine learning in structured output spacesxXmsited a rich set of graphical
models. For example, the Maximum Entropy Markov model (MEMMroduced in (Mc-
Callumet al,, 2000) makes use of directed Markov chains for modellingisatjal output
data in conjunction with local multi-class logistic cldgsis. Similarly, the conditional ran-
dom field (CRF) (Laffertyet al, 2001) represents output spaces using undirected Markov
random fields (also known as Markov networks) and utiliselfirolass logistic for learn-

ing the input-output mapping. When the CRF is applied toti@ial domains it becomes
the relational Markov network (RMN) (Taskat al., 2002). These methods are generally
probabilistic, in that they estimate the conditional digition of the output pattern given
the inputPr(z|z).

Non-probabilistic methods have also been applied for sired domains. The work in
(Collins, 2002) is an extension of the Perceptron algori(Rosenblatt, 1958; Freund and
Schapire, 1999). Similarly, work in (Altuet al., 2003a) utilises boosting, (Altuet al,,
2004) extends Gaussian processes, and (Tagkal, 2004; Tsochantaridist al., 2005)
generalises SVMs.

Although much progress in learning with structured outatces has been made with im-
pressive applications, the field is still in an early stagbergé are many remaining issues
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to be addressed. These issues come from three sourcesasisostated with the standard
machine learning techniques being employed, those withrlderlying graphical models,
and those with the interaction between learning algoritangsgraphical models. From the
statistical machine learning point of view, the main conseare estimation bias, variance,
consistency, generalisation errors and spe&h the graphical models side, exact infer-
ence in arbitrary networks is unfortunately intractabléneinteraction between the two
sides makes some of these issues more challenging. For examprs made during ap-
proximate inference on graphical models may corrupt theuti@n of the learning process
and, as a result, hurt the generalisation power of the fikssbince statistical properties
of these errors are hard to characterise, generalisattorsesf learning algorithms may
not be estimated. As remarked by Lafferty and Wassermang2@ide SVM techniques
when applied to Markov networks are indeed inconsisteng. drily known consistent esti-
mation is based on maximum conditional likelihood, likesbased in CRFs. Fortunately,
inconsistent estimation in graphical models using a aextkiss of approximate methods
may still be very valuable (Wainwright, 2006).

| Year | Workshop |
2004 | NIPS Learning With Structured Outputs Workshop

2004 | NIPS Graphical Models and Kernels

2005 | NIPS Kernel Methods and Structured Domains

2006 | ICML Workshop on Learning in Structured Output Spaces
2007 | ICML Workshop on Constrained Optimisation and StructuredpDt Spaces

Table 2.2: Some recent workshop on learning in structuréolutspaces.

In the next subsection, we provide a justification of usindtrulass logistical distribu-
tions through the principle of Maximum Entropy in Sectio and a detailed account of
graphical models.

2.2 The Maximum Entropy Principle

Maximum Entropy (MaxEnt) (Jaynes, 1957) is a method for dgrestimation. To be
consistent with the statistical machine learning settireggwesent here theonditional
MaxEnt instead.

Suppose we are given an observed data distribtﬁviném, z) of the random variables and
z, and some measurement of d&ér, 2) = (Fi(z,2), Fy(z,2), ..., Fx(x,2))" that we

3The efficiency issue is now recognised as one of the main @nobi machine learning, as evidenced in
one of NIPS 2007 Workshops.
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will call ‘features’. A distributionPr(x|z) is consistent with the data if

E[F(z,2)] = E[F(z,z)] (2.9)
where

E[F(z,2)] =Y Pr(z,2)F(z,2) (2.10)

is the empirical feature expectation and
E[F(z,2)] =Y Pr(z) Y Pr(z]2)F(x, 2) (2.11)

is the model feature expectation.

The Maximum Entropy Principlstates thaamong all consistent distributions, if nothing
else is known about the data, we should choose the densitysthize least biased, i.e.
the one closest to the uniform distributiofhe distance betwed?r(z|z) and the uniform
distributionU (z|z) = 1/|X| can be measured by the Kullback-Leibler divergence (Cover
and Thomas, 1991):

KLPr|) = 3 Pr(2) S Pr(al2) log 1;((;5))
= —HI[Pr]+log|X)| (2.12)
where
H[Pr| = — Z ﬁ(z) Z Pr(z|z)log Pr(z|2) (2.13)

is Shannon’s entropy (Shannon, 1948). The MaxEnt denstiyna®r minimises the
Kullback-Leibler divergence, which is equivalent to maising the entropy, under the
constraints of Equation 2.9.

By using Lagrange multipliers and maximising the entroplguation 2.13 with respect to
the distributionPr(z|z), one arrives at the multi-class logistic (or log-lineagtdbution in
Equation 2.8. Given this log-linear form, maximising thérepy with respect t&r(x|z) is
equivalent to maximising the likelihood with respect tograeters associated with features

w = argmax L(w); where (2.14)

L(w) = Zﬁ(m, z)log Pr(x|z; w) (2.15)

T,z

A nice property of the MaxEnt is that(w) is concave and thu& is unique. Maximising
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the likelihood is equivalent to solving the equation whére gradient is equated to zero:

VL(w) = > Pr(z,2)F(z,2) = Y Pr(2) > Pr(z|2)F(x,2)

= E[F(z,2)] — E[F(z,2)]
= 0 (2.16)

Thus, solving Equation 2.16 is equivalent to finding therihstion Pr(z|z) that satisfies
the constraints in Equation 2.9. In other words, k@ Ent provides a theoretical justifi-
cation for using multi-class logistical distributions wkeparameters are estimated by the
maximum likelihood method

Algorithmic parameter estimation of MaxEnt models has badaressed in statistics and
computer science for past decades. Notable algorithmadedhe Generalised Iterative
Scaling (GIS) introduced in (Darroch and Ratcliff, 1972)ddahe Improved Iterative Scal-
ing (11S) in (Bergeret al,, 1996; Pietraet al,, 1997). However, recent empirical evidence
(Minka, 2001b; Malouf, 2002; Sha and Pereira, 2003) hasestgg that these specialised
algorithms are generally outperformed by recently advdnaamerical optimisation al-
ternatives such as Conjugate Gradients (Hestenes an@lSti662) and quasi-Newton
methods such as L-BFGS (Liu and Nocedal, 1989; Batrdl., 1994).

The MaxEnt is particularly popular in computer science icerdg years (Zhet al.,, 1998;
Nigamet al,, 1999; Zitnick and Kanade, 2004), especially in the field bPNafter the pio-
neering work of Bergeet al. (1996) and Ratnaparkhi (1996). It often achieves competiti
performances with state-of-the-art rivals in the domamnshich it is applied. The strength
of this method comes with the ability to incorporate arlitrand overlapping features.

The work in (Kazama and Tsujii, 2003) relaxes the equalityhie original consistency
constraints in Equation 2.9 in the way that the differendevben the model feature expec-
tation and the empirical expectation is bounded in a givearval

L, < E[Fk(l', Z)] — E[Fk(l', Z)] < U fork=1,2,...,. K (217)

wherelL, < 0 < U,. A more comprehensive study of the constraints is describ@udik
et al,, 2007).

2.3 Structured Data and Graphical modelling

As noted early in Section 2.1.2, it is often the case thatades in real data are interde-
pendent, and it is hard, if not impossible, to isolate anyaldes that are truly independent
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Figure 2.1: Naive Bayes assumption: words (filled circés)conditionally independently
generated by the topic (empty circle).

of others. However, a holistic analysis of all the variableractions is very expensive. We
have to make some assumption of independence to decomposertiplex problem into
solvable pieces. One of the most useful assumptioosnslitional independende that
two sets of variables are independent of each other givere smmditions, for example,
the connections between these two sets of variables arkdalo&or example, words in a
document are often assumed to be created with a specifidioriene. the topic of the sub-
ject being written. The naive Bayes assumption is that gme¢opic is chosen, words can
be considered as being independently generated (McCalhuhiNggam, 1998) (see Fig-
ure 2.1). Put it differently, words are conditionally in@égylent given the topic. Of course,
such an assumption may be adequate for text classificatioih isLclearly too simplistic
for deeper understanding of text. Words do not just ‘happe@ib-occur in texts, but they
usually follow certain grammatical structures and connveral usage. Thus, depending on
the nature of problem, we may want to vary the level of intpedelency, either for ease of
analysis or better understanding. More importantly we veargpresentation scheme that
is expressivenough to integrate prior knowledge about the domain, atiteadame time,
provides us with an analytical framework fefficientlearning, reasoning, interpreting and
predicting the data.

2.3.1 Graphical Modelling

(@) (b)

Figure 2.2: Examples of Bayesian Networks (a) and Markovdean Fields (b). (a) is
converted to (b) by marrying parents of nodes and droppiray\a:.

Graphical Models (GMs) nicely address the above requirésn&Ms seamlessly integrate
graph theory and probability theory. The formulatioséni-formain the sense that GMs
provide a tool for visualisation of interdependency betweariables in the data, and at
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the same time, obey strict mathematical formulations ofidgnal dependence and prob-
abilistic consistency. GMs offer a separation between whatbe learned from data (in
thelearningphase) and what can be inferred from the model (intference phage

Denote byG = (V, £) a graph that has a set of vertidésnd a set of edges. Each vertex

i € V represents a random variablg wherei = 1,2, .... N andN = |V|. Letz = (z;)¥,
denote the joint set of all random variables representeth&gtaph. In this thesis we are
interested in discrete models in which each variable adraltges from a finite set of states,
ie.z; € S;, whereS; = {1,2,...,|5;|}. For example, in computer vision, it is common to
have the same small s&tof possible scenes for all nodes. In language processing, ho
ever, the set can be a subset or the whole vocabulary of adgegontinuous variables
are also of interest, but their use is beyond the scope oftibsss.

Imposed on the grapf is a joint distribution of all variableBr(z;, xs, ...xy). Reasoning
about a particular variable given some evidence. can be given as

Pr(z;, z.)

Pr(z;|z.) = Pr(ey)

(2.18)
wherec is the set of indices. Denote hy . the set of all variables except the subsete.
r_, = z\z. andz = (z., z_.). We have

Pr(z.) = Z Pr(z) = Z Pr(z.,z_.) (2.19)

There are two types of GMslirected(Figure 2.2a) andndirectedFigure 2.2b). Directed
graphical models (also known as Bayesian Networks (Pe@88)Yland Belief Networks)
provide a graphical representationaafusalitiesandinfluences The direction of influence
is denoted by an arrow in Figure 2.2a. Undirected graphicalets (also known as Markov
Random Fields and Markov Networks), on the other hand, entteatorrelationsbetween
variables. Below we describe the directed case and leavanttiieected case, which is the
focus of this thesis, until Section 2.4.

The main consistency requirement of Bayesian Networks JBi\that the graph must be
acyclicin that there must be no directed cycles in the graph. Thetireand the degree of
influence are encoded in a conditional distributitfiz;|pa(i)) of the influenced variable
x; given the influencing subset of variables(:). In the Bayesian Networks;; is often
called the child angha(i) the parents. For instance, in Figure 2.2&3) = {1,2,4}. The
joint distributionPr () is the product of all local conditional distributions:

N

Pr(z) = [ [ Pr(xi|pa(i)) (2.20)

1=1
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One important property of BNs is that a variablas conditionally independerf all other
variables given a special surrounding set of variables knasMarkov blanketwhich is
composed of its parents, its children and its children’epts. For instance, in Figure 2.2a,
the Markov blanket of node 5igl, 4}, while itis {1, 2, 3,5} for node 4.

To model data as a BN, we need to determine the graph conigstiucture€ and esti-
mate the conditional distributioBr(z;|pa(i)). Determining€ automatically from data is
known asstructure learning Given the structure, estimatiity(z;|pa(i)) is calledparam-
eter learning

Structure learning is a hard problem, partly because thetsite space of is usually
explosive in sizeV and partly because there is no single criterion to definedgess’ of
a structure. More often, we rely on our understanding of tira@n to specifi£. In many
cases the structure of data is obvious, such as the sequigmae-of-speech tags. In other
cases there are no magic formulae to design the right model §oven problem. Simple
models may be tried and then improved to account for certgpeets of the problem.
On the one hand, overly simplistic models can smooth outeéhbdata too much so that
only high regularities are kept. On the other hand, thereneil be enough regularities to
learn the over-complicated models, given limited data.eDweining the right complexity
for a given data and how much data for a given complexity sgithains an art through
experiments.

Moreover, the model structure and inference are tightlypteai Often we want some
complex structures to best characterise the problem at hdadever, most of the time,
we have to make some trade-offs in favour of simpler strestfor inference efficiency.

Parameter learning is often based on maximising the datfiHdod Pr(x). In discrete
BNs, learning with fully observed data is quite straightfard: Pr(z;|pa(i)) is simply the
ratio of occurrences dfr;, pa(i)) to the occurrences @fu(i) in the training data. In situ-
ations where there are no occurrences of a particular assiginofx;, smoothings often
used to prevent zero probability from propagating to thetjprobability in Equation 2.20.
For example, in Laplace smoothing, if a particular assigmneé¢ =; does not occur, we
assume that it occurs at least once.

However, it is often the case that the data has missing Waga®ne of the most successful
methods in this case is the Expectation-Maximisation (EMpathm (Dempsteeet al.,
1977), which we will study in the next subsection.
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2.3.2 EM Algorithm

Denote byr = (9, h), wherev is the subset of visible variables, ahthe hidden. The EM
attempts to maximise the data log-likeliholod Pr(v|w)

w = arg max log Pr(J|w) = arg max logz Pr(d, h|w) (2.21)
h

wherew is the model parameters. In Bayesian Netwawkis the set of all local conditional
distribution {Pr(x;|pa(i))}¥,. The summation inside the log function couples the two
variables) andh. To decouple them, applying the Jensen’s inequality to tmeave log
function, we have

L(w)=log) Pr(v,hlw) > ZQ(h)log% (2.22)
h h
— Eg[log Pr(d, h|w)] + H[Q] (2.23)

for any proper distributior)(). A nice property of the lower-bound here is that the
gap betweenC(w) and its lower-bound is closed by settiggh) = Pr(h|J; w). Since
log Pr(d, h|w) is typically decomposable into the sum of simpler composiethie lower-
bound nicely decouples variables. L&t = Eg[log Pr(J, h|w)], since H[(Q)] does not
depend onw, maximising the lower-bound with respectwois equivalent to maximising
Q. This suggests an iterative procedure which loops throwglsteps until convergence:

e E-step compute(h) = Pr(h|d; w')

e M-step: optimise the parameter'™ = arg max,, Eg[log Pr(d, h|w)]

Essentially, thevl-step increases the lower-bound, and taestep closes the gap between
the true log-likelihood and the lower-bound. The overaiéef is that the log-likelihood
monotonically increases until it reaches a local maximum.

2.4 Undirected Graphical Models

This section reviews undirected graphical models, incigdfiarkov Random Field (MRF)
(e.g. see Lauritzen (1996)) and its generalisation calxddf Graph (Kschischargg al.,
2001). Although specific forms of MRFs have been used for g tone, such as the Ising
model in physics (e.g. see (Baxter, 1982)), the view of MR¥a part of graphical models
is fairly recent.
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2.4.1 Model Representation

As a graphical model, a Markov Random Field specifies a jasgttibutionPr(x) over the
undirected graplly. MRFs are essentially more general than Bayesian Netwaorkisel
sense that every Bayesian Network can be converted into albyRFEst connecting all the
parents of each variable and then dropping the arrows ofdges(Figure 2.2).

Conditional independence is ensured by a property thaali@sz; andx; are condition-
ally independent of each other if we know values of a subsetdfbles that block any
paths from node to nodej. A useful set of blocking nodes is the Markov blanket, which
contains all neighbours of a node. Once the Markov blankebdg: is known, we can be
sure thatr; is independent of the rest of the nodes.

This condition is often known allarkov property and is enforced by the Hammersley-
Clifford theorem (Lauritzen, 1996), which states that tbkofving factorisation must hold

Pr(z) = —=®(x)

= ST @29

wherez, is themaximal cliquedefined by the structure &, andZ = > T[] v¥(z.) is
the normalisation constant (also known as the partitiorction). A maximal clique is a
completely connected subgraph (e.g. the subsgl, 3,4} in Figure 2.2b). The positive
clique functiomy(z.) is often referred to agotentialor compatibility function

In practice, we may not use this strict factorisation beeatismay not be natural to visu-
alise, but we further factorise clique potentials into prets of smaller sub-potentials. For
example, in image modelling we often use the pairwise argletion potentials, which are
defined over edges and nodes, respectively. In this caséstiieation is given as

Pr(e) = o [T 6utw) [T vuleiy) (2.25)

IS (i,5)e€

In the context of physical systems, the potentiglz.) in Equation 2.24 is often written in
terms ofenergyFE.(z.) as

Ye(z,) = exp(—%Ec(xc)) (2.26)

where/ is a positive quantity commonly referred to as system teatpeg. The tempera-
ture 5 does not have physical meaning outside physical scienddasibisometimes used

“Traditionally, the computer vision community uses the daing form Pr(z,z) =
Pr(z) [];cy Pr(z:|z;), wherez is generated by, or z is considered as a noisy versioniof
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for algorithm control purposes, especially in simulatedeading (Kirkpatricket al., 1983;
Hofmann and Buhmann, 1997). In this thesis we(set 1 for simplicity and this should
not change the nature of data modelling.

Let E(x) = >, E.(z.) be system energy. A quantity that plays an important role in
stochastic evolution of physical systems is Helmholtz free-energfor just free-energy)

F = EE|-H
= Y Pr(@)E( +ZP1~ ) log Pr(x) (2.27)
~ logZ (2.28)

The last equation is obtained by substituting Equation 2ari&d Equation 2.26 into Equa-
tion 2.27. There is a common tendency to decrease the frergpeto reach equilibrium
of a physical system. Clearly, if we know that the energy & $iystem has been mea-
sured (viaE[E]), minimising the free-energy is equivalent to maximising the entropy
H, and this matches the principle of Maximum Entropy desctilbeSection 2.2. Inter-
estingly, it has been shown in (Yedidé al., 2005) that minimising an approximation of
F known as Bethe free-energy is equivalent to passing messadearl’s famous belief
propagation (Pearl, 1988).

2.4.2 Inference

The heart of any graphical models is obviously the inferezrogine. Let us consider the
general case where the joint state variableas a subset of visible (or observed) variables
v, and a subset of hidden (or missing, latent) variahlése. z = (¢, h). In this section we
outline most common quantities needed to be computed awud tha algorithmic details
for later sections.

2.4.2.1 Inference involved in learning

Let us take a closer look at the computation of data log-likeld log Pr(9). Under the
MRF setting there are two general strategies to maximig§zne is the EM scheme outlined
in Section 2.3.2 and the other is the direct optimisatiorraggh.

The EM approach.
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Recall that in EM we are concerned with the following quantit

Q = EgllogPr(v,h)] (2.29)
= Egllog®(¥, h)] —log Z (2.30)
= Y Equjo)log ve(Ve, he)] — log Z (2.31)

In Equation 2.31 we have appli@v, h) = [], ¥.(Y., h.). In theM-step, we maximise
the functionQ, and often need to compute the gradient

VQ = Z EQ(hCW) [v 1Og wc('ﬁca hc)] -V 1Og Z (232)

The following proposition shows hoyW log 7} is computed.

Proposition 1. Under the factorisation of Equation 2.24, the following disl

Vg Z =Y  Epie,)[V1og the(z.)] (2.33)

Proof: Recall thatZ = ) ®(x), we have

Viog Z = % ;V(I)(x) (2.34)

Since®(z) = [[.¢.(z.), we havelog ®(x) = > _logv.(x.), and

Viog b(z) — ﬁw(z):Zwong(%), leadingto  (2.35)
Vo(z) = ®(z) ) Viegi(z.) (2.36)

Finally, we prove the Proposition 1 using

ViegZ =Y Pr(z) Y Viogt(z.) =Y > Pr(z,)Vlog () (2.37)

c  xc

The direct optimisation approach.
Unlike the EM, we do not need to compute the auxiliary funtt{®, but proceed to the
log-likelihood directly

L = logPr(¥) =log» Pr(i),h) =log (% > o, h)) (2.38)
h h
= logZ(0¥) —log Z (2.39)
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whereZ () = >, ®(¥,h). Note that once the observatiohis made, the set of free
variables of the system is reduceditoand the distribution becomes:
Pr(4, h) 1

Pr(h|9) = AT Zw)cp(ﬁ, h) (2.40)

and thusZ(v) is a new patrtition function of the reduced system. We can ineathat there
is an evolution from the full system to the reduced systemtduke act of observation of
9. The change in free-energy during the evolution is then

AF = Freduced - ffull
= —logZ(¥) +logZ
- (2.41)

Thus,maximum likelihood learning is equivalent to finding the imwim of change in the
system free-energy

In seeking for the maximiser of the log-likelihood we ofteangpute the gradient
VL =VlogZ(¥) — Vg Z (2.42)

Recall thatZ(¥) is the partition function of the reduced system with fredalalesh and
distributionPr(h|), Proposition 1 can be applied as follows

Vg Z(9) = > Epsgun)[V1og the(Ve, he)] (2.43)
ceC(h)

whereC'(h) is the set of clique indices in the hidden part of the gréph

In summary, in EM-based and direct optimisation learningweed to compute the follow-
ing quantities:

e The ‘full’ partition function Z, and the ‘reduced’ partition functiofi(+),

e The local clique marginalBr(z.) andPr(h.|?).

These inference tasks are only tractable if the structutheographg is a chain or a tree.

There exists an efficient message passing over trees knoReaaks belief propagation

(BP) (Pearl, 1988), which require only two passes througleddges (e.g. see (Willsky,

2002; Pearl, 1988)). For general structures, approximataye needed. We will cover
exact inference on chains in Sections 2.4.3, 2.4.4 and,addbapproximate inference on
other structures in Section 2.4.6.
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2.4.2.2 Inference in pattern prediction

Prediction in MRFs is usually to find the most probable vdaassignment

T = argmaxPr(x) (2.44)
= argmaxlog ®(z) (2.45)
= argmin Z E.(x.) (2.46)

This is essentially a combinatorial discrete optimisapawblem. Typical computer vision
problems such as image restoration (Geman and Geman, 1884jexeo-matching (Sun
et al,, 2003), are often recast into the energy-minimisation foflequation 2.46.

Like partition function estimation, the prediction proiviés generally intractable to solve
exactly. Efficient approximations to date include the itedaconditional mode (ICM) (Be-

sag, 1986), Pearl's loopy max-product algorithm (Pear88%nd variants (Wainwright

et al,, 2005a), and the more recent Graph-Cuts (Boydioal., 2001). Less efficient meth-
ods but with theoretical guarantee of convergence can bedfouthe sampling literature,

especially the Simulated Annealing method (Kirkpatrtkal., 1983; Geman and Geman,
1984). The ICM, max-product, and graph-cuts are covere@ati& 2.4.7.

2.4.3 First-order Markov Chains

L L LD
o
() (b)

Figure 2.3: Undirected Markov chains: first-order (a) ancbsel-order (b). Filled circles
denote observed symbad|s;}Z_, and empty circles denote state variabjes}” ;.

Markov chains, depicted in Figure 2.3, also known as Boltamzhains (Saul and Jordan,
1995), are the most widely used structure. Our model wilbive observable$z;}~ | as-
sociated with corresponding state variables}”_; but we assume that will be absorbed
into appropriate local potentials involving.

This subsection presents inference in first-order chaiigsi(E 2.3a). Extension to second-
order chains (Figure 2.3b) amdh-order in general will be covered in the next subsection.

For the chain structure, assuming singleton and pairwisa [mtentials, the joint potential
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is given as

o(o) = | TT ote0]| TT vles.a0) (2.47)

whereT is the sequence length.

For first-order Markov chains, inference can be made usiadottward-backwardproce-
dure.

The forward variable

First, let us define théorward variablea, (z;) as

=>_ 11 [ P(zi1)d xz—lsz—)] (2.48)

T1:4—1 1€[2,1)

To derive a recursive relation, let us rewrite Equation 248

alz) = Y o@)b@,z) > ][] [ Ti1) xl_l,xi)}

Tt—1 T1:t— 2z€2t 1
= Z¢(xt—l xt—laxt)at—l(xt—l) (2-49)

Leta,(x;) = 1forall z; € S;, we can compute all the quantitiés, (=)}, in O(T|S|?)
time, where|S| = max, |S;|. This provides an efficient way to compute the partition
function

= Y agr(ar)d(ar) (2.50)

Since the recursion often accumulates the numerical s€#fe dorward variables, it may
happen that for largé’, we will face either thainder-flowor the over-flowproblem. The
first case often occurs in directed graphical models suchMilIsibecause the potentials
are always less than unity. The second case is coupled vathrttiirected graphical mod-
els, because it is hard to upper-bound the potential funstiwhich are usually learnt from
data. To avoid this difficulty let us provide some scaling hmdsm. Equation 2.49 can be

5See (Rabiner, 1989) for details in HMMs.
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rewritten as

Oét(xt) = Ra,t Z ¢($t—1)¢($t—1, xt)at—l(xt—l) (2-51)
Tt—1
wherex,; > 0. Typically we uses, ; as a normalisation constant to prevent the numerical
values ofo;(z;) from becoming too small or too large. It is not difficult to gbat, after
scaling at each time steépthe partition function must be corrected as follows

Z = [ H fimt} ZQT(xT)gb(xT) (2.52)
te[1,T] T
Often, we want to work in the log-space instead
log Z = Z log kgt + log Z ar(zr)o(zr) (2.53)
te(1,T] TT

The backward variable

In our undirected Markov chains, it is symmetric to defiraekwardvariables in a similar
manner as Equation 2.48

i) = X IT [otepvte v (2.5
o417 JE[I+1,T)

which, with appropriate scaling terms ,;, also has the recursive relation

ﬁt(%):ﬁﬁ,t Z ﬁt+1($t+1)¢($t+1)¢($t,$t+1) (2.55)

Ti11€S841

Let By (zr) = 1 Vor € Sr. The log-partition function can also be computed as

logZ = Y logrg,+log ) Bi(z1)p(x1) (2.56)

t=€[1,T] z1

Of course, the main point is not just the separate forwardoaottward variables but the
relationship between them and how they are used in othereimée tasks. For example,
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we are often interested in the local marginals

Pr(z;) = ZPr(x)

x\x¢
x Z(I)(x) (2.57)
x\x¢
= Z O(z1.7) (2.58)
— Zw) (2.59)

whereZ(z;) = >
have

®(x). By rearranging the factors in the RHS of Equation 2.47, we

z\x¢

D(r) = [ 11 ¢<xi_1>w<xi_1,xi>}¢<xt>{ 11 ¢<xj>w<xj_1,:cj>}
i€[2,t] JE[t+1,T]
thenZ(x;) can be written as

Zw) - (Z 1 ¢<xi1>w<xu,xi>}) Blar)

1€]2,t]

y (Z Legﬂwxnwmxn])

o< () Be(e)p(e) (2.60)

In other words, we have

Pr(z) = () Be(2e) () (2.61)
wherex, are appropriate normalisation constants to en3grePr(z;) = 1.

A similar trick can be applied to derive the joint marginativen the forward and back-
ward variables, we compute the singleton and pair margasafsllows

Pr(x, xi11) = Kep10e() Be(Te11) 0(20) d(0041)00 (24, Tig1) (2.62)

wherer, ., are appropriate normalisation constants to en3gre)
1.

Tig1 Pf(xt, $t+1) =
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MAP assignment and Viterbi decoding

Viterbi decoding (Rabiner, 1989) is well-known in the HMMeliature, and it is equally
applicable for the undirected Markov chain. It is a two-gbepcedure:

e In the first step, we run a maximisation version of the forwaft*(z,), in that all
the summarisations in Equation 2.49 are replaced by caynepg maximisations,
keeping the local maximal states ilbaokkeepei”

(o) = max oo )bles, ) ) (2.69)
Yi(z;) = arg%iﬂl’( [gb(xt_l)@b(xt_l,xt)aﬁaf(xt_l)} (2.64)

e In the second step, we needlacktrackto decode the bestate sequencer;)’,,
not just local maximal state.

Tp = argmax [a?ax(xT)gb(xT)] (2.65)
':%t = ﬁ+1(it+1),f0rt:T— 1,T—2,...,1 (266)

The algorithm take®(T'|S|?) time.

There is also an alternative, known @mx-product algorithnof Pearl, where we make
use of both the forward and backward variables in a maximisananner (e.g. as in
Equation 2.63) Substituting the new forward and backwaihtjties into Equation 2.61,
we obtainz by finding the maximiser of the local marginals

T, = arg max Pr(z;) (2.67)

2.4.3.1 HMMs as special cases

SOWP

Figure 2.4: Hidden Markov models.

The Hidden Markov Model (Figure 2.4) is a constrained cagbefirst-order chain, where
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we define the potentials as

¢(x1) = m(x1) Pr(zi|z1) where > Pr(zifz1) =1, 7(z) =1

21 1

d(z) = Pr(zla), for Y Pr(zle) =1t € [2,7]

2t

V(xq,x¢) = Pr(zzi_q), WhereZPr(xt|xt_1) =1,t€[2,T]

Tt

Under these constraints the forward and backward varidt@les nice probabilistic inter-
pretation. From Equation 2.48, we have

a(zy) = Z m(xy) H {Pr(zi_ﬂxi_l)Pr(xi|xi_1)

Ti:¢—1 1€(2,t]

= Z Pf($1:t|2’1:t—1)

T1:t—1

= Pr(xtv Zl:t—l) (2.68)

Similarly, from Equation 2.54

Bi(xe) = Z H lPr zjlzy) Pr(z;|z;—1)

ZTey1:7 JE[E+1,T)

= Z PT xt+1:T7Zt+1:T|~Tt) (2-69)

Tt4+1:T
= Pr<Zt+1:T‘xt) (2.70)

This interpretation is, unfortunately, not present in theitected counterparts.

The data likelihood arises nicely

Pr(Z12T> = ZPI(Z12T7xt)

= Z Pr(z14-1, 2¢) Pr(zir|a:) Pr(z|e,)

Tt

= Z (1) B (1) Pr(z|z) (2.71)

2.4.4 Second-order Markov Chains

The second-order Markov chains can be converted into theaqot first-order at the cost
of concatenated state space. With a slight abuse of notat@oted by (x; o, z; 1, ;)

the second-order potentials. The conversion is carriethpjdining two successive nodes
x;—1 andz; into a composite-nodg, ; = (z,_1,x;). Let the composite-node poten-
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tial be ¢(y;—1) = é(x-1) (-1, ;) and the composite-edge potential bey, 1, y;) =
W(x_1, 24, 111). Given these potentials it can be seen that we now have a retvoffder
Markov chain with the combined state space:

Yi—1 € St—l X St (272)

The naive implementation of this Markov chain tak&g7 —1)|.S]*) time in this combined
state space. However, by paying attention to the fact tleatwlo composite-states_; =
(r4_1,2¢) andy, = (x4, r,11) Sharer,, we can implement the forward-backward procedure
in O((T — 1)|S]?) time using

ozt(yt) = Rait Z Ozt_1(yt—1)<b(yt_1)¢(yt_1,yt)

Tt—1€St-1

Bi(yr) = kg Z Br1(Ye+1) A(Ye1) Y (Y1, Y1)

Tt4+2€St4+2

and the joint marginals are computed as

Pr(y:) = keou(ye)Bi(ye)d(ye)
Pr(ye, yiv1) = Fror10e(ye) Be(Yer1) 0 (We) O(Yer 1)V (Yes Y1)

A similar strategy of state space concatenation can beexpfainth-order Markov chains,
ie. vy, = (x4, Tye1, ..., Ten_1). 1IN general, the overall complexity will b@((T" — n +
DS+

2.45 Tree Models

Figure 2.5: The two-pass procedure: the upward pass (a)@maveard pass (b).

Now we generalise the chains to trees, which are the mostleanspructures known to
be efficient. They have important properties that aid amalgad inference. The joint
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distribution can be defined in terms of local marginals as

Pr(z) = _Prlwi,z;) HPr ) (2.73)

12 Pr(z;) Pr(x;)
(i,9)€€

The log-partition can be computed as follows

PZ s PZ ¢
log Z = — Z ZPrmZ,ajJ ) log ———= rj Tir T3) +Z i—1 Z:PrZ (z;) log r(( )) (2.74)

ws Q: xXq
(Zj ngz Z; Zj v ‘7 i€V

wherew;;(z;, z;) = ¢i(x;)p;(x;)vi;(z;, x;) andn, is the number of neighbours of node

Inference in trees is efficiently carried out by Peal&lief propagationBP), which is
also known as theum-productlgorithm. It is a generalisation of the forward-backward
procedure described in Section 2.4.3. First we pick onequéatr node as the root. Since
the graph has no loops there is a single path from a node tothry wodes in the graph,
and each node, except for the root, has exactly one parerd.foftvard and backward
passes are replaced by tingvardanddownwardpasses:

¢ Inthe upward pass, messages are first initiated at the leavésre setto 1. Then all
messages are sent upward and updated as messages congeogimgnon parents
along the paths from leaves to the root. The pass stops white ahessages reach
the root.

¢ In the downward pass, messages are combined and re-distridownward from
the root back to the leaves. The messages are then termatdtezlleaves.

(@) (b) (c)

Figure 2.6: Message update (a), node marginal (b) and jaangimal (c).

In general, the message sent from ngde node: in the tree is computed as follows

pii(w) = ki b)) [ meeilay) (2.75)

keN (5),k#i

where N (j) is the set of neighbours of nodeand«;; > 0 is some constant. We can
compute the log-partition function as soon as the upward pas reached the root noce

log Z = Zlog/{ﬂjtlogz:gbr () H i () (2.76)

JEN(r)
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Once the messages are terminated, the marginals and jaiginala can be computed as

Pl"(xi) = /fi¢i($i) H ,uk—w‘(xi) (2.77)

keN (i)

Pr(zi,z;) = mgwylenz) | [ meila) T itz | 2.78)
IEN (i) 1] KEN () kst

The max-product algorithm

Computing the most probable state= argmax, Pr(xz) can be done using the max-
product algorithmf. This is essentially the sum-product algorithm where a8l $um-
mations are replaced by maximisations.

Once the messages are computed we can estimbatefinding the maximiser of the local
marginalPr(z;) in Equation 2.77.

2.4.6 Approximate Inference

Popular methods can be broadly classified into two groupspbag and message passing.

Samplingis a rich literature in physics and statistics, especialtger the headline of
Markov Chain Monte Carlo (MCMC). The idea is to draw enougmgkes from the distri-
bution so that the distribution is approximated by the safglguency. The main problem
is that since the state space is often very huge, direct sagnglnot computationally ap-
plicable. The MCMC methods solve this problem by allowingpéing in a smaller space.
See (Metropoligt al, 1953; Hastings, 1970; Kirkpatriost al, 1983) for early develop-
ment and application of Metropolis-Hasting method, (N28B3; MacKay, 1996; Andrieu
et al,, 2003) for MCMC introduction and survey, and (Green, 199%)f recent important
extension. A nice property of sampling is that it can asyrigatly converge to the true
distribution. In practice, however, it is known to be verpwlfor many problems. For
further implementation issues, see (MacKay, 2003).

Message passing another important class of approximation methods becatigs
lightweight and distributed fashion (e.g. see (Minka, 200fr a unified view). Loopy
belief propagation (McEliece and Cheng, 1998; Murghwl.,, 1999; Yedidizet al., 2005)

is a particularly important practical method that deseevesparate subsection below. An
interesting variant is based on minimising the upper-booithe log-partition function
(Wainwrightet al., 2005b).

5The max-product is often known as belief propagation in thagputer vision community.
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Another subset of message passing methods, which attractsmacent attention, falls un-
der the root ofvariational methodge.g. see (Jordaet al., 1999; Wainwright and Jordan,
2003)). The main idea is to approximate a complex networkdmgessimpler networks
(e.g. by removing some edges) and to optimise the differbeteeen the true and the
approximation. Depending on the divergence measure, weolttayn the mean-field type
(e.g see (Sautt al,, 1996; Wiegerinck, 2000; Kappen and Wiegerinck, 2001)her eéx-
pectation propagation type (Minka, 2001a).

2.4.6.1 Gibbs Sampling

Of MCMC methods, Gibbs sampling is popular in the MRF contespecially after the
seminal work of Geman and Geman (1984). The idea is, instéadmpling the joint
distributionPr(x), we cyclically sample the local conditional distributid@®pecifically, for
networks with pairwise clique potentials as in Equatiorb2\®e draw the local values as
follows

T~ Pr(z|N(2))

JEN (i)

whereN (i) is the set of neighbours of nodeThis local sampling is easy to perform since
it involves onlyz; € S; and a fixed set of neighbourhood assignmegifit). After a value
is sampledy; is assigned to that value and another node is sampled.

2.4.6.2 Loopy Belief Propagation

Loopy BP is the standard BP applied to networks with cycleterestingly, physicists have
faced similar problems in analysing physical systems sadkiag models. They have pro-
posed the use of Bethe free-energy as an approximation toeutaélelmholtz free-energy
(see Equation 2.27). Bethe free-energy, like standardsBily applicable to systems with
singly connected networks. An important recent discoveryédidiaet al. (2005) is that
minimising the approximate Bethe free-energy with respeltical marginals is equivalent
to seeking stationary points of the loopy BP. Recall from &apn 2.28 thatF = — log 7,
minimising the free-energy is equivalent to maximising kbg-partition function, which
is given in Equation 2.74.

The message passing scheme in loopy BP is similar to thatideddn Section 2.4.5.

However, as the network is loopy, there are no roots and mibefireed sending directions.
Rather, messages are initiated from all nodes, and are rsa@fitdirections. Because of
the cycles present in the network, messages may come bal&itsburces and create a
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non-converging loop. Indeed, there is no guarantee of cgawee or quality of approx-
imation. Since the method is applied with the assumptiohtti@network is cycle-free,
we can only hope that it will work in networks with large cysleecause large cycles will
damp the messages enough so that they ‘forget’ about then®rigon the other hand,
densely connected networks will have very small loops, dnd tve may not expect a
good performance. In addition, loopy BP is known to fail whiea interaction (or edge)
potentials);; (z;, z;) are significantly stronger than the data (or node) potential). The
commonly known phenomenon is the oscillation of the messagether qualities such as
the Bethe free energy.

In practice, the BP is often declared converged if the ndathange in messages or related
quantities like Bethe free energy is small enough, Kay — 10~° for example. There are
two main mechanisms to control the convergence: the mesgatgde schedule and damp-
ing. Update schedules can be either synchronous or asymaso In the synchronous
schedule, messages are updated at the same time, and igrnicarasnous schedule, mes-
sages are updated one by one. Typically, the asynchronalstaiponverges (if it does)
much faster than the synchronous counterpart since intowmbaetween nodes is propa-
gated quicker. There are also several specific schedulensshinat claim to improve the
convergence rate (Wainwriglet al., 2003a; Elidaret al., 2006; Sutton and McCallum,
2007a; Casadet al., 2007).

Damping is used to reduce the update step size in messagesfetimes, beliefs). Addi-
tive damping has the following form

Pt () — (L= d)pltl () + dpl () (2.80)

whered € (0, 1] is the damping factor, and the supersctipienotes the iteration. Multi-
plicative damping is also occasionally used

1—-d d
Mﬁili(xz') - (Mﬁfi(xz’)) (Mﬁ-_n-(xz')) (2.81)
Typically, setting a large value afyields better convergence quality, but slower rates.

The message passing scheme requites£||.S|) memory to store all the messages, where
|€] is number of edges in the gragh The memory will be very demanding for large
images (such as those with heighit = 1000 and widthW = 1000, |S| = 256; and

|E| =~ 2HW).

Despite the lack of guiding theory, empirical evidence haggested that loopy BP still
works well in a wide range of problems (Murplky al., 1999; Yedidiaet al.,, 2005). It re-

mains one of the most widely used approximate techniquesjphgcal model applications.
Research in improving BP and characterising its convergénan active area (McEliece
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and Cheng, 1998; Yedidet al, 2005; Welling and Teh, 2001; Weiss and Freeman, 2001a;
Wiegerinck and Heskes, 2003; Yuille, 2002; Wainwrigttal., 2003a,b; Wainwright and
Jordan, 2003; Dechter and Mateescu, 2003; Heskes, 2004ij &tab Kappen, 2005a,b;
Ihler et al,, 2005).

2.4.6.3 Variational Methods

In this subsection we deal with structured variational agpnation, in that the whole
network is partitioned into a number of independent subvaeks (see Figure 2.7). The
partitioning effectively removes edges connecting sutwvaeks. When each sub-network
is a single node, the method reduces to the well-known metah-fi

Figure 2.7: Partitioning intractable networks into tradéasub-networks. Dashed lines
indicate boundaries between sub-networks.

The main assumption is that the approximate distribu@dm) of Pr(x) is factorised as
follows

Qz) =[] Qalwa) (2.82)

whereq is the index of the sub-networks.

SinceQ(z) is an approximation to thBr(z), the natural goal is to minimise the distance
between the two distributions. In the variational appraienKullback-Leibler divergence
IS minimised

Q = argrrgnKL(QHPr) (2.83)

. Q(x)
= arg ngn Zx: Q(x)log Pr () (2.84)

subject to the constraints in Equation 2.82.

Let z. . 3 be the sub-set of clique variables at the boundary betweesuh-networksy
andg, i.e. c € an 3. These cliques are split when partitioning, and, belongs to the
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sub-networky, z. g belongs tg3. Denote the message sent fronto o with respect to the
cliquec as

[13—a(Tea) = €xp Z Qe,5(2e,5) 108 Yea,6(Te,0,8) (2.85)

Le,p

Then the distribution of the sub-netwatkis given as

Qa(Ta) X Py (14) H H Mﬁ—»a(xc@) (2.86)

BEN (o) c€anp

whereN () is the set of neighbour sub-networks of the sub-netwodnd®,,(z,) is the
product of local clique potentials belonging the to subamek «.. That is, the distribution
of a sub-network in the variational method is proportiometite potential of its variables,
and all of the messages coming from its neighbourhood. Bheiy similar to the case
of Belief Propagation (as in Equation 2.77). The only défece is how the messages are
computed.

Note that we have assumed each sub-netwotio be tractable, in tha€).,(z..) =

> ra\e. @a(za) can be evaluated efficiently. Thus Equations 2.85 and 2.86ige are-
cursiverelationship between the distributions of sub-networksgioally we do not know
any distributions for sure, we need to iteratively run thessage updating (Equation 2.85)
and distribution revision (Equation 2.86), and hope it widhverge.

The derivation details of Equations 2.85 and 2.86 are gimeXppendix A.1.

Remark: One of the main problems of variational methods is that @sdnot handle well
the case with zero potentials. Zero potentials mean cedaifigurations of the local
cliques are prohibited, or equivalently, have zero praligbilf such cliques are broken
due to network partitioning, then the resulting approxioratwill be inconsistent. This
issue does not seem not to have adequate treatment in tlauite Another problem is
that if the interaction between nodes at the removed edgssadng, then the resulting
approximation will be poor because discriminative infotima s lost.
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2.4.7 Approximate Prediction
2.4.7.1 Iterated Conditional Mode

The ICM (Besag, 1986) is a fast local method that performedyesearch. The idea is
quite simple, in that we iteratively find the local optima bétconditional distribution:

#; — arg max Pr(z;|N (7)) (2.87)
;€95
The process is repeated for all nodes in the network unti@gence. The main drawback
of this method is that it is sensitive to initialisation andyrbe trapped in poor local optima.

2.4.7.2 Loopy Max-Product Algorithms

The loopy max-product algorithm is the Pearl’s max-prodaigorithm applied for the
loopy networks. Messages are sent in all directions aloiggednd updated at each step
as

) e ooty T acse) 2.99)

keN (5),k#i

The maximal beliefs are computed using the same equatianaguation 2.77. As with
message passing algorithms on general graphs, the loopyproduct is not guaranteed
to converge, especially in MRFs with strong interactionmzen nodes, and it requires
significant memory to store all messages for large modelstufately, the max-product
often finds good solutions that are close to the optimum iotpra.

There has been a strong interest in loopy max-product afgosi due to its wide applica-
bility in many areas. Beside issues of convergence andtgualisolution found by the
loopy max-product, we need to take care of large state spaspscially in computer vi-
sion. Work in theoretical characterisation and improvenmesiudes (Weiss and Freeman,
2001b; Yanover and Weiss, 2003; Kolmogorov, 2005; Wainktrgg al., 2005a; Meltzer
et al, 2005; Kolmogorov and Wainwright, 2005; Felzenszwalb andtéhlocher, 2006;
Kolmogorov, 2006; Coughlan and Shen, 2006; Leordeanu ateitie2006; Ravikumar
and Lafferty, 2006; Yanoveet al, 2006; Johnsoret al, 2007; Sanghavi, 2007; Gupta
et al, 2007; Duchiet al,, 2007).
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2.4.7.3 Graph-Cuts

Graph-Cuts have been shown to be very successful on celéaises of vision problems
(Boykov et al,, 2001; Szelisket al,, 2006). They are, nevertheless, designed with specific
cost functions in mind (i.emetricandsemi-metrig, and therefore inapplicable for generic
cost functions such as those resulting from learning.

2.4.8 Factor Graphs

()

Figure 2.8: Examples of Factor Graph (a), which is a gersatiin of the Bayesian
Network in Figure 2.2a by grouping local conditional distriion in factor nodes (filled
squares). Messages passing from node to factor (b) and faatode (c).

Factor Graphs (Kschischamgal., 2001; Yedidieet al., 2005) introduce a new way to rep-
resent MRFs in that both the variables, the potential fensti(called ‘factors’) and their
connections are jointly represented. There are no direutections between nodes of the
same type. Figure 2.8a shows a factor graph, which is cawémm the Bayesian Net-
work in Figure 2.2a. Sometimes it is meaningful to have adiacbde to encode a particular
feature, and thus a variable node can have multiple factdesiassociated with it. As ex-
pected, the joint distribution of the variables is definethia same way as Equation 2.24,
but now.(z.) is a function associated with the factathat connects node variablesip

As factor graphs are just an alternative (but more exprepsiay of representing MRFs,

the Markov property is also preserved. The Markov blanket @édiriable node consists of
all variable nodes that share some factor nodes with it. I8thpiinference in factor graphs

can also be carried out using Pearl’s belief propagatioe. sStim-product algorithm works

as follows. Since there are only direct connections betweeiable nodes and factor
nodes, messages are sent from variable nodes to its assbi@eators, and vice versa. The
message sent from a nodlo a factore (Figure 2.8b) is updated as

/~Li—>c(~75i> = H Uc/-n’(%’) (2.89)

eC(i),c#c

where(C'(i) is the set of all neighbour factors associated with nod&nd the messages
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sent from a factor to a nodei (Figure 2.8c) is updated as

Me—i(i) = ) (%(%) 11 Mjec(xj)) (2.90)

zc\Ti jlzj€xe,j#i

Finally, the local beliefs (approximate marginals) are poibed as

b(ze) o the(ze) H tj—e(T;) (2.91)
jlzjexe
b(a:) = Y blx) (2.92)
z\z;

A recent extension of factor graphs is introduced in (Fré3) as a unification of directed
and undirected graphical models.

2.5 Probabilistic Hierarchical modelling

Modelling hierarchical aspects in complex dynamic proesss an important research
issue in many application domains ranging from computeiomistext information ex-
traction, computational linguistics to biological comatibn. For example, in a syntactic
parsing task known as noun-phrase chunking, noun-phraits @nd part-of-speech tags
(POS) are two layers of semantics associated with wordseiséimtence. Previous meth-
ods first tag the POS and then feeds these tags as input touhkerh The POS tagger
takes no information from the NPs. This layered approacteler, may not be optimal,
as a noun-phrase is often very informative to infer the P@S kelonging to the phrase.
In addition, it suffers from the so-callezhscading erroproblem (e.g. see (Finket al.,
2006)), as the error introduced from the lower layer willpaigate to higher tasks. Thus,
it is more desirable tgintly model and infer both the NPs and the POS tags at the same
time (e.g. see (Suttoet al, 2007)).

Many models have been proposed to address this challengehfoh solutions can be
largely categorised as either graphical models extendiadlat hidden Markov models
(HMM) (e.qg., the layered HMM (Oliveet al,, 2004), the abstract HMM (Bt al., 2002),
hierarchical HMM (HHMM) (Fineet al,, 1998; Buiet al., 2004), DBN (Murphy, 2002))
or grammar-based models (e.g., PCFG (Pereira and Sch&92)).1These models are all
generative

Recent development in discriminative, hierarchical strcgs include extension of the flat
CRFs (e.g. dynamic CRFs (DCRF) (Suttehal. 2007), hierarchical CRFs (Liaet al,,
2007; Kumar and Hebert, 2005)) and conditional learningpefgrammars (e.g. see (Miyao



2.5 Probabilistic Hierarchical modelling 39

and Tsuijii, 2002; Clark and Curran, 2003)). The main probtéithe DCRFs is that they
are not scalable due to inference intractability. The madnaal CRFs, on the other hand,
are tractable but assume fixed tree structures, and therafernot flexible to adapt to
complex data. For example, in the noun-phrase chunkinggmoho prior tree structures
are known. Rather, if such a structure exists, it can onlyibeodered after the model has
been successfully built and learned.

The conditional probabilistic context-free grammar (CH&) appears to address both
tractability and dynamic structure issues. More precjsal-PCFGs it takes cubic time
in sequence length to parse a sentence. However, the cdrgexgrammar does not limit
the depth of semantic hierarchy, thus making it unnecdgsidifiicult to map many hier-
archical problems into its form. Secondly, it lacks a graghimodel representation and
thus does not enjoy the rich set of approximate inferendenigaes available in graphical
models.

2.5.1 Hierarchical Hidden Markov Models

Hierarchical HMMs are generalisations of HMMs (see Secf2oh3.1) in the way that
a state in an HHMM may not emit a single observation symbolastib-sequence of
observations, and a state may be a sub-HHMM. On other wordslHMM is a nested
Markov chain. In the model temporal evolution, when a childrkbv chain terminates, it
returns the control to its parent. Nothing from the termalathild chain is carried forward.
Thus, the parent state abstracts out everything belongiitg Upon receiving the return
control the parent then either transits to a new parentge(gikat the grand parent has not
finished), or terminates.

Figure 2.9 illustrates the state transition diagram of a-svel HHMM. At the top level
there are two parent statéd, B}. The parentd has three children, i.eh(A) = {1,2,3}
andB has four, i.ech(B) = {1, 2, 3,4}. Note that we have assumed that the parents share
some common children, i.eh(A) Nch(B) = {1, 2,3}. This structure sharing follows the
work of (Bui et al,, 2004). At the top level the transitions are betweeand B, as in a
normal directed Markov chain. Under each parent there acetednsitions between child
states, which only depend on the direct parent (either B). There are special ending
states (represented as shaded nodes in Figure 2.9) toydigmifermination of the Markov
chains. At each time step of the child Markov chain, a childl einit an observational
symbol (not shown here).

The temporal evolution of the HHMM can be represented as amymBayesian network,
which was first done in (Murphy and Paskin, 2002). Figure 2léPicts a DBN structure
of 3 levels. The bottom level is often referred topaeduction level Associated with each
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Figure 2.9: The state transition diagram of an HHMM.

state is an ending indicator to signify the termination & #tate. Denote by! ande{ the
state and ending indicator at levelnd timet, respectively. Wher{ = 0, the stater?
continues, i.ez¢ = z{.,. And whene{ = 1, the stater{ transits to a new state, or transits
to itself. There are hierarchical consistency rules thastrbe ensured. Whenever a state
persists (i.ee! = 0), all of the states above it must also persist @&~ 0 for all d’ < d).
Similarly, whenever a state ends (kg = 1), all of the states below it must also end (i.e.
ed =1forall d > d).

Inference and learning in HHMMs follow the Inside-Outsidigagithm of the probabilistic
context-free grammars. Overall, the algorithm BH$S|> D7) time complexity whergS|
is the maximum size of the state space at each |évés, the depth of the model aridis
the model length. This is costly for large

When representing as a DBN, the whole stack of statéscan be collapsed into a ‘mega-
state’ of a big HMM, and therefore inference can be carried®(|S|*”T) time. This
is efficient for a shallow model (i.eD is small), but problematic for a deep model (ife.
is large).
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Figure 2.10: Dynamic Bayesian network representation oiiis.
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2.5.2 Abstract Hidden Markov Models

Like HHMMs, an abstract HMM is a also multi-scale HMM. It isqmosed largely for the
purpose ofplan recognition(Kautz and Allen, 1986), a sub-area of Atrtificial Intelligen
where the goal is to recognise the execution plan of an aggimgain an environment.
There are four main elements in AHMMs: observation symbtakes action and abstract
policy. States are at the bottom level which emit obsermagigmbols just like an ordinary
HMM. The observations typically represent noisy signaks #gent perceives from the
environment. Right above the state level is #otion level representing concrete actions
of the agent that will alter the agent’s states. The actisasaasumed to be generated by
a stack ofabstract policies The policy stack is quite similar to the state stack of HHMMs
above the production level. The main difference is that inV¥s, the policies and their
termination depend on the state at production level. In HHVIn the contrary, the
production states never directly influence the parents.

A DBN representation of the AHMM is given in Figure 2.11. Irdace in the AHMM,
unfortunately, is generally intractable, except for shallnetworks with a small num-
ber of abstract policies. Approximate methods, thereforest be used. In (Buet al,
2002), the authors employ a sampling based method baseceaothbination of Rao-
Blackwellisation (Casella and Robert, 1996) and Sequehtiportance Sampling (e.g.
see (Andrietet al,, 2003)).

Policy ()

Policy
Ending indicator

Policy
Ending indicator

Policy
Ending indicator

Action

NI

State

Observations . . . . .

Figure 2.11: Dynamic Bayesian network representation oViMts.
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2.6 Closing Remarks

This chapter has reviewed background necessary for fudéeglopment of the thesis.
Starting from the general problem of classification withustured output space, we de-
scribed two important elements of statistical machinenlieg: multi-class logistic classi-
fiers and an effective data modelling machinery known astgcapmodels. The former
has a strong connection with the exponential family of dhstions, and thus with the
Maximum Entropy principle. In graphical models, we mainbctis our attention to the
undirected setting, which essentially includes the de@éatounterpart as a special case.
Reviewed details include representation, learning anerémice under different network
structures: then-order Markov chains, the Markov tree, the general netwagkact and
approximate inference, factor graphs, and hierarchicaletso

In the next chapter we narrow down the subject to the maindefuhis thesis - the Con-
ditional Random Field (Laffertyet al., 2001), which is a combination of the multi-class
logistic classifier and undirected graphical models.



Chapter 3
Conditional Random Fields

In this chapter we describe Conditional Random Fields (GRfsfferty et al,, 2001),
which are undirected graphical models for structured dutitRFs define distributions
over structured output variables conditioned on some inpugables. For example, in
applications such as Part-of-Speech (POS) tagging, thmubuériables are a sequence of
POS tags that we want to predict from the input sentence. dg@scene segmentation the
output variables are 2D arrays of scene interpretationefdlwv pixels.

3.1 Model Description

Figure 3.1: A chain-structured CRF. Empty circles denagestariables and filled circle
denotes conditioning variables

Denote by: the input variable and = (z4, xo, ..., z)y) the joint output variable. The input
variablez represents our knowledge about the domain. The outputblariahas some
structure that specifies the interactions between its coewosariablesgz; ). For example,
in sequential modelling problenis,, x», ..., zr) is a chain of lengtfl’, and the interactions
are between pairs of successive varialolesz; . ;) (see Figure 3.1).

We would like to model the mapping fromto x via the conditional distributiof®r(z|z).
Thus we are only interested in the output structure conugtibon the input. The input
distributionPr(z) is left unspecified. Conditional Random Fields approachtbeelling
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of Pr(x|z) by representing: as a Markov random field. More preciselyjs represented
using a graplg = (V,&)* in which each vertex of the graph corresponds to a variable
x;. The joint variabler, when conditioned on, admits the Markov property in that the
conditional distribution of; given its neighbours, defined by the grapldoes not depend
on other variables outside the neighbourhood. This is fdyndafined in Definition 1.

Definition 1. LetG = (V, £) be a graph such that = (x;);cy is indexed by the vertices of
G. Then(z, z) is a conditional random field such that, when conditioned ptine random
variablesz obey the Markov property with respect to the gragh:(x;|z, x;, 7 # i) =
Pr(z;|z, z;,7 € N(i)), whereN (i) is the neighbourhood af;.

The conditional distributioiiPr(x|z) is therefore given as

Pr(al2) = =) = 5 [ vela ) (3.1)

wherec is the index of the cliques specified by the structure of ttalg, x. is the joint
variable associated with the clique.(z., z) is the non-negative potential function de-
fined overc, andZ(z) = > ®(x,2) = >, [, ¢.(z., 2) is the partition function with
respect to the input. The clique potentials specify how local variables intesw how
much the interaction contributes to the global distribattibor example, in the chain struc-
tured CRF, as illustrated in Figure 3.1, a clique is a segroktiite chain that contains two
nodes(z;, z;+1). There is one partition function for each inputo ensure the normali-
sation of the distributioPr(x|z). This is different from standard Markov random fields
(Section 2.4) where there is a single partition functiondibdata cases.

Typically, we parameterise the potential function in anangntial form

Ve(ze, 2) = exp(w ' f(x,, 2)) (3.2)

wherew = (wi,wy,...,wg)' € RE is the parameter vector, afid= (f,, fo, ..., fx) " is
the feature vector. Basically features are functions thavéde prior belief about depen-
dency between the conditioning variabland the output pattern Generally the features
map the input: and the associated clique variahleto some real or binary value. The
parameterqdwy} are the weights of corresponding featyrg.(.)} and thus specify how
features contribute to the global distribution. Note thatlave used the same parameter
vector across clique potentials. This is known as parantgteg.

LIt is worth mentioning that the gragghis not uniquely defined for all data instances. Instead,pedes
on the nature of the each data instance. For example, POBgatte chain of POS tags varies with sentence
length.
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LetF(z,z) = )__f(z., 2), then Equation 3.1 becomes

exp(w ' F(z, 2)) (3.3)

1
P —
(el2) = 75
which is essentially the conditional Maximum Entropy mogele Section 2.2).

Once the conditional distributioRr(x|z) has been estimated, various inference tasks can
be performed. The most important task is to predict the dutmiven the input: using

& = arg max Pr(z|z) = argmaxw' F(z, 2) (3.4)

Other common tasks include computing the log-partitiorcfiom 7 (2) and the marginals
Pr.(z.|z). In general, inference in a CRf, z) (see Definition 1) for each input obser-
vation z and state variable is identical to that in the underlying Markov random field
imposed onz. For this reason, we do not describe the details of inferéatber and
readers are referred to the description in Section 2.4.

3.2 Parameter Estimation

In this section we discuss how to estimatdérom training data. First, we describe the case
of fully observed data in which all the output patterns ailg/fspecified. We are given a
set ofn training instance® = {z(), 2O} . Assume further that these training instances
are independently and identically distributed. Note thet Assumption does not invalidate
the dependenciasithin each output pattern®)

The most popular method is based on the maximum likelihood) (ptinciple, which
selects the parameter that maximises the conditionaltiged.

W = argmax L(D;w); where

L(D;w) = Zlog Pr(z?|z0; w)

- Z{WTF O 20) ~log Z(2")} (3.5)
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Typically, we add a quadratic penalty terto the log-likelihood foregularisatior?

‘k‘l\’)

K
Z {w'F(al —log Z(z Z (3.6)

k=1
where{c2}X_| specify how much the penalty is applied. In general, the Ipgpaevents
the absolute values of parametdita),|} from becoming too large. This method has a
Bayesian interpretation, in that the parameteis treated as a random multivariate Gaus-
sian with meard) and diagonal covariance matrix. LBt(w) o exp(— .1 w?/207) be
the prior distribution, the posterior is computed as

Pr(w|D) o« Pr(w)Pr(D|w)

w) H Pr(z"]20; w) Pr(z®) (3.7)
I=1

Taking the log of both sides and ignoring the terms assatiatigh Pr(z(")), which is
independent ofv, we arrive at the RHS of Equation 3.6. Another less popularaghor
prior is the Laplace distributidni.e. Pr(w) o exp(— Y, Bi|wg|) for 8x > 0. In general,
the Laplace distribution penalises large parameters newersly than the Gaussian, and it
often results in many zero parameters.

What remains is to apply optimisation methods to find the méser of £L(D; w) in Equa-
tion 3.6. An important property of (D; w) is that it is concave, and thus there exists a
unique global maximiser. A popular method is gradient-dasevhich we seek to find the
solution that sets the gradient of the penalised log-litaid to zero. The partial derivative
is computed as

OL(D;w - w
% = Z {Fk(x(l), 20y — ZPI($|Z(1))F,€($72(Z))} _ U_g (3.8)

=1

where E;|.[F}] is the empirical distribution based on training data. Sibte,z) =
> f(xe, 2), we have

OL(D;w
aik Z zc: {fk 20 — ;Pf(%\z(l))fk(xc, z(l))} — j—g (3.10)

Thus, the computation boils down to computing clique malgiir(x.|z). This has been

2This term is commonly called norm-regularisation.

SRegularisation is necessary fitlkposed estimation problem in that a small deviation in the objeztiv
function cause large deviation in the solution.

4This prior has several other names, for example, narnegularisation and Lasso (Tibshirani, 1996) in
the context of regression. This method has been widely wessshtly to achieve sparsity.
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described in Section 2.4.

Since setting this gradient to zero does not result in angeddorm solution, we typically
resort to iterative methods. Since most applications of £&#€ large-scale, pure Newton
methods that require computing the second order derivatia®ix is impractical. Bet-
ter choices include the Conjugate Gradients (Hestenes @eiglS1952) and the limited
memory quasi-Newton method called L-BFGS (Liu and Noceti289; Byrdet al., 1994).
These two methods are efficient and require only a few gradieaiuations in each round.
Indeed, the L-BFGS has been the method of choice since thie efdSha and Pereira,
2003).

The extension to missing labels is quite straightforwaret a") = (9©, h¥) wherey®
is the subset of visible patterns ah@ the hidden. The full likelihood in Equation 3.5 is
now replaced by the incomplete likelihood

'Cincom(D; W) = Z log Pr(ﬂ(l) |Z(l)7 W)

= Z log Z Pr(9®, b2 w)

=1 h()
= Z {log Z (0" —log Z(2")} (3.11)
whereZ (90, 20) =3, ) @9V, A 2). The gradient is now
a‘Cincom(lj; W (l
D, Z{ZPI h|19 Fkﬂ h, 20 ZPI" x\ Fkxz )}
= n{Enp,.[Fi] — Eu:[Fi} (3.12)
where
Eno.[Fx] = — ZZPr (h|9®, 2 D) F, (9D, h, 2®) and

Ey.[Fr] = EZZPr(ﬂz(”)Fk(x,z(”)
=1 =z

respectively.
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3.3 Feature Engineering and Selection

There is no doubt that features are very crucial to the ssamke€RF-based systems be-
cause they are meant to capture essential information #ftediata and relations between
the input and output. In some applications, features aretitygut of the pre-processing
step. For example, in image scene segmentation, the inpiables ;)Y , are just raw
RGB values of pixels. Using RGB as features is not very inftime because scenes like
water and sky may locally share very similar sets of colobs.this reason we often apply
a set of filters to detect interesting local patterns suctdge®and textures, and use these
patterns as features.

As CRFs allow arbitrary and complex features to be incluited,easy to arrive at an ex-
cessively large feature pool by considering many combonatof basic features. Although
coverage is important to ensure that no useful informasanissing, there are many prob-
lems associated with large feature sets. First, many fesane effectively noisy, i.e. they
are not indicative of the dependence between the data aodtpet patterns. For example,
in POS tagging, most associations between a particular BQ&nid words, which occur in
the same sentence but far away from the tag, happens onliotize training data. This
rare association cannot be robustly learnt, generally.

Second, since each feature is associated with a paramédegeafeature pool leads to a
problem known a®verfitting In this case parameters are easily tuned to fit the training
data well, but generalise poorly in unseen data.

Third, some practical applications, such as those usedisida making (e.g. in medicine
and business), require interpretation of features seled@mplex features may be too
difficult to interpret. Finally, large feature pools are tpdo process both in terms of
storage and run time.

Feature selection has been widely studied in the machimeitegliterature (Guyon and
Elisseeff, 2003) in unstructured output spaces. Broaddakimg there are three approaches
to this problem. Thdiltering approach employs some simple and fast heuristics to select
the features according to some independent criteria. Wiag@per approach extensively
evaluates the feature combinations according to the findbmeance measure. And fi-
nally, theembeddedpproach incrementally builds the feature set as learninggeds.

Common filtering methods include the simple cut-off of imfuent features, and correla-
tion or mutual information between the input and the outftte main drawback is that
the selection may not correlate well with the final perforecegnin contrast, the wrapper
approach is thorough, but it is computationally expenseeabise of the combinatorial na-
ture of the problem. It also connects with the learning ohlptigh the final evaluation,
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and thus information gathered during learning is wastede fhiird approach represents
a trade-off between these two extremes. For example, intingo&Schapire and Singer,
1999), features are iteratively added and their weightadpested in a greedy manner.

In the case of CRFs, feature selection must be efficient dileeCRFs themselves are
expensive to evaluate. The filtering-based and embeddatagyes are therefore more
suitable. The filtering approach, especially the simplguency cut-off, is popular due to
its simplicity. However, the frequency cut-off may seleopplar but irrelevant features,
and as aresult, the selected feature set is usually largexgmple, in language modelling,
common words like ‘the’ appear almost everywhere and do ftencadd value to the

feature set. On the other hand, it sometimes removes rarkidply relevant features.

An alternative to the frequency cut-off is to employ somegified and efficient version

of the CRFs to do the feature selection task. For examplgyskado-likelihood (Besag,

1975) can be a good simplified version of the true likelihoedaduse of its efficiency and
consistency.

There have been some studies following the embedded appfoa€RFs. A feature in-
duction method for MRF introduced in (Pietea al, 1997), incrementally adds features
that most reduce the Kullback-Leibler divergence betwéemtodel distribution and the
empirical observations. Although this method is theosedlyanteresting, it is iterative and
thus requires repeated inference in MRFs, which is inttdetan general. For CRFs, a
similar approach is used in (McCallum, 2003), in which soimgpée approximations such
as mean fields are employed to improve the feature inducpeads The author of (Mc-
Callum, 2003) reports great saving in feature set size iredange-scale NLP applications.
Another method that exploits the feature selection prgpErboosting has been studied in
(Altun et al,, 2003a; Diettericlet al., 2004).

3.4 Applications

The early motivation of CRFs is from the area of Informatiaxtriction (IE) (Lafferty
et al, 2001; Pintoet al, 2003; Peng and McCallum, 2004; Kristjannsetral., 2004), in
which given a dataset (mostly texts), we extract relevaiorimation that belongs to some
predefined types (such as proper names, locations and #waégxt is inherently sequen-
tial, imposing a chain structure on the text is both effextivcapturing temporal relations,
and efficient in inference and learning. As a result, CRF&lieen quickly adopted for a
wide range of text processing applications, for example;@laspeech tagging (POS) and
chunking (Sha and Pereira, 2003; Sutairal, 2007) and semantic role labeling (Cohn
and Blunsom, 2005). More recently, the application of CR&s lheen expanded to word
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alignment (Blunsom and Cohn, 2006yuestion answering (Hickl and Harabagiu, 2006),
and document summarisation (Shedral.,, 2007).

In fact, CRFs are applicable to any domain that allows supetviearning and such do-
mains were previously dominated by HMMs. These include dpeecognition (Gregory
and Altun, 2004; Roarlet al, 2004; Gunawardanet al., 2005; Liuet al,, 2005; Morris
and Fosler-Lussier, 2006), word-segmentation (Rerad., 2004; Zhanget al,, 2006a), and
activity recognition (Liacet al., 2007; Truyeret al,, 2006; Liacet al, 2005; Sminchisescu
et al,, 2006; Taycheet al., 2006; Quattonet al, 2007; Vailet al., 2007).

Generally speaking, CRFs are suitable for labeling and setation of structured data,
given that the labels are available for training. Since a @R& conditional MRF, it is
not surprising that CRFs have been applied to traditionalalos of MRF such as image
processing. Specifically, these include image segmentaiial labeling, both for static
images (Kumar and Hebert, 2004; ldeal., 2004; Kumar and Hebert, 2005; Cowans and
Szummer, 2005) and video (Winn and Shotton, 2006; ¢tad., 2006). In (Torralbaet al,,
2005) a random field is used to model the contextual relateiwden scenes and objects
and in (Quattonet al,, 2005) object parts are connected in a hidden tree graphbjeco
classification. CRFs also find application in stereo vistecharstein and Pal., 2007).

In recent years there has been much interespilective classificatiofJenseret al,, 2004,
Macskassy and Provost, 2007) in that entities are intetted so that it is better to clas-
sify them collectively rather than individually. For exalmpWeb pages are hyperlinked
and those that are linked often belong to the same categaskéfet al., 2002). In this
area, CRFs are often recast as discriminative relationdefsdqTaskaet al., 2002; Sutton
and McCallum, 2006; Truyeet al., 2007).

A summary of applications of CRFs is given in Table 3.1. Thene a number of avail-

able CRF implementations that vary in programming langsayel in support of mod-

elling, inference, learning and data pre-processing featurhese include the McCallum'’s
MALLET packagé for general machine learning, Sarawagtisat supports semi-Markov
CRFs (Sarawagi and Cohen, 2004), and Murphy’s Matlab toSlbar general inference

and graphs.

SWord alignment is an essential step of statistical machanestation (Browret al., 1993).
Shttp://mallet.cs.umass.edu

http://crf.sourceforge.net

8http://www.cs.ubc.ca/~ murphyk/Software/CRF/crf.html
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| Areas | Publications |
(Gregory and Altun, 2004; Roast al.,, 2004)
Speech recognition (Gunawardanat al., 2005)
(Liu et al,, 2005; Morris and Fosler-Lussier, 2006)
Word segmentation (Penget al,, 2004; Zhanget al., 2006a)
POS tagging & phrase chunkingSha and Pereira, 2003; Suttenal., 2007)
Semantic role labeling (Cohn and Blunsom, 2005)

(Lafferty et al, 2001; Settles, 2004)
(Sarawagi and Cohen, 2004)

Information extraction (Peng and McCallum, 2004)
(Kristjannsoret al,, 2004; Zhuet al., 2005)
Image segmentation (Kumar and Hebert, 2004; Hst al., 2004)

(Kumar and Hebert, 2005; Lest al., 2005)
(Winn and Shotton, 2006; Lot al,, 2006)
Object recognition/classification(Torralbaet al., 2005; Quattonet al.,, 2005)

Stereo vision (Scharstein and Pal., 2007)
(Liao et al,, 2007; Truyeret al., 2006)
Activity recognition (Liao et al., 2005; Sminchisescet al., 2006)

(Quattoniet al., 2007; Vailet al., 2007)
(Taycheret al., 2006)

Web page classification (Taskaret al.,, 2002)

Word alignment (Blunsom and Cohn, 2006)

Document summarisation (Shenet al.,, 2007)

Question answering (Hickl and Harabagiu, 2006)

Bioinformatics (McDonald and Pereira, 2005; Settles, 2004)

(Vinsonet al.,, 2007)

Table 3.1: Some selected applications of Conditional RamBelds.

3.5 Discussion and Related Background

3.5.1 Approximate Learning Methods

An implicit assumption made in the discussion of maximurelitkood learning is that we
can compute exactly the clique margin®gz.|z), and the partition functiott' (z). Un-
fortunately, this only holds for tree-structured CRFs. Beneral CRFs, approximations
must be used. One approach is to utilise stochastic methodsdepting that quantities
required for learning can only be approximated. The other@gch seeks alternative ob-
jective functions other than likelihood that can be comgweactly.
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3.5.1.1 Stochastic Gradients

The first approach typically involvestochastic gradientmethods (Robbins and Monro,
1951; Zhang, 2004; Vishwanathatal., 2006). Given an approximate gradi&nt (D; w),
the parameter is updated as follows

witt — w! + X'V L(D; w') (3.13)

wheret is the iteration index\! > 0 is the learning rate. Under certain conditions of the
randomness of (D; w') and the learning rate, this type of learning can be very gffec

In what follows we review a number of important techniquesat timplement stochastic
gradients.

Online-learning. This refers to a general learning strategy in which paramsetre updated
after the trainer observes a training instance. The updéesthe same as Equation 3.13.
Even when the true gradients can be evaluated exactly, nesrstill stochastic because we
approximate the gradient of all training instand@$y the gradient of just one instance.
This learning strategy contrasts with thatch-learningstrategy, where the parameters
are only updated after seeing all the training instancepic@ly, online-learning is very
greedy, and thus is much faster but can be slightly less atztinan batch-learning. The
method is, therefore, of practical significance where sjmgwre important than accuracy.
This includes situations that require immediate corr@tisuch as those in interactive
applications. A simple correction is to update paramettes a small block of training
instances, and this may stabilise the learning curve arglithprove accuracy.

Perceptron learning (Rosenblatt, 1958; Freund and Schapire, 1999; Collins2200he
method updates the parameter based on the mismatch betvegeredictioni’ (see Equa-
tion 3.4) and the true pattent, i.e. ! # z':

witt e wl + MF (2!, ") — F(2t, 2')} (3.14)

It has been proved that if the data is separable, that ise tbrists aw that satisfies
w F(20, 20) > wF(z, ) Vo € X, 2 # 20, then the perceptron will achieve zero
training error after finite steps. Although the Percept®not designed to maximise the
conditional likelihood, it is a good approximation and oftgorks well in practice.

Contrastive Divergence(Hinton, 2002) reduces the number of time-consuming MCMC
steps by running only a few samplings from the empiricalrtigtion. This speeds up
training significantly because estimating the ‘corrdet{z|z) early during the learning
process is not necessary. However, this greedy strategy idbbeduce bias (Carreira-
Perpifian and Hinton, 2005) in that it will not guaranteednoverge to the true maximum



3.5 Discussion and Related Background 53

likelihood solution. Fortunately, it has been shown enggily that the bias is relatively
small for practical purposes (Hinton, 2002; Carreira-He&mp and Hinton, 2005).

3.5.1.2 Pseudo-likelihood

Pseudo-likelihood (Besag, 1975) is one of the most popudgrabive functions as an alter-
native to the true likelihood. In particular, we employ tldldwing objective function

L(D,w) = Z Z log Pr(xl(l)|z(l);w) (3.15)

=1 ;ey®

wherePr(z;]z) = 3, Pr(z[2) and V" is the set of vertices of the graph for theh
data instance. Pseudo-likelihood is attractive becauseeificient, regardless of network
structures, and it is theoretically consistent under soegellar conditions. In practice,
however, the pseudo-likelihood is known to overestimageititeraction between nodes,
and it may underperform methods that require approximdézence. Another drawback
is that it does not support missing variables.

We can extend the pseudo-likelihood to cover trees instéadaes (Sutton and McCal-
lum, 2007b). Specifically, we can, therefore, Jse log Pr(z,|N (1), z) as an alternative
criterion to maximum likelihood, where.,. denotes variables associated with the tree
embedded in the network, and(7) denotes neighbouring variables of the tree

3.5.1.3 Reranking

Reranking (Collins, 2005) is an interesting strategy torigaRFs with intractable struc-
tures. Itis a two-step procedure:

1. In the first step, we learn a base-classifier, which is géiyeefficient but not as
powerful as CRFs. The base classifier can sometimes be aoxapgtion to the
CRFs, or those methods that operate only on local variabl@seach data instance
(in both training and test sets), we obtain from this basssifier a set of< top
predictions. Thesé& outputs are used as the constrained set in the output space in
the next step.

2. In the second step, in the training phase, we learn to keten/ possible outputs
using global constraints. Any algorithms that can producarked list of thek
outputs can do the job. In the testing phase, the ranker ia agad to rerank th&
outputs by the base-classifier on the test data.
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For the reranking to work, the base-classifier must be stesraugh so that itg best
outputs generally cover the true output pattern or someeasdetoutputs are at least very
close to the true output. Sinée is typically much smaller the size of the full output space,
re-ranking is very efficient.

3.5.2 Learning Criteria

In parameter estimation, although we have specifically ehake conditional likelihood
as the objective function, it is not the only criteria. Iregle any objective function that
satisfies the following properties can be used:

e Condition 1: It is asymptotically consistent. e.dm,,_.., w,, = w*, wherew,, is the
optimal parameter when training withdata instances, and* is the true parameter
if it exists.

e Condition 2: It is efficient to optimis& Generally, this is for the practical purposes.
The efficiency comes from two sources. First, the objectiveefion must be easy to
compute. Second, the optimisation must converge rapidly.

Condition 1, although a must from a statistician perspective, it is fanf being under-
stood. The CRFs can be considered as multi-class classdigasthe only criterion cur-
rently known to be consistent in this multi-class settinthis conditional likelihood (Laf-
ferty and Wasserman, 2006). In addition, the analysis isebgal to be much more involved
given the fact that the structured output space is typi@tfyonentially large with respect
to the number of nodes in the network. The number of nodegxXample, in the case of
syntactic analysis of text, is not fixed but dependent onesexa length. The matter is more
complicated since often the likelihood of CRFs and its ggatjiwhich are central quanti-
ties in maximum likelihood learning, can only be approxietaestimated in general. The
nature of such approximation (e.g. bias and variance), wtapends on the inference
methods being used, has not been fully investigated.

Condition 2 is a common sense requirement in practice. For exampleicapiphs in
language processing may involve training over hundredsi@figands of sentences and
millions of features, and typically require to pass throtlgdwhole data hundreds of times.
The matter is worse if the state space is large because tleecomplexity is typically
guadratic in the number of states. As an example, in speedymnéion the number of
states (unique words in the vocabulary) is abidit— 10%.

9This is different from the concept of efficiency in statisti&Ve are mostly concerned about the speed of
inference and numerical optimisation.
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To date, there have been no methods that meet both of thesi@&ions. The pseudo-

likelihood discussed in Section 3.5.1.2 has proved to bsistant under some conditions.
It is a fast method but it also often overestimates the iotera between variables in prac-
tice. In fact, while consistency is a good theoretical propét is too hard to guarantee in
practice, so most learning methods are driven by efficiendypactical needs.

For example, in (Sutton and McCallum, 2005) a subset of ks called pieces) is treated
as an independent data instance. This allows efficientilegaand at the same time, esti-
mates the local interactions. However, since the joint rhisdgplit in pieces, its statistical
properties are hard to characterise. Surprisingly, themxg@nts in (Sutton and McCal-
lum, 2005) reveal that this strategy is comparable withriegy the joint model with BP as
the approximate underlying inference. There are severdipiities that may justify this
result. First, it has been shown in (Sutton and McCallum,52@Bat piece-wise training
maximises the lower-bound of the true likelihood. Howettee,bound can be rather loose,
and it can be shown that the piece-wise training attemptstala different model with the
same parameter set but larger state-space. To see why, dgtie'sthe pieces together by
some unity potential functions. Such potential functioosdt add anything to the global
potential of the joint network, and thus the pieces are gtibbabilistically independent
as before. But now each original node has been split intoiphellhodes, each of which
belong to a piece, we have more variables, or equivalentfrger state-space. Learning
a larger state-space somehow provides some smoothing, ¢an easily over-smooth if
there are too many pieces. In fact, the experimental reatdtsompared against the usual
global likelihood method with belief propagation as ungg inference. Since BP allows
only computation of approximate likelihood and its gradjehe global training is clearly
sub-optimal. In terms of final performance, that may expiaity piece-wise training is
reasonably good.

In Chapter 7, we provide some further treatment that carew ‘locality’ issue of the
pseudo-likelihood and piece-wise training but retainsetfieiency.

Some other objective functions are motivated by the acguratrics being employed for
evaluation of the system, for example, the error ratescore and BLEU score (Papineni
et al, 2001). Error rates anfl-scores for CRFs are studied in (Suzekial., 2006). Typ-
ically, the error rate is computed on a network-wise bagis,im practice, we are often
interested in label-wise prediction in that we count an refoo any misclassified label.
Label-wise accuracy is considered in (Gressl., 2007), where the objective function is
defined as

L= Z Z 5[@@ = argmax Pr(z;|21)] (3.16)

=1 ;ep®
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Likewise, the label-wise likelihood is advocated in (Kakad al., 2002)

L= Z Z log Pr(xl(-l)|z(l)) (3.17)

=1 ;ep®)

wherePr(z;]z) = >_,, ., Pr(z|z). See (Alturet al, 2003b) for some experimental evalua-
tion of network-wise versus label-wise criteria.

3.5.3 Other Topics
There are other aspects of CRFs that we do not address imésis1t

e Bayesian learning

Structure learning

Semi-supervised learning

Hybrid directed/undirected models

Hybrid discrete/continuous variables

Cost-sensitive learning

Imbalanced data

Bayesian learnindghas been studied in (@it al., 2005), where the prediction on unseen
dataz is based on

Pr(z|z, D) = / Pr(z|z, w) Pr(w|D)dw (3.18)
Thus, in the Bayesian CRFs, parameters are not estimateavbraged out. Thus this
performs model averaging and helps to combat the overfiiroglem. Pr(w|D) is ap-
proximated by a distributio(w) using Expectation Propagation (Minka, 2001a).

Structure learningnvolves discovering the connectivity of the Markov netiw&om data.
Research in this area has a quite long history, starting {i@how and Liu, 1968), but
has mostly concerned Bayesian networks. The past few yaaseswitnessed a substantial
interest in structure learning of Markov random fields (Bamand Welling, 2007; Mein-
shausen and Buhlmann, 2006; Banerjee and Natsoulis, 20aBwnght et al., 2006;
Schmidtet al,, 2007). However, this does not automatically translate @RFs because the
Markov networks can vary from one data instance to anothethdt situation, estimating
a common structure for all data instances does not apply.
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Another aspect isemi-supervisioror learning with some labeled instances and some un-
labeled ones (e.g. see (Chapeital., 2006) for a comprehensive account, and (Zhu, 2006)
for a constantly updated survey in the field). This is patéidy useful in many situations
where collecting unlabeled data is fairly easy (e.g. huraaad under Webcams or surveil-
lance cameras) but manual labeling is very expensive (gegpdérson’s name). Most of the
work has only involved unstructured data but the commuratytecently been paying con-
siderable attention to structured data (Laffeatyal., 2004; Ando and Zhang, 2005; Altun
et al,, 2006; Jiacet al,, 2006; Brefeld and Scheffer, 2006; Mann and McCallum, 2007)

Originally the CRF was defined as an undirected graphicalaihhddowever, in some ar-
eas it may be beneficial to incorporate directed componatashie model. Theoretically,
directed parts are just constrained versions of the uneidecounterparts in that the lo-
cal conditional probabilityPr(x;|pa(i)) plays the role of the clique potential z;, pa(i))
subject toy | v (z,pa(i)) = 1. Practically, however, representing the component by a
directed subgraph is more intuitive, and the constraintg leed to better numerical stabil-
ity. Early attempts to build &ybrid representatiomnclude chain-graphs (Buntine, 1995)
and factor-graphs (Frey, 2003).

Most of the work involving CRFs so far has assumed discrette stariables. Much of
the probabilistic consistency for the discrete cases caappbed for thecontinuous vari-
ables However, here is no straightforward marginalisation oxggtables even in contin-
uous cases because it now involves integration, which mapane any analytical form.
There has long been investigation into Gaussian randonsfielgeneral, but investigation
into Gaussian CRFs, in particular, is fairly recent (Tappeal., 2007).

Cost-sensitive learningElkan, 2001) addresses tbensequencef applying the classifiers
in the domain rather than just generic criteria such as mamirtikelihood or accuracy.

This is important in decision making under uncertainty, vehen we want to chose an
action that maximises an expected utility, or equivaletdlyninimise an expected cost:

& = argmin Z Pr(2|2)C(x, 2") (3.19)

whereC'(z, 2') is the cost of choosing when the true output ig’. There has been consid-
erable research in this area for unstructured output ékssibut we are only aware of an
attempt in (Sen and Getoor, 2006) for CRFs.

Imbalanced datde.g. see (Japkowicz, 2002)) refers to situations whenltss ¢tabel dis-
tribution is far from uniform, i.e. some labels are much mpopular than others. For
example, in images, it is often the case that the objectgeifast are quite small compared
to the background. Prior work, which has mostly addressedptioblem in classifiers
with unstructured output, can be roughly divided into twougrs: those with re-sampling
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for correcting the class distribution and those with cosiification for introducing more
weight for rare classes. However, these methods cannot@ieaulirectly for structured
classifiers such as CRFs because the interaction betweels ialmot considered. Only
very recently there have been some indirect attempts fercthss imbalance in structured
output spaces. Sen and Getoor (2006) address cost-seltesdtiming, which can be consid-
ered as one technique to deal with class imbalance problamatithors propose a method
based on weighted features to bias the cost. Another workeasithg the problem in a
slightly different angle is (Phaet al., 2005), which aims at discovering rare associations.
The work in (Leeet al, 2005) proposes a hybrid method called Support vector rando
field (SVRF) that combine SVMs as a local classifier and CRRs@lsbal classifier. The
authors claim that the SVRF is insensitive to the class iarizd.

3.6 Closing Remarks

In summary, the Conditional Random Field is a recent majeaade in statistical ma-
chine learning where the combination between graphicaleisodnd machine learning
is just about ‘right’. It is a proven machinery for many reabrld tasks in that it often
achieves competitive results against state-of-the-athoas. Chapters 4 and 5 demon-
strate its applications further in the area of accent rasitor and collaborative filtering,
respectively.

So what are the drawbacks of CRFs? There are many, some df whibave pointed out in
this chapter. The main computational bottleneck is stélititractability of the underlying
graphical models for complex structures. We provide sonsavars to this problem from
the learning perspective in Chapter 7.

Second, the development of CRFs so far has only concentatbend-specified features.
To be truly effective we should incorporate into CRF the dieatdiscovery capacity from
unsupervised learning, as well as feature selection. Weeaddhe feature selection prob-
lem in Chapter 6.

Third, accurate labels are required so that learning cacegiah and this is too expensive in
many domains. There should be some mechanism to at leaserétineed for labeling.
One approach that we adopt as the common theme of this tisgsastially supervised
learning where only part of the labels in the network are needed. kamele, in hand
labeling of images the areas around segment boundarie#fareltto handle, so they can
be left unlabeled.

Certainly, there is much room for exploring the network stuwes in the CRFs to make
the best out of the framework. In Chapters 8 and 9, we geser#tie commonly used
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chain-CRFs into hierarchical CRFs in a way that each nodeMarkov chain is a Markov
chain by itself.



Chapter 4

Statistical Viethamese Accent
Restoration

4.1 Introduction

In this chapter we present a novel application of seque@tdts to the problem of accent
restoration, which is a common task for many languages wlamsents’ are not repre-
sented by the standard alphabet set in writing. This chaptenited to the Vietnamese
language.

The Vietnamese writing system utilises a set of Latin alghtsba small set of new alpha-
bets and a set of five tonal marks. A sentence is a sequenod ahies known asyllables
separated by white spaces. One or more consecutive swylablestitute a word, which
is the smallest meaningful text unit. Thus, word boundaaiesnot predefined by white
spaces. Vietnamese accent arises when a syllable conteens eanore new alphabets, or
when it is combined with none or one of the five tonal marks.

Most keyboards today are designed for English, which meatm®ut further help, we can
only type the Latin alphabet but the accents are lost. Fanela a Vietnamese sentence:
ban hay tham VEt Nam ngay Bm nay(‘please visit Viethnam today’) will be written as an
accent-less sequencelzen hay tham Viet Nam ngay hom ndyis annoying and error-
prone for human readers to decode such messages. The bes=tdrmngaycan easily
lead to confusion between the original Viethamegay(‘now’ or ‘straight’) and the plau-
sible alternativangay (‘day’). The current solution for this problem is to use tygtaided
software to automatically assign the correct Viethameseadters when users type in a
certain pattern. However, some keying methods suchietes? require a great deal of

1Telex is a technique that encodes accents using extra ¢thesg@or example, by typing fast enough, one
convertsngayfinto ngay andhoominto hdm
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practice to master since it is quite unintuitive from Enlglieyboards. Yet another moti-
vating application is with small footprint devices such axlket PCs, where there exists
some word processing software with handwriting recognitiapability so that users need
only to write by hand directly on the screen. Again, most & tlandwriting recognition
software currently works only for English characters.

It is therefore necessary to restore the accents autoriatican English-like texts for
reducing the typing burden and for backward transliteratiénight and Graehl, 1998).
The difficulty of this problem is due to the high ambiguity dietaccent-less text and it
cannot be tackled locally because the context of a syllabédsio in the accent-less form.
Therefore, methods that look for local patterns betweelalsids like those in contextual
spelling correction (Golding and Roth, 1999) may not worbgarly.

4.2 Background on Accent Restoration

An accent-less sentenece = (zy, 29, ..., 2r) can be considered as a result of forward-
transliteration of an original Viethamese sentence (x1, s, ..., 1)

2 = L(z) (4.1)

whereL(z;) is a deterministic function for removing the accent of thetamese syllable
x¢, andT is the length of the sentenee Thus each:; would yield a unique;.

The restoration is defined as finding the Vietnamese sequegaen the accent-less se-
quencez

Z|z = arg max Pr(z|z) = arg max Pr(z)Pr(z|z)
z€eV(z) zeV(z)
= arg max Pr(z) (4.2)
zeV(z)

whereV(z) is the space of all Viethamese sentences whose accentdessis z, i.e.
V(z2) = {z|z = L(x)Vt € [1,T]}, andPr(z|x) = 1 since the forward transliteration
is deterministic.

There are thus two main problems: (1) how to efficiently aridatifvely estimate the lan-
guage modePr(x), and (2) how to define the search sp&ce). In subsequent subsections
we present some solutions for the first problem. The secae s quite straightforward
since for each accent-less syllabjewe only need to build @roposal sebf Viethamese
syllablesV(z;) = {x;}. From the corpus, we add a Vietnamese syllahléo V(z;) if
L(z;) = z andz; is not yet inV(z;). The good news is that the number of Vietnamese
syllables is quite small (of the order 6§*), and the number of accent-less syllables is even
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smaller (of the order of0?), and each accent-less syllable corresponds to 1-24 Vieisa
syllables.

4.2.1 N-gram Models

Clearly, since we do not have enough resources to enumdrptssible sentences in Viet-
namese, approximation must be made. Options include tlaé&rlegram models (Manning

and Schitze, 1999, ch. 6) and others with global consgaifite simplest method is the
unigram modePr; that assumes the complete factorisation:

Pri(z) ~ [] Pr(z) (4.3)

te[1,T]

where each unigram is a syllable. However, syllables by t##ves do not generally have
meaning. They make sense only if they belong to words. Thuslefting the relation
between unigrams is more important. The bigram matgland the trigram moddPrs
capture this better:

Pro(z) ~ Pr(a;) H Pr(z¢|xi—1) 4.4)
te[2,T)
Pr3(z) = Pr(zy, ) H Pr(x|zi—1, x1—2) (4.5)
te[3,7T)

The bigram model is actually a special case of the first-aridM (see Section 2.4.3.1 for
description and Figure 2.4 for illustration) where the esitin probability is onelr(z;|x;) =
1). Likewise, the trigram model is a second-order HMM.

Then-gram distributions can be estimated by simply countingniln@ber of occurrences
as usual. Due to data sparseness we need to smooth overttilmiden to assign a non-
zero probability to unseen-grams. In this study, we employ simple Laplace smoothing,
which is given as

C(xt—n—i-l? LS xt) + 1

4.6
N, + |V, (4.6)

Pr(zi_pi1, ..., xy) =

whereC(zy_,1, ..., 7;) is the number of occurrences of thegrams,,, is the total occur-
rences of alh-grams,|V,,| is the estimated vocabulary size of thigrams of the language.
Thus an unseen-gram will be given the uniform probability af/|V/,|.

Given these three simple models we can proceed to estinet®tresponding conditional
probabilities from the data. On the other hand, the bigrantstagrams model the lan-
guage better, but reliably estimating the bigrams andanty would require a very large
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data set. One effective strategy is to join the three schéogesher in a Product-of-Expert
(PoE) approach (Hinton, 2002):

Pr(z) = %Prl(x)wlPrg(x)wPrg(x)wf‘ 4.7)

wherew;, wo, w3 > 0 are the weights of the component models, and the normalisation
constant. The beauty of this approach is that the compugtemmplexity is the same as
its components, whilst we can adjust the contribution otibraponents by tuning the extra
parametersv;, wo, w3. The distribution by the PoE is often more peaked than thepoem
nent parts. For example, if the three component models amgreeparticular sentence
the PoE would yield a high probability. Another importanoperty is that if the trigram
model is not discriminative about a particular sentencelenthe bigram and the unigram
are, the resulting PoE still assigns a reasonable probatalthat sentence.

4.2.2 Related Work

Previous research has addressed the accent restoratidarprior other languages such as
Spanish (Yarowsky, 1994), the Latinised Chinese callegliRi{wan and Verspoor, 1998).
We can consider this problem as a form of backward tranatitar (Knight and Graehl,
1998; Li et al, 2004) which aims to recover the original form of transhied words.
The work in this area is still limited, and seems to focus ormaow set of proper names
and technical terms transliterated between differentdaggs such as Japanese/Chinese
and English. An example is to recover the original Englishrdgo(such asomputer,
Washingtoh from the Japanese transliteration (Knight and GraehI8L9®ur work, in
contrast, is to recover the whole original Vietnamese see from the accent-less forms.

At a larger scale, it is a special case of machine transléBoown et al., 1993) converting
accent-less Vietnamese into correct Vietnamese. Foelynalbhe accent restoration prob-
lem is expected to be far easier than the translation, bedhesnapping is word-for-word
and no alignments are needed. Moreover, it falls into thiedxambiguity category, where
each accent-less syllable can correspond to many possitieavhese alternatives. From
this perspective the problem can also be castwsrd sense disambiguatigmoblem (lde
and Veronis, 1998), where each alternative roughly plagsdle of a ‘sense’.

4.3 Modelling using Conditional Random Fields

The n-gram models and their POE ensemble described in the pregigiosection do not
exploit the fact that we do not need to model the whole langusggace of all possible
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Xt Xt+l
(Y )
Y N/

v

Figure 4.1: A second-order CRF.

sentences (see Equation 4.2). Rather, for each accergdaessnce:, we need only to
pay attention to the restricted subspate). More specifically, the size of the whole
language space is the number of combinations of words in dleabulary, the sentence
length, and the permutation of word order in the sentenceth®montrary, the subspace
V(z) is limited to the specific sequence length and word ordet,adnd only a subset
of vocabulary, because the maximum number of accent atteesaor each accent-less
unigram is 24. Furthermore, the weight vector in the PoE é&qu 4.7) should be learned
automatically from the data.

The conditional nature of the CRFs allows us to directly male distributionPr(x|z),
and therefore deals only with the subspécer € V(z)}

Pr(z|z) = % H@bc(%, 2)

whereZ(z) = > ey [ ¥e(@e, 2). In this study, we employ CRFs with second-order
Markov chains (see Section 2.4.4 for description and Figutdor illustration). Thus the
clique potentials are of the formy(z;, x141, 7112, 2), Wherex; € V(z), t € [1,T — 2].
More specifically, we have

¢t(xt7 xt-i—l) l't+2, Z) - exp{wklfk’1 (xta Z) + wk’szg (xtv xt-i—lv Z) + wk’gfk’g (xtv xt-i—lv xt+27 Z)}

wherefi, (x4, 2), fr, (2, Tey1, 2) @nd fi, (x4, 441, 1142, 2) @re binary unigram, bigram and
trigram features, respectively. The features are given as

fro(xe,2) = O8[C(xy) > ny]d|xy € V(z)]
fro(e, i1, 2) = O[C(xy, xe41) > no)d[ze € V(2¢)]0[211 € V(2141)]
Jrs (T, Ty, Tpo, 2) = O[C(x4, Tp1, Tega) > ns)o[ze € V(2¢)] X

X(S[l’t_H c V(Zt+1>]5[xt+2 € V(Zt+2)]

where {n,,n2,n3} > 0 are thresholds for the number of occurrenc¢gs), andd|.] is
the indicator function. Thus, this feature design impletaehe simple frequency cut-off
feature selection method (see Section 3.3).

The main difference of this CRF compared to the majority @vppus CRF applications
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is that the label set at each node in the Markov chain is cainstl, depending on the
accent-less syllable. The problem has been partly addtessbe name otonstrained
inference(Kristjannsoret al,, 2004) in the context of interactive labeling. In (Kristieaon
et al, 2004), at decoding time, when the user of the system givaisad &t a given node of
the sequence, the system responds by limiting the labef featonode to this given label,
and thus improves the performance. The constrained infensmot used at training time.
Our work can be considered as an extension to (Kristjanasah 2004) by applying con-
strained inference to an arbitrary subset of labels in braihihg and decoding. Most other
works, especially those in the field of Information ExtraatiCowie and Lehnert, 1996;
Lafferty et al, 2001), assume a fixed set of labels is used for all nodes isettpgence.

For parameter estimation we are more interested in theesktting in which parameters
are updated after seeing a training instance (Section.3)5:This is important because in
interactive applications the system may output severaiptesalternatives and let the user
select the one that is the most appropriate to the user'sxbngince the style used by
each person differs, an accent-less sentence can posaudynany plausible Viethamese
alternatives, so letting the user correct the restoratidinalow the system to gradually
adjust the parameters to suit the individual styles. Inipaler, we use both the stochastic
gradient and perceptron methods for parameter estimat&tai(ed in Section 3.5.1.1).

4.4 Experiments

4.4.1 Corpus and Pre-processing

Training size 426 x 10° sentence$
Testing size 28 x 10% sentences
Accent-less vocabulary siZel.4 x 10 syllables
Number of accents 24(max), 4(average

Vietnamese unigram set | 7 x 10° unigrams
Vietnamese bigram set 842 x 103 bigrams
Vietnamese trigram set 1264 x 10? trigrams

Table 4.1: Data statistics.

Data is collected from online news articles and split intoagning set of 426K sentences
and a test set of 28K sentences. The corpus contains a wige ohsubjects The writing
styles vary as the material comes from a dozen news sources.

For testing, we first perform the forward-transliteratiorobtain the accent-less form and

2They are: politics, social issues, IT, family & life-styleducation, science, economics, legal issues,
health, world, sports, arts & culture, and personal opision
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then decode back the Viethamese form. The decoded text isarechagainst the original.
Here we do not distinguish between upper and lower casesnibgeand comparison are
done in lower-case.

Since news articles often contain foreign words, acronynasreon-alphabets, we restore
only the accents of those in a fixed accent-less vocabulargbiain the accent-less vocab-
ulary we remove the accents of the syllables in a Viethamesm®ary. The accent-less

vocabulary has 1.4K syllables, which is much smaller thantyipical Vietnamese set of

syllables (around 10K). Through the forward-translitenatwe obtain the proposal sets,
each of which is a set of Viethamese syllables corresponidirayparticular accent-less

syllable. The number of Viethamese syllables that sharedhee accent-less form ranges
from 1 to 24, and is about 4 on average.

The performance is measured within the accent-less voaghbulhe word accuracy is the
portion of restored syllables that are correct. A restoeattence is considered correct if
all of its restored syllables (within the accent-less vatdaty) are correct.

From the training data we estimate the unigram, bigram agcatn distributions. There
are 7K unique unigrams whose accent-less form is in the &tesmdictionary. We count
a bigram if it occurs and one of the component unigrams iserutligram list. We obtain
a bigram list of size 842K. If we remove those bigrams thateaponly once in the cor-
pus, the list is reduced to 465K. Similarly, we count a tnigridi it occurs and one of the
component unigrams is in the unigram list. This gives 313@kjue trigrams. Removing
the trigrams with a single occurrence, we obtain a trigratdf size 1264K.

We then apply the Laplace smoothing (see Equation 4.6),ewmrabulary sizes for uni-
grams, bigrams and trigrams are estimated ta(de7 x 108, and7 x 10'3, respectively.
The unigram vocabulary estimate is from the 7K unigrams waioldrom the corpus. To
estimate the bigram vocabulary size, recall that the we tcadmgram if one of its com-
ponent unigram is from the 7K unigram list, and the other tamigcan be anything. We
estimate that there are abdf unique unigrams outside the list, and this number is multi-
plied with 7K to yield7 x 108. Multiplying this result further byt 0°, we obtain the estimate
of the trigram vocabulary size. The main statistics of thedasummarised in Table 4.1.

4.4.2 Results

For the Product-of-Experts, we set the weight manually

e first-order POE (unigram & bigram)u; = 1; wy = 1,

e second-order PoE (unigram & bigram & trigramy); = 2; wy = 2; w3 = 1
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First, we perform a set of experiments with first-order megdedhich include the bigrams,
the first-order POE and the first-order CRF. The baseline @sutigram model. One
problem with the bigram model is how it handles unseen bigras the majority of
Vietnamese words used in writing are bigrams, this meartsat@agram is not simply
a random combination of two unigrams. Therefore, most randombinations of two
unigrams should have an extremely low probability, or astieheir probabilities are not
equal. The popular Laplace smoothing, on the other haras toi assign every unseen bi-
gram an equally small probability under the assumption wirpmiform distribution. This
is unrealistic in Viethamese. To deal with this we assigreensbigrams with a very low
probability, which is practically zero, so that any sequeewith unseen bigrams is severely
penalised. Although this is not optimal since some plaediiigrams are cut off, it seems
to solve the problem. Luckily, the PoE does not have this lerabprobably because the
unseen bigrams will be compensated by the component unggram

In the first-order CRF model, we use only the bigram featufes. training, we run the
Perceptron for 20 iterations and the Stochastic Gradient3aterations over the whole
training data set. This is obviously much slower than thegdsigand first-order POE models
since we need to estimate the bigram distribution using onky run through the data.
However, such a cost can be well justified by the higher peréorce of the CRF model
compared with the bigram and the PoE as shown in Table 4.2idrstudy, we use 465K
bigram features for all the first-order models. The simpligam model works poorly as
expected, and its performance is unacceptable for practsea The PoE, which is just a
product of the unigram and the bigram models, works surggigiwell with significant
improvement over the bigram model. The CRF model is the widespite the fact that it
uses no more domain information than for the PoE.

| Model | Word accuracy | Sentence accuracy|

| Baseline | 71.83 | 6.31 |
Bigram 90.68 30.87
1st-order PoE 92.42 37.54
1st-order CRF (Perceptron) 93.16 38.40
1st-order CRF (Stochastic Gradient) 93.68 41.95
2st-order PoE 93.45 42.72
2st-order CRF (Perceptron) 93.51 41.77
2st-order CRF (Stochastic Gradient) 94.26 44.83

Table 4.2: Word and sentence accuracy (%) of first/secoddranodels compared with
the baseline unigram model.

The second set of experiments is performed with second-ondeels. For the moment
only the second-order PoE is used with 7K unigram featuréSKsigram features and
1264K trigram features. We run the Perceptron for 10 iterstand the Stochastic Gradient
for 5 iterations. The last rows in Table 4.2 show the accuddiie PoE and the CRF. The
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trigram model is not used since it performs fairly poorlysgibly due to the limited corpus.
Interestingly, the POE can compensate for the poor estiofatee trigrams by using the
unigram and bigram components.

Overall for both experiment sets, the CRF trained by Staah@&sadient performs best. We
observe that the Perceptron minimises the error treéming data quickly as it is specifi-
cally designed for this task. However, this leads to thefatieg problem as the Perceptron
does not have any regularisation mechanism. The Stocl@staient training, on the other
hand, can control the overfitting through the Gaussian petexrin (Equation 3.6).

4.5 Closing Remarks

In this chapter we have applied the CRFs to the Viethamesenacestoration problem.
Experimental results so far indicate that the approachitalde and achieve good results
in the news domain.

In regard to the accent restoration problem, there are akeaspects that need further in-
vestigation. One aspect of Vietnamese is that the whiteespae not indicators of word
boundaries. Most words are composed of two syllables, edpyewords used in writ-
ten texts. It is therefore important to incorporate the bdpg of word segmentation in
the language models. From our experience with the poputgatns, we believe that we
need a better smoothing scheme for the Viethamese languadel mvhich is inherently
different from English.

Furthermore, there are different genres and writing styed it is likely that a sequence of
accent-less syllables can correspond to several plavditieamese sequences, depending
on the context of use. A very challenging domain is creativiting, especially poetry,
where authors make deliberate use of word reordering aretitiep to achieve stylistic
and artistic effects. The most challenging form is perhgusken language, especially
in online environments such as chatting and SMS, where taeotitanguage is largely
distorted due to the constraints of writing space and pelsoterests.

The current study is limited to the online news domain, aeaty the results are biased
towards these reporting styles. Thus, one possible directito address varying styles by
training the algorithms on more data to obtain better cayerd&nother option is to detect
the style through independent methods or through clugterin

An issue not addressed in this work is the analysis of syntaxse@mantics. It is likely
that the analysis will provide more consistent results. oligh the CRF framework, for
example, it is possible to incorporate a richer set of femtuo address the correlation
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between sentences in the same paragraph. Also, we can difattent models to address
different linguistic aspects and then combine them togeththe PoE approach.

In the next chapter we will demonstrate another applicatio@RF in the field of movie
recommendation. This utilises a different network streetunder a setting known as Re-
lational Markov Networks, where there is only a single (céem@nd large-scale) Markov
network built on top of a relational database.



Chapter 5

Relational Markov Networks for Hybrid
Recommendation

5.1 Introduction

In previous chapters we have presented the Conditional étartdeld and a real-world
application for Viethamese accent restoration. A commaire when using CRFs is to
assume that the structured training instances are indepéypdenerated. Typically, we
generate a Markov network for each instance and ignore dieperes between instances.
However, this practice may not be appropriate for relatioloanains in which all the en-
tities are related. Such relations often do not allow pgartihg the data into independent
instances.

To be more concrete, let us study a particular relationalaloroalled automatic recom-

mendation. In this domain, we have a set of users and a se¢ro§it A user is anyone

who purchases products (for example, books) or subscribssrvices (for example, on-
line movies). An item refers to products or services tharusse. Each user typically
expresses their preference over a subset of items they leaveusing. Based on the pref-
erences, the recommender system will predict the next setedérred items for a given

user and ratings on how much the user will like these items.

Recall that a relational domain can be representeddojpemadhat defines entity types, en-
tity attributes and relations between entity types. In neceender systems, there are three
entity types:User, Item andRating (Figure 5.1). ThéJser may have multiple attributes
such asAgeandSex Theltem'’s attributes may includ€ategory andDate Rating has an
ordinal Scoreattribute, which is typically a small integer from the g&t2, .., |S|}. Typi-
cally, in each entity of typedser andltem, there is also alD attribute for indexing. Rela-
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tions between entities are realised by reference attslpdating to other entities’ identity.
For example, the attributeating.ByUserpoints to the user ID, an@ating.Onltempoints
to the item ID.

Item User
D~~~ - |- ID
Category | 3 Age
Date | i Sex

f Rating 1

ID |

3 ByUser ---r---

R Onltem

Score

Figure 5.1: Schema for recommender systems.

In the relational database each entity type has multiplentes and their attributes are
filled with specific values. These constituteiastantiationZ of the schema. For example,
in the MovieLens dataset, which we will use for experiment$ection 5.3.6, there are
943 instances of theser entity types, 1682 oftem and 100,000 oRating. The instanti-
ation of reference attributes defines an instantiationigthat links all the entity instances
together.

In our study we are interested in probabilistic modellingl gmediction of all attributes
Rating.Scorein the instantiation. That is, we want to define a Markov nekvaver all

the ratings. We can manually construct a CRF as in the prewsbapter but the model
representation can be very expensive and is only applidable particular instantiation

of the schema. For example, in recommender systems, thefs&eating database can

be hundreds of millions of items In contrast, the schema, as we have seen, can be quite
simple and is generic for any instantiation.

In this chapter we will present a method called Relationaikda Network (RMN) (Taskar
et al, 2002) that deals with this problem. The RMN exploits the pantness of the re-
lational schema to specify how the network structure of tRE@ constructed. Then in
Section 5.3, we propose the use of RMN for preference modedind prediction in recom-
mender systems, and call the resulting modBleference NetworkPN). Differing from
previous approaches to recommendation, the PN is a joinehadcll preferences and it
takes into account a variety of information, including telas between users and between

1The Netflix movie rating data has 100 millions entries [Htypavw.netflixprize.com].
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products, user demographics and product attributes. Thiehtteen serves as a probabilis-
tic database that supports various queries such as the nobsiibe ratings and top* new
items for a given user. We evaluate the PN on the movie rattgdise in Section 5.3.6.

5.2 Relational Markov Networks

Relational Markov Networks exploit the relational struetbby providing a query language

that helps to build the Markov network structure & mplatdevel. First, for each schema,

the RMNs define a set’ of relational clique templatesand each clique template in the
setC € Cincludes a subset of entities, a subset of relations betivesse entities, and a

subset of attributes associated with the selected enthietique template can be a set of
rules (or SQL queries) that tie entities together. This dusdepend on specific schema
instantiation. For example, in our movie rating example, thque template can be the
same, regardless of the movie data sources being used.

The instantiated clique templad&7) (i.e. C' applied to the specific instantiatidr) is a set
of cliques{c € C(Z)}. Thus, the set of all cliques of all templatgsc € C(Z),C € C}
specifies the graph structure of the Markov network.

What remains is the potential function associated with ediciue template”'. Let = be

the set of attributes in the instantiation that we want tattees hidden state variables of
the resulting Markov network. Let be the rest of the attributes. The clique potential that
realises the templat€, and specific clique defined by the instantiatiof(Z), therefore,
has the form)c(x., z.), wherez, is the subset of hidden state variables in the cliqaad

z. IS the set of content and reference attributes.

A Relational Markov Network defines the following conditadristribution

Pr(alz) = % T 1T el =) 5.1)
)

CeCceC(Z
Using log-linear parameterisation, we write (z., z.) = exp(w/lfc(z., z)).

Thus, given an instantiatich the RMN produces annrolledCRF. Note that for a particu-

lar domain the same set of clique templates can be used feratit instantiations. Given a
schema and a relational database, the RMN provides a seenéquo construct the CRF.
Thus, the RMN is a compact representation of the CRF. The aotnpss is important for
computational reasons. For example, in our study of motiags a standard CRF will

have a densely connected network of 100,000 nodes. Stdrengdtwork structure and
all associated potentials will be too expensive. Ratherskauld only store the tables of
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ratings, users and items and then construct the networkngats and associated potentials
on-the-fly based on the clique template specifications.

5.3 Preference Networks for Recommender Systems

5.3.1 Background on Recommender Systems

user
user

0 ~NOoO 0o~ WDN PP

Figure 5.2: (a) Preference matrix; (b) Correlation betwaser 1 and user 4 are based on
common items 1 and 3 co-rated by the two users; and (c) Ctiaelaetween item 1 and
3 are based on common users 1 and 4 co-rating the two items.

Recommenders are automated tools to deliver selectivenmafiton that matches personal
preferences. These tools have become increasingly impactdelp users find what they
need from massive amount of media, data and services cyrfeadding the Internet.
Commercial systems currently operating include Amazbdietflix® and Google News

Recommender systems make recommendations based on teataoipproducts and ser-
vices ontent-basey] or based on collective preferences of the croaalléborative fil-
tering), or both fybrid methods Typically, content-based methods work by matching
product attributes to user-profiles using classificatiaimtéques. Collaborative filtering,
on the other hand, relies on similarity between users (R&seti al, 1994) or products
(Sarwaret al,, 2001) and preferences the user has expressed. Since tcanteprefer-
ences are complementary, hybrid methods often work begt Wb types of information
are available (Balabanovi¢ and Shoham, 1997; Bdsal, 1998; Pazzani, 1999; Basilico
and Hofmann, 2004).

In general, the recommendation can be stated as followgngvset ofA/ users, and.
items that the users can select from Nét= {x,,;} denote thereference matriwhereu €

2http://www.amazon.com
Shttp://lwww.netfix.com
“http://news.google.com
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{1,2,..., M} is the user index, € [1,2, ..., L] is the item index, and,; is the preference
or rating of usew over item: (Figure 5.2a). In many applications a user usually rateg onl
a small number of items and this makes the preference misfrixxtremely sparse. For
example, in the MovielLens dataset, only about 6.3% entrighe M matrix are filled.

A common problem in recommender systems is to use all previweferences and try
to estimate the rest of the entries (the preference prediction problemIn practice,

a preferencer,; is expressed either explicitly when a user gives a numerataig, or
implicitly when she chooses to read a particular news aticl

Another frequent task is to return a set@fitems that the user has not expressed pref-
erence for, but may prefer if the items are presented to hieis i$ known as théop-N
recommendation problef@eshpande and Karypis, 2004). Typically the task invobes
eral steps. In the first step a candidate set of promisingsiiendentified. In the second
step, these candidates are ranked in decreasing ordeewdinele and then the tgp items

are presented to the user. The measure of relevance deperdstext, for example, it
may be the probability that the user will like the item, or thgected benefit that the user
will gain for choosing the item.

Most popular works to date address these two tasks by usimg sonilarity measure
between related users, or between items. Users are refatée way that they co-rate
some common items. One of the most common similarity meagure) between uset
and usew is Pearson’s correlation

) St (s = ) = 22) 52)

5 1
_ 2 a 5
[Zie—’(uvv)(gjm N xu)Q] [Zjel(u,v)(xvj - xv)Q]

wherel(u,v) is the set of all items co-rated by userandv, andz,, is the average rating
by useru. Figure 5.2b illustrates the case where= 1,v = 4 andI(u,v) = {1,3}.
Prediction of preference of an unseen item for a given usebeacomputed as (Resnick
et al, 1994)

ZUEU(i) s(u, v) (@i — o)

EveU(i) |s(u, )

whereU (i) is the set of all users who rate itemSince in the preference matrix, users and
items play equal roles, similarity between items (Saretaal., 2001) can also be used for
prediction

ZuEU(i,j)(in - fu)(xw - :L’u)

I : (5.3)
[EUEU(Z'J)('TM o j“)2:| [EUGU(i,j)<x0j - jv)2

s(i,J) =

whereU (i, j) is the set of all users who co-rate both itefrexd ;. Figure 5.2c illustrates
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the case where = 1,5 = 3 andU(i,j) = {1,4}. The prediction rule in this case is
analogous to Equation 5.3 where the roles of usand item: are swapped.

Further constraints are often in place, for example, in-bssed methods, onli most
similar usersy € U (i) with respect to usex are selected. Typicallys ranges from 20 to
100. Another practice is to choose only positive, correlatgers in the neighbourhood of
useru.

Another approach is based on non-negative matrix factwis@\NMF) (Lee and Seung,
1999; Rennie and Srebro, 2005; Zhagigal., 2006b). The idea is that the preference
prediction problem is to fill the empty entries in the prefere matrixVl. We approximate
M as follows

M ~ A = BC (5.4)

whereB = {b,,} is anM x H non-negative matrix, an@ = {¢;;} isaH x L non-
negative matrix, and{ is often much smaller thaf/ and L. In essence, we seek a lower
dimension representation ®f, in thatB is roughly a low rank basis, an@ is roughly
the projection ofM on B. A common method to determiri®@ and C is to minimise the
following function

Z (Tui — buhchi)2 + M(Z bih + Z Ciz) (5.5)
u,h hy

W, E| Ly >0

wherey > 0 is a regularisation factor. Note that in the first term, weyosim over
observed entries in the preference matrix. The optimisatém be done via methods such
as gradient descent. Once we find an approximate factanisthte empty entries iV can
be filled by corresponding entries .

Probabilistic approaches to the recommendation problésmat to construct models that
explain user ratings (Brees¢ al., 1998; Heckermaet al., 2001; Hofmann, 2004; Marlin,
2004). Existing work has employed directed graphical modath as Bayesian networks
(Breeseet al,, 1998) and dependency networks (Heckerratal,, 2001), and undirected
models such as restricted Boltzmann machines (Salaklnwtdiral., 2007). Many of other
probabilistic works perform clustering. This is an impaottéechnique for reducing the
dimensionality and noise, dealing with data sparsity andensignificantly, discovering
latent structures. Here, the latent structures are eitbm@nounities of users with similar
tastes or categories of items with similar features. Sorpeesentative techniques are
mixture models, probabilistic latent semantic analysisSip) (Hofmann, 2004) and latent
Dirichlet allocation (LDA) (Marlin, 2004). These methody to uncover some hidden
process which is assumed to generate items, users andstaingh a generative process,
on one hand, is intuitive and expressive in the way that itesges prior belief, but on the



5.3 Preference Networks for Recommender Systems 76

other hand may not reliably ‘explain’ the data well.

Another important class of methods are from machine legtnirhese methods map the
recommendation into a classification problem (Billsus aaziZani, 1998; Baset al., 1998;
Zhang and lyengar, 2002; Basilico and Hofmann, 2004; Zitaicd Kanade, 2004). One
of the key observations made is that there is some similaetyeen text classification and
rating prediction (Zhang and lyengar, 2002). There are tagsato convert collaborative
filtering into a classification problem (Billsus and Pazzd¥98). The first is to build a
model for each item, and ratings by different users aredtkas training instances. The
other builds a model for each user, and ratings on diffetents by this user are considered
as training instances (Breeseal,, 1998). These treatments, however, are complementary,
and there should therefore be a better way to systematiaaifty them (Bastet al., 1998;
Basilico and Hofmann, 2004). That is, the pairs (user,itame)now treated as indepen-
dent training instances. However, the assumption thatitrgiinstances are independently
generated does not hold in collaborative filtering. Ratlidhea ratings are interconnected
directly or indirectly through common users and items.

5.3.2 Preference Networks

user attributes item attributes

Figure 5.3: A fragment of Preference Networks.

The main goal is to apply the RMN framework for modelling amediction of ratings. To
that end we build a single Markov network for all ratings ie thatabase. Since the rat-
ings reflect user’s preferences we call the resulting Marletwork aPreference Network
(PN). We would like the PN to integrate varieties of domaimkiedge such as prior rich
information of user demographics, item content attributesrelation information between
closed users (Resniek al, 1994) and between related items (Saretal., 2001). Given
the schema (Figure 5.1), we define the following clique textgd:

1. User Identity this specifies the association between the two attriduses.ID and
Rating.Score and captures how likely a user gives a particular scoring.

2. Item Identity this specifies the association between the two attribi¢es.|ID and
Rating.Score and captures how likely an item is given a particular s@prin
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3. User Typethis specifies the association between the item’s ideatitiputeltem.ID
and the user’s attributes suchldser.Age It carries the likelihood that an item will
be preferred by a particular class of users (e.g. teenagers)

4. Item Category this specifies the association between the user’s ideatitibute
User.ID and the item’s content attributes suchitesn.Category For example, this
captures how likely a user would buy a particular type of pide.g. a VIP cus-
tomer will be likely to use first-class services). Since adoicd may fall into multiple
categories, this template must be able to take aggregdtategories into account.

5. User Correlation this captures the ‘hidden relations’ between any two uséney
share common interest in a particular item. The common tislidnat if two users
are both interested in some items, their tastes are siraidrthat ratings by one user
are indicative of the other’s ratings (Resnietkal.,, 1994). The SQL query is:
SELECT rating1Score rating2Score
FROM Rating rating1,Rating rating2,User userlUser user2
WHERE rating1Onltem= rating20Onltemand ratinglByUser= userllD and rat-
ing2ByUser= user2lD
Figure 5.2b depicts two cliques returned by this query ferdsand user 4.

6. Item Correlation similar to the case of User Correlation, this template wags the
‘hidden relations’ between any two items if they are co-dldig the same user. The
idea is that if two items are co-rated by some users, thentmsabf these items are
similar and that scores given to one item are informativeradting the score of
the other item. The SQL query is:

SELECT rating1Score rating2Score

FROM Rating rating1,Rating rating2,ltem item1,ltem item2

WHERE rating1ByUser= rating2ByUserand rating1lOnltem= item1ID and rat-
ing2.Onltem= item2ID

Figure 5.2c depicts two cliques returned by this query famitl and item 3.

Application of these six clique templates to the rating Hate results in an unrolled
Markov network, or Preference Network. Figure 5.3 depictsagment of the PNRat-
ing.Scores are treated as hidden state variables. Denotg fiye state variable associated
with useru and itemi. The pair(u, i) is then the index of the network’s vertex. There
is an edge between any two ratings by the same wsand an edge between two ratings
on the same item. As a result, a vertex of,; will be connected with/ (i) + I(u) — 2
other vertices. Thus, for each user, there is a fully coratestib-network of all ratings that
have been made, plus connections to ratings by other usdhesa items. Likewise, for
each item, there is a fully connected sub-network of alhgdiby different users on this
item, plus connections to ratings on other items by thesesu3ée resulting networg is
typically densely connected becausg) can be potentially very large (e.00°).
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Two-step modelling

Ideally, we would be interested in modelling all possiblengs, including those which
have not yet been in the database. In other words, the ideaélnsbould cover all the
empty cells in the preference matrix (Figure 5.2). Howeuepractice, the matrix size
is extremely large (e.g10° x 10°), making computation intractable. In addition, such
modelling is unnecessary because a user is often interestadoderate number of items.
As a result, we adopt a two-step strategy:

e During the learning phase, we limit to model the joint distition over existing rat-
ings.

e During the prediction/recommendation phase we extend tbeeinto incorporate
to-be-predicted entries without changing parameters.

5.3.3 Feature Design and Selection

Corresponding to the six clique templates defined in Sed&i8rR2 are feature functions
that realise the templates in real data. Theyuser-identity, item-identity, user-type, item-
category, user-correlatioranditem-correlation

5.3.3.1 Feature design

User identity

Assume that the ratings are integer, ranging from [ISto The average rating, by user

u over items rated roughly indicates the user-specific sdaleeorating because the same
rating of4 may mean ‘OK’ for a regular user, but may mean ‘excellent’dasritic. The
feature that encodes such belief is given as

fu(xm’u) :g(‘xm—qu (5.6)

whereg(y) = 1 —y/(|S| — 1) is used to ensure that the feature values is normalised to
[0, 1] and|S| is the rating scale.

Item identity

Similarly, we know from the database the average ratingf item i which roughly indi-
cates the general quality of the item with respect to those ndve rated it. We have the
following feature

fi(Tuin i) = g(|Tui — Ti), (5.7)
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User types
Denote bya, the vector of attributes for user We are interested in seeing the classes of
users who like a particular iteirthrough the following mapping

fi(zwi) = aug(|Tu — Zi) (5.8)

Item categories
Denote bya; the vector of attributes of iterh Mapping from item attributes to user pref-
erence can be carried out through the following feature

User correlation
The user correlation features capture the idea that if tveosusate the same item then the
ratings, after being offset by user’'s mean rating, shoulgifmar

fu,v(xuia xvi) - g(|(xm - ju) - (xvi - fv)“ (510)

Item correlation
The item correlation features capture the fact that if a waers two items, then after
offsetting the goodness of each item, the ratings shouldhhi¢as;

fig(@uis 2ug) = g([(Tui — %) — (vuj — Z5)]) (5.11)

5.3.3.2 Feature selection

We employ the filtering approach (Section 3.3) for selectiogelation features. Specif-
ically, we only select those correlation features if therefations are beyond a certain
threshold. Between users, the Pearson’s correlation imatitqu5.2 is used. Likewise, the
similarity measure in Equation 5.3 is employed as corm@hatietween items. For simplic-
ity, the threshold is set t0.

It should be noted that correlation features realise catigei clique templates. Thus fea-
ture selection is equivalent to clique selection, whichuimtdefines the connectivity of the
Preference Network.
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5.3.4 Parameter Estimation

We limit ourselves to supervised learning in that all théngs {x,;} in the training data
are known. Since the network structure is dense we resanetpseudo-likelihood learn-
ing method (Section 3.5.1.2). To optimise the parametersiseethe stochastic gradient
ascent procedure (Section 3.5.1.1). Not only is the stdichgidient ascent fast, it is also
suitable for dealing with dynamic databases in an onlingnggivhere the users constantly
update the ratings. Typically, 2-3 passes through theesdata are often enough in our
experiments.

5.3.5 Prediction

Recall that we employ a two-step modelling. In the learnihgge (Section 5.3.4), the
model includes all previous ratings. Once the model has lesémated we extend the
graph structure to include new ratings that need to be pietiar recommended. Since the
number of newly added ratings is typically small compareth®size of existing ratings,
it can be assumed that the model parameters do not need teebgnmated.

5.3.5.1 Preference prediction

The prediction of the rating,; for useru over itemi is given as

Tyi = argmax Pr(z,,; | N(u,1i), 2) (5.12)
whereN (u, 7) is the neighbourhood of the nodeg;. The probabilityPr(#,;|N (x.;), 2) is
the measure of theonfidenceor the ranking level in making this prediction. This can be
useful in practical situations when we need high precisibat is, only ratings with high
confidence are presented to the users.

We can jointly infer the ratings,, of given useru on a subset of items= (iy, is,..) as
follows

%, = argmax Pr(z, | N'(u), 2) (5.13)

whereN (u) is the set of all existing ratings that are connected witmgstby usern. In
another scenario we may want to recommend a relatively rawiito a set of promising
users, we can make joint predictionsas follows

T; = argmax Pr(x; | N'(i), 2) (5.14)
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whereN (i) is the set of all existing ratings that are connected witimgston itemi. Since
the sub-networks in such joint predictions are potentidiysely connected, it is only
feasible to apply local iterative classification methodshsas Iterated Conditional Mode
(Section 2.4.7.1), mean fields (Section 2.4.6.3) and rétaxdabeling (e.g. see (Pelillo
and Refice, 1994)).

5.3.5.2 Top+V recommendation

In order to provide a list of topV items to a given user, the first step is usually to identify
a candidate set of promising items. Then in the second stepnkeand choose the best
items from this candidate set according to some measurdeviurece.

Identifying the candidate set

This step should be as efficient as possible and the candidaskould be relatively small
compared to the number of items in the database. There areanvmon techniques used
in user and item-based methods. In the user-based techfigeach user we identify the
set of K most similar users, and then take the union of all items rhjetheseK users.
Then, we remove from the union those items that the user eagopisly rated. In the
item-based technique (Deshpande and Karypis, 2004), &br item the user has rated we
select theK best similar items that the user has not rated. Then, we bakartion of all
similar items.

Indeed, if K — oo, or equivalently, we use all similar users and items in thialokse,
then the item sets returned by the item-based and user-bedatques araentical To
see why, we show that every candidatesturned by the item-based technique is also the
candidate by the user-based technique, and vice versall Redta pair of items is said to
be similar if they are jointly rated by the same user. Lgt) is the set of items rated by
the current uset. So for every iteny ¢ () similar to item: € I(u), there must exist a
userv # wu so thati, j € I(v). Sinceu andwv jointly rate i, they are similar users, which
mean thay is also in the candidate set. Analogously, for every candigleated by usen,
which is similar tou, and;j ¢ I(u), there must be an item# j jointly rated by both: and
v. Thusi, 5 € I(v), and therefore they are similar. This means thatust be a candidate
for the item-based technique.

One drawback of this neighbourhood-based method is thataddata sparsity the candi-
date set can be limited, and may not cover what the user Iy retdrested in. For example,
if each user rates 5 items, there are, at most, 5 users in lggthoairhood, each of whom
rates 4 more items. Thus the candidate set has at most 20 items

In our Preference Networks, the similarity measure is &gaeby the correlation between



5.3 Preference Networks for Recommender Systems 82

users or between items. The correlation is in turn captuyetthé corresponding correla-
tion parameters. Thus, we can use either the user-usetatmreor item-item correlation
to identify the candidate set. Furthermore, we can also a#ethe correlation types and
take the union of the two candidate sets.

Ranking the candidate set

The second step in the tag-recommendation is to rank the candidates according to some
scoring methods. Ranking in the user-based methods is bésad on the popularity of
the item, i.e. the number of users in the neighbourhood whe hated the item. Ranking

in the item-based methods (Deshpande and Karypis, 200djipuated by considering not
only the number of raters but the similarity between the itming ranked and the set of
items already rated by the user.

Under our Preference Networks formulation, we propose topge the change in system
energy and use it as the ranking measure. Our PN can be tholughtsome stochastic
physical system whose energy is related to the conditiasailoution as follows

1

Pr(z|z) = 70

exp(—E(z, z)) (5.15)

whereE(z, z) = —w F(z, 2) is the system energy. Thus the lower the energy the system
stater has, the more probable the system is in that state. Denate-hiy:, i) the index of
node in the Preference Network. Since the features areifumet attributes at node and

of pairwise interaction between nodes, the system eneltipeisum of node-based energy
and interaction energy

ZEt<xt7 Z Ett’ xt,xt/z

ey (t,t)e€

Recommending a new itemto a given usew is equivalent to extending the system by
adding new rating node; = z,,. The change in system energy is therefore the sum of
node-based energy of the new node, and the interactionyebetgeen the node and its
neighbours.

AE($t> ) Et xt, Z Ett’ xtaxt’ Z)
t'eN(t)

whereN (t) is the neighbourhood of node For simplicity, we assume that the state of the
existing system does not change after the node additioricajyp we want the extended
system to be in the most probable state, or equivalentlytstes state with lowest energy.
This means that the node that causes the most reductiontefisgsergy will be preferred.
Since we do not know the correct stateof the new node, we may guess by predicting
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Z; (using Equation 5.12). Let us call the energy reduction by thethod themaximal
energy changeAlternatively, we may compute threxpected energy chang@account for
the uncertainty in the preference prediction

E[AE(zy, 2 ZP 2N (), 2) AE(x, 2) (5.16)

5.3.6 Results
5.3.6.1 Data and Experimental setup

We evaluated our method on the MovieLens éatallected by the GroupLens Research
Project at the University of Minnesota from September 19897 through April 22nd,
1998. We used the dataset of 100,000 ratings (1-5 scale} hes 943 users and 1682
movies. The data is divided into a training set of 80,000hgtiand the test set of 20,000
ratings. The training data accounts for 852,848 user-basdd 11,546 item-based corre-
lation features.

We transform the content attributes into a vector of binadydators. Some attributes such
as sex are categorical and thus are dimensions in the véggerrequires some segmen-
tation into intervals: under 18, 18-24, 25-34, 35-44, 458855, and 56+. We limit user
attributes to age, sex and 20 job categdriesd item attributes to 19 film genfesMuch
richer movie content can be obtained from the Internet MBdtabase (IMDB). Then we
normalise the binary vectors by dividing it to the number ciivee vector elements. This
makes the content features less sensitive to the amounaibdlale content information.

5.3.6.2 Accuracy of rating prediction

For comparison we implement three methods described inddest3.1: the user-based
Pearson’s correlation, the item-based correlation method the non-negative matrix fac-
torisation. For correlation methods only positive cortielas are used for prediction. For
matrix factorisation the gradient descent was employeds&V¢he regularisation parame-
ter asy = 0.01 and the learning rate 6fx 10~*. We experiment with different rank values
H and then chosé& = 5. The gradient descent was stopped after 100 iterations.

Shttp://www.grouplens.org

6Job list: administrator, artist, doctor, educator, enginentertainment, executive, healthcare, home-
maker, lawyer, librarian, marketing, none, other, prograen retired, salesman, scientist, student, technician
and writer.

’Film genres: unknown, action, adventure, animation, céild comedy, crime, documentary, drama,
fantasy, film-noir, horror, musical, mystery, romance;fgdhriller, war and Western.

8http://us.imdb.com
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| Method | MAE | 0/1 Error |
User-based 0.720| 0.590
ltem-based 0.717| 0.592
NNMF 0.718| 0.590
PN 0.693| 0.572

Table 5.1: Mean absolute error (MAE) of recommendation w@$hon MovielLens data.
NNMF = Non-negative Matrix Factorisation, PN = Preferenatwork.
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Figure 5.4: (a) Mean absolute error (MAE) and (b) mean O/@resf recommendation
methods with respect to training size of the MovieLens daRd-content: PNs with
content-based features only, PN-correlation: PNs withatation-based features only, PN-
all: PNs with all features, and NNMF: Non-negative matrigttaisation.

For the PNs, in the training phrase, we set the learning\rate).001 and the regularisation
termo = 1. Good performance is obtained after 2 iterations.

Two metrics are used: the mean absolute error (MAE)

Y =zl /(T')) (5.17)
(u3)eT’
where7” is the set of rating indices in the test data, and the meanrfii e
Y (@ # wa) /(I T') (5.18)

(u,2)eT’

In general, the MAE is more desirable than the 0/1 error b&eawaking exact predictions
may not be required and making ‘close enough’ predictiossilishelpful. As item-based

and user-used algorithms output real ratings, we rounduhgbers before computing the
errors. Results shown in Table 5.1 demonstrate that the Bdédarms all other methods.

Sensitivity to data sparsity
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To evaluate methods against data sparsity we randomly sydbsahe training set, but
fix the test set. We report the performance of different mgghasing the MAE metric
in Figure 5.4a and the mean 0/1 errors in Figure 5.4b. As eégdethe purely content-
based method deals with the sparsity in the user-item ratiatix very well, i.e. when
the training data is limited. However, as the content we wse s limited to a basic set
of attributes, more data does not help the content-baseldochétirther. The correlation-
based method (purely collaborative filtering), on the otieand, suffers severely from the
sparsity, but outperforms all other methods when the dasafigcient. Finally, the hy-
brid method, which combines all the content, identity andalation features, improves
the performance of all the component methods, both whenislaaarse, and when it is
sufficient.

5.3.6.3 Accuracy of top#V list

We produce a ranked list of items for each user in the testcs#iat these items do not
appear in the training set. When a recommended item is ineffteset of a user, we call

it is a hit. For evaluation, we employ two measures. The fasheexpected utilityof the
ranked list (Breeset al,, 1998), and the second the MAE computed over the hits. The
expected utility takes into account the positipaf the hit in the list for each user

1

J

where« is the viewing half-life. Following (Breeset al, 1998), we setv = 5. Finally,
the expected utility for all users in the test set is given as

2 I
R=1005%— 5.20
. 520
whereR]** is computed as
R = E L 5.21
(. 2G-1)/(a=1) (5-21)
JEI'(u)

wherel’(u) is the set of items of userin the test set.

For comparison, we implement a user-based recommendattbatifor each user we rank
the item based on the number of times it is rated by other fjpeki) correlated users.
Table 5.2 reports results of Preference Network using rapkieasure of maximal energy
change and expected energy change to produce the top 20eitemmendations.

We vary the rate of recall by varying the value@f i.e. the recall rate typically improves
as N increases. We are interested in how the expected utilityth@dAE changes as
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| Method | MAE | Expected Utility|
User-based 0.669 46.61
PN (maximal energy change)0.603 47.43
PN (expected energy change.607 48.49

Table 5.2: Performance of top-20 recommendation. PN = Rnefe Network.

a function of recall. The expected energy change is usedeagatiking criteria for the
Preference Network. Figure 5.5a shows that the utilityeases as a function of the recall
rate and reaches a saturation level at some point. FigubeeXfibits a similar trend. It
supports the argument that when the recall rate is smaléerXiis small), we have more
confidence on the recommendation. For both measures, iiderévthat the Preference
Network has advantages over the user-based method.
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Figure 5.5: Expected utility (a) and Mean absolute errora®p function of recall. The
lager utility the better. The smaller MAE the better. PN =fBrence Network.

5.4 Closing Remarks

This chapter has presented Relational Markov Networkspgpeat representation of CRFs
in relational domains. We have also applied the RMN to recemufation systems. The
whole rating database was modelled by a single Markov nétteobest exploit the inter-
dependency between variables. In terms of feature sehtestoemployed heuristic-based
correlation measures. Interestingly, feature selectidhis case is not a separate task from
network modelling, but rather, it specifies the network ciee directly. As the network
structure constructed in the case study is large-scale ensetly connected, the pseudo-
likelihood is used. For optimisation we use stochastic igiratdascent for efficiency and
the requirement of dynamic database updating.
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In our movie rating application we have treated the attgliRating.Scoreas acategorical
variable as in standard CRFs. In this treatment, all valeegqually important. However,
in factRating.Scoreis ordinal, in that the difference between the likelihoods of two value
that are close (e.g. 1 and 2) should be smaller than that batwadues that are not close
(e.g. 1 and 5). Treatment of ordinal state variables for CREsll an open problem and
the only work we are aware of is (Mao and Lebanon, 2007).

Looking into wider contexts there are pending problems irF€Rhat have not been fully
investigated. First, in the heuristics we have used forctielg features, little is known

about their effect on learning and final performance evalnatFeature selection should
preferably be embedded in learning so that the progressecamhitored.

Second, as evidenced in the recommendation case studyinigaiobally with complex
network is not possible and we had to resort to the local pséikdlihood. This has been
known to over-estimate the interaction potentials, and ttiie performance may be sub-
optimal. Unfortunately, there have not been any generibajliearning algorithms that are
both efficient and highly accurate in arbitrary networks.

And finally, the two case studies in the previous and curréafpters share a common
property in that the data is essentially flat, and there aft@erarchical structures. Further,
the model structures are pre-specified and are not infeiredtly from the unseen data.
In many domains, on the other hand, there is a natural higranhere structures are
data dependent, and thus cannot be pre-specified. Theskempstowever, cannot be
represented by current modelling in CRFs.

In the rest of this thesis we present investigations intedttaree issues.



Chapter 6

AdaBoost.CRFs for Feature Selection
with Missing Labels

6.1 Introduction

As discussed in Section 3.3, feature selection plays aalrtade in the successful imple-
mentation of a CRF-based system. In Chapters 4 and 5 we eatplby filtering approach
that involves frequency cut-off and correlation measurBsese methods help to reduce
the number of features significantly, but are not integratemithe learning process and not
evaluated against the final prediction performance. Sintensive evaluation of feature
combinations in the wrapper approach is extremely expensien for small CRF-based
systems, it is more reasonable to embed feature selectmiesrning.

One patrticular successful learning methodology that etdiibature selection behaviour is
boosting (Freund and Schapire, 1997; Schagiiied., 1998; Schapire and Singer, 1999). In
the boosting setting we have access to a pool of ‘base lesraad boosting aims to boost
the predictive power of these learners by sequentiallyraglthie weighted learners into
an ensemble. Base learners can be simple and weak (e.giodestismps (Schapire and
Singer, 2000)) but they can also be sophisticated (e.gsidecirees (Quinlan, 1993; Di-
etterich, 2000), neural networks (Bishop, 1995; Druakeal., 1992), and Hidden Markov
Models (Rabiner, 1989; Yiet al,, 2004)). In the context of linear classifiers, base learn-
ers are features or weighted combination of features. Theesgial process of drawing
features from the feature pool generally results in a snudiset of features.

In this chapter we extend the boosting framework for paramestimation of CRFs un-
der the condition that some labels may be missing. Thusjilegis partially supervised
We adapt a multi-class boosting algorithm known as AdaBbdtiRt(Freund and Schapire,
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1997; Schapire and Singer, 1999) for partially labeled CRHse resulting algorithm is
called AdaBoost.CRF. Its effectiveness is demonstratexitih experiments on the prob-
lem of video-based human activity recognition, in which sty provides a comparable
performance to maximum likelihood estimation (MLE) buthvé much smaller subset of
features.

6.2 Related Work

Our work is closely related to that in (Dietterieh al, 2004), where boosting is applied
to learn parameters of the CRFs using gradient trees (Faed2001). The objective
function is the log-likelihood in the standard MLE setting the training is based on fitting
regression trees in a stage-wise fashion. The final dedigiartion is in the form of a linear
combination of regression trees. In (Dietterattal,, 2004), functional gradients of the log-
loss are used whilst we apply the original gradients of th@oeential loss of AdaBoost
(Freund and Schapire, 1997; Schapateal, 1998; Schapire and Singer, 1999). More
importantly, the paper in (Dietteriaft al, 2004) does not incorporate hidden variables as
our work does.

Another work, (Torralbaet al., 2005), integrates the message passing algorithm of belief
propagation (BP) with a variant of LogitBoost (Friednetral,, 2000). Instead of using the
per-network loss as in (Dietteriat al,, 2004), the authors of (Torralle al., 2005) employ

the per-label loss (e.g. see (Altehal., 2003b) for details of the two losses), that is, they
use the marginal probabilities. The work in (Torralitaal., 2005) converts the structured
learning problem into a more conventional unstructuredieg problem. The algorithm
thus alternates between a message passing round to upeabeahper-label log-losses,
and a boosting round to update the parameters. Howevergd3RHhs integrated in the
algorithm, it is not made clear on how to apply different nefece techniques when the BP
fails to converge in general networks.

There have been a number of attempts to exploit the learromgpof boosting applied
to structured models other than CRFs, such as dynamic Bayasiworks (DBNs) (Garg
et al,, 2003), Bayesian network classifier (Jiegal., 2005), and HMMs (Yiret al., 2004).

6.3 Multi-class Boosting

This section reviews a multi-class boosting algorithm kn@g AdaBoost.MR (Schapire
and Singer, 1999; Collinet al., 2002; Lebanon and Lafferty, 2002; Altut al,, 2003a),
based on which our work will be developed. We adopt the fmneti view of boosting
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from (Masonet al., 2000).

Given a pool of feature$F,,(z, z)}, we seek to select a subggt;(z, z)} | and corre-
sponding weightgw,.}. LetG(x, z) = Zszl wiFy(x, z) be a final classifier that outputs
the prediction as follows

T = argmaxG(x, z) (6.1)

reX

Given atraining seD = {2 (017 we would expect that) = @), and thus
G(zW, 20) > G(x, 20) (6.2)

forallx € X andl = 1,2, ..., n. Whenever there exists arnthat invalidates this assertion,
the system suffers a loss. Thank lossis defined as

1 n
Lrank = ~ > 6G(, M) = G(z®, D) > 0] (6.3)
=1

xT

whered|.] is the indicator function. This rank loss is basically thenter of possibilities
where the system misclassifies the data. The loss vanistiessfstem correctly classifies
all the data instances.

However, the rank-loss in Equation 6.3 is difficult to ming®i Therefore we resort to the
exponential-loss, which is a smooth, convex upper-boundefank-loss:

1 n
Loy == 33 exp{Gla, =) = G, 20)} (6.4)
=1

xT

Term-by-term comparison of Equations 6.3 and Equation &Measily verify that.,,, is
indeed the upper-bound &f.,,.,. up to a constant.

To see the connection between the exponential loss anddH&é&ihood, assume a con-
ditional distribution

Pr(z|z) =

1
70 exp(G(z, 2)) (6.5)

whereZ(z) = > exp(G(z,z)) is the normalisation constant. This assumption makes
sense because the prediction rule in Equation 6.1 is id@ntiche Maximum A Posteriori:

T = argmax G(x, z) = argmax Pr(z|z) (6.6)
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SubstitutingPr(z|z) into Equation 6.4 yields

Loy = Zpr QRO 6.7)

This appears similar to the log-loss used in the maximuniitiked estimation

1< 1
Llog = E ; log W (68)

The difference between the exponential loss and the logioabout the numerical scale,
because of théog function in the log-loss. However, in (Lebanon and Laffe2902)
the authors show that the two loss functions give very cleselts given enough data.
This paper suggests that boosting can be regarded as awXapate) alternative for the
maximum likelihood estimation (MLE). From another relatatyle, boosting-style MLE
algorithms are derived in (Friedma al., 2000; Collinset al., 2002).

The learning process in boosting is iterative, in that ahestept we greedily seek an
update of the functiondF(.) that best reduces the loss:

G — G'+d'Fy where (6.9)
(of,4) = argminLe,, (G + aFy) (6.10)

The last equation depicts the process of incremental feaeiection, i.e. only the best
feature is drawn at each step.

6.4 AdaBoost.CRFs

6.4.1 Exponential Loss for Incomplete Data

We view pattern prediction in CRFs as a classification problelowever, in this case the
number of distinct classes is exponentially large, j€!”/, where|S| is the size of label
set, and|V| is the number of nodes in the Markov network. In our partialiyervised
setting the label set has a visible subsetand a hidden subsét i.e. z = (¥, h). Given

n i.i.d observationgv®, (017 maximum likelihood learning in CRFs minimises the
incomplete log-loss

1
Liog = - Zlog Pr(9®|z0) = Zlog |z(l ) (6.11)
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Following the development in Section 6.3, we define a egpected ranking logs incor-
porate hidden variables as follows

Lrane = — Z Zpr ho®,20) " SAG ("D, 9, h) > 0] (6.12)

900

whereAG(zW, 9, h) = G(29,9,h) — G(zW, 9D h). This rank loss captures the expected
number of times when a classification is wrong. To see whyrasghat the classification
is right, thenmaxy G(2W, 9, h) = G(z0, 9O 1), implying G(2©, 9, h) < G(zV, 90 h)

for all ¥ # 9. As for optimisation purposes, we will deal with a smoothpeex upper
bound of the rank loss

Lewp = Z Z Pr(h[0®, 20) Y " exp(AG(z", 9, b)) (6.13)
9

Whend = z andh = (), i.e. all state variables are observed, this reduces toattieloss
proposed in (Alturet al,, 2003a).

A difficulty associated with this formulation is that we dotrkmow the true conditional
distributionPr (k9" z1). First, we approximate it by the learned distribution at phe-
vious iteration. Thus, the conditional distribution is aped along the way, starting from
some guessed distribution, for example, a uniform distitiou Second, we assume the
log-linear model as in Equation 6.5, leading to

l exp(G (2,9, h
> exp(AG(EY 9, k) = %ﬁpﬁ((zag,w,h);)

9
1
Pr(9W]h, z0)

which can be fed into Equation 6.13 to obtain

Pr(h|v
fo = LY P

n

1 1
B L 6.14
" ; EREIGIEO (6.14)

We can notice the similarity between the exponential lodsdoation 6.14, and the log-
loss in Equation 6.11 as log(.) is a monotonically incregdimction. The difference is
the exponential scale used in Equation 6.14 with respeddatufes{ F,.} as compared to
the linear scale in Equation 6.11.
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6.4.2 Boosting-based Learning

Applying the greedy update rules in Equations 6.9 and 6. £&eek the best featufé and
its coefficient to add to the ensemlglét! = G* + o' F; so that the loss in Equation 6.13 is
minimised.

(', j) = argrgiglﬁexp(t, a, k), where (6.15)

1 n
Lewp(t,a, k) = EE Ehw,zm[g exp(AGH + aAFY)]
=1 9

andE, s .o ,[.] is the expectation with respect to the distributier(n9", 2. t); and
Ght andF,ﬁ” are shorthands fa@* (), 9, h) and (2, 9, h), respectively. Note that this
is just an approximation to the loss in Equation 6.13 becaweséx the conditional dis-
tribution Pr(h|9®, () t) obtained from the previous iteration. However, this stiikas
sense since the learning is incremental, and thus the @stidastribution will get closer
to the true distribution along the way. Indeed, this cattine essence of boosting: during
each round boosting selects the base learner that best isé@sithe following loss over the
weighted data distribution (Schapire and Singer, 1999)

1 n
t o\ - @)
(o, 5) = arg min 12_1 ;h D(l,9, h,t) exp(aAF,”) (6.16)

whereD(l, 9, h, t) is the weighted data distribution

Pr(h[9, 2, ) exp(AGH)
D(l,9,h,t) = A7
(1,9, h,t) S Pr(h|9®), 200 ) exp(AG!t) (6.17)

Since the data distribution does not contajirEquation 6.16 is identical to Equation 6.15
up to a constant.

6.4.3 Beam Search

It should be noted that boosting is a very generic framewotaost the performance of
the base learner. Thus, we can build more complex and strdrage learners by using
some ensemble of features and then later fit them into thetibhgdsamework. However,
here we stick to simple base learners, which are featuresake the algorithm compatible
with the MLE.

We can select a number of top features and associated ceef§ithat minimise the loss in
Equation 6.16 instead of just one feature. This is essgnadbeam search with specified
beam sizes3.
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6.4.4 Regularisation

We employ &, regularisation term to make it consistent with the populaussian prior
used in conjunction with the MLE of CRFs. It also maintains tonvexity of the original
loss. The regularised loss becomes

(6.18)

ww‘wm

Ereg non reg"' E
k

where L,,,,—c4 IS eitherL;,, for MLE in Equation 6.11 orZ.,, for boosting in Equa-
tion 6.13. Note that the regularisation term for boostingginot have the Bayesian inter-
pretation as in the MLE setting but is simply a constraint tevent the parameters from
growing too large, i.e. the model fits the training data todl wenich is clearly sub-optimal
for noisy and unrepresentative data. The effect of reggdiin can be numerically very
different for the two losses, so we cannot expect the safioe both MLE and boosting.

6.5 Efficient Computation

Straightforward implementation of the optimisation in Btjan 6.15 or Equation 6.16 by
sequentially and iteratively searching for the best festand parameters can be impracti-
cal if the number of features is large. This is partly becdhs@bjective function, although
tractable to compute using dynamic programming in tree4ikkuctures, is still expensive.
We propose an efficient approximation which requires onlgva ¥ectors and an one-step
evaluation. The idea is to exploit the convexity of the lossdtion £..,(t, o, k) by ap-
proximating it with a convex quadratic function using sed@nder Taylor's expansion.
The change due to the update is approximated as

dLeyp(t, o, k) 1 d?Leoyy(t, o, k) 5

ALcy(t, o k) =~ —da a+ T a (6.19)

The selection procedure becomes
(o', j) = arg mikn Lewp(t,a, k) = arg mikn ALcyp(t, o, k)

The optimisation ovetr has an analytical solution

L.,
— EX’ 2
Q T (6.20)

erp

Once the feature has been selected the algorithm can progeapplying an additional
line-search step to find the best coefficientés= argmin, L..,(t, «, 7). One way to do
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so is to repeatedly apply the update based on Equation 6iR@aomvergence.

Up to now we have made an implicit assumption that all contmniazan be carried out ef-
ficiently. However, this is not the case for general CRFs bseanost quantities of interest
involve summation over an exponentially large number ofwoek configurations. Simi-
lar to (Altun et al, 2003a), we show that dynamic programming exists for ttaestired
networks. However, for general structures approximatererfce must be used. This issue
will be studied in Chapter 7.

There are three quantities we need to compute: the distibir(v?|2") in Equa-
tion 6.14, the first and second derivative £f,,(t, «, k) in Equation 6.19. For the dis-
tribution, we have

Pr(9¥|z0) = ZPr ) h|z®)

B Z(ﬁ(l )
= 70 (6.21)

where Z(W0 1) = 32, exp(3, G(z0, 99 b)) and Z(1) = 3, exp(Y, G(z0, z,)).
Both these partition functions are in the form of sum-prddtrus, they can be computed
efficiently using a single pass through a tree-like struetiihe first and second derivatives
of L..,(t, a, k) are then

1 n
Leapla=o = — > B0, exp(AGH) AR (6.22)
=1 9
1 n
Leaplazo = — > B 0> exp(AGH) (AR (6.23)
=1 9

Expanding Equation 6.22 yields
o § Y Pr(v,h AF| 6.24
exp| 0= £ Pr(9®]=0, ¢) - r( |Z t)A ( )

Recall thatF(l in the CRF is decomposed into the sum of clique-based featige
FPO 2) = S D0 2,). It follows that AF, (20, 2) = S Af(2®, z.). Thus
Equation 6.24 reduces to

n

1
emp‘a 0= Z Pr ﬁ(l z(l ZC:ZPI 'TC|Z Afk( ) (6.25)

which now contains cligue marginals and can be estimatecieitly for tree-like struc-
tures using a downward and upward sweep. For general stescioopy belief propaga-
tion can provide approximate estimates. Details of the gutace are omitted here due to
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space constraints.

However, the computation of Equation 6.23 does not enjoystme efficiency because
the square function is not decomposable. To make it decoahtmsve employ Cauchy’s
inequality to yield the upper bound of the change (Equatid®as

(AF(z",2))? = O Afi(z", )
< |C|ZAfk(z(l),xc)2

where|C| is the number of cliques in the network.

wherel”_ s the upper bound of the second derivative

exp!? erp

The update using = — L., /L"
L7, is rather conservative, so it is clear that a further lirercle is needed. Moreover, it
should be noted that the change in Equation 6.19, due to tdNeupdate, is

~ (‘C/ezpp)2

Aﬁexp(a, k’) = —057 (626)

erp

WhereAﬁem is the upper bound of the changeC.,, due to Cauchy’s inequality, so the
base learner selection using the optimal change does nehdem the scale of the second
derivative bound oﬁ’e’xp. Thus, the termiC'| in Cauchy’s inequality above can be replaced

by any convenient constant.

The complexity of our boosting algorithm is the same as thahe MLE of the CRFs.
This can be verified easily by taking the derivative of the-logs in Equation 6.11 and
comparing it with the quantities required in our algorithm.

6.6 Evaluations

6.6.1 Data and Feature Extraction

We evaluate the proposed AdaBoost.CRF algorithm on thegmobf home video surveil-
lance that was previously studied in (Nguyenal., 2005). The task is to recognise ac-
tivities performed by a person in a kitchen using two camenasinted on two opposite
ceiling corners. There are three complex activities: SHORHAL, HAVE _SNACK and
NORMAL_MEAL. Each of these consists of some of 12 primitive actast{Table 6.1),
which are essentially trajectories between landmark poBpecifically, SHORTMEAL =
{1,2,3,4,1%, HAVE _SNACK ={2,5,6,7,8, and NORMALMEAL = {1,2,4,9,10,11,1p
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No. | Activity No. | Activity
1 | Door—Cupboard 7 | Fridge—~TV chair
2 | Cupboard-Fridge 8 | TV chair—Door
3 | Fridge—Dining chair| 9 | Fridge—Stove
4 | Dining chair—Door 10 | Stove—Dining chair
5 | Door—TV chair 11 | Fridge—~Door
6 | TV chair—Cupboard| 12 | Dining chair—Fridge

Table 6.1: Primitive activities, from Nguyest al. (2005).

The raw data consists of 90 video sequences from which noiggdnates of the person
at each time step are extracted using a background subtradgjorithm. The coordinate
sequences are then used as the observations since theyeareddeelevant for the task
of recognising sub-trajectories. Each time step is mapw@aihotated by two labels: the
complex and primitive activities. The labels are given airting time to learn the model
and used as ground-truth to evaluate the accuracy of thelimpdediction. The data is
divided into training and testing sub-sets with 45 sequereeh.

Although the data is hierarchical, we restrict our attamtio modelling and recognising
the primitive activities only. The data is divided into tersubsets corresponding to the
three complex activities. Thus, the problem is inherendguential for which a chain-
structured CRF is appropriate and thus efficient. The sfaeesof each subset is limited
to the corresponding primitive activities.

For all the experiments reported here, we train the modefusie MLE along with the lim-
ited memory quasi-Newton method (L-BFGS) and we use theqsegh boosting scheme
with the help of a line search, satisfying Amijo’s conditsofNocedal and Wright, 1999).
For regularisation, the saneeis used for all features for simplicity and is empirically se
lected. In the training data, only 50% of labels are randogiVgn for each data slice in
the sequence. For the performance measure, we report thebeeerror and the average
Fy-score over all distinct labéls

From the raw observation of coordinates, we extract five masienal features at each
time stepr: g(z,7) = {gm(z,7)}> _,. These include théX,Y") coordinates, they &

uy velocities, and the speeq/m, respectively. These observational features are
approximately normalised so that they are of comparablie sca

1The F-score is computed @5 = 2 x R x P/(R + P), whereR is the recall rate, ané is precision.



6.6 Evaluations 98

6.6.2 Effect of Feature Selection

We design three feature sets. The first set, calteity-persistencecaptures the fact that
activities are in general persistent. The set is divided d@ta-association features

Jim(2,27) = 0lwr = U gm(z, 7) (6.27)
wherem = 1, .., 5, and label-label features
Jim(z, 2021, 27) = 0lar 1 = 2,]0[x, =] (6.28)
Thus the set ha&™ = 5|5]| + | S| features, wheréS| is the size of the label set.

The second feature set consist$rahsition-featureshat are intended to encode the activ-
ity transition nature as follows

fll,lg,m(za xT—lvxT) = 5[1'7—_1 = ll]a[x’r = l2]9m(2’, 7-) (629)
Thus the size of the feature setis= 5|S|>.

The third set, called theontext setis a generalisation of the second set. Observation-
features now incorporate neighbouring observation peiiitsn a sliding window of width
W

Im (2,7, €) = gm(z, T + €) (6.30)

wheree = —W,,..0,. W, with W, + W, + 1 = W. This is intended to capture the
correlation of the current activity with the past and theufat or the temporatontextof
the observations. The second feature set is a special c#sélivi= 1. The number of
features is a multiple of that in the second set, whicK'is- 51| S|2.

The boosting studied here has a beam #ze- 1, i.e. each round picks only one fea-
ture to update its weight. Tables 6.2, 6.3 and 6.4 show thimqmeance of the training
algorithms on test data of all three scenarios (SHORHAL, HAVE _'SNACK and NOR-
MAL _MEAL) for the three feature sets, respectively. Note thatitifinite regularisation
factoro means that there is no regularisation. In general, seqldtosting appears to be
slower than the MLE because it updates only one parametdiraeaFor the activity per-
sistence features (Table 6.2), the feature set is compautfoumative enough so that the
MLE attains a reasonably high performance. Due to this catmess, the feature selection
capacity is almost eliminated, leading to poorer resultsoaspared with the MLE.

However, the situation changes radically for the activignsition feature set (Table 6.3)
and for the context feature set (Table 6.4). When the obB8ernvaontext is small, i.e.
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Table 6.2: Performance on three data sets, activity-gergis features. Here, SM =
SHORT.MEAL, HS = HAVE_SNACK , NM = NORMAL_MEAL, Agthm = algorithm,
itrs = number of iterations, ftrs = number of selected fezgufo ftrs = portion of selected
features.

Data SM | SM HS HS NM | NM
Agthm || MLE | Boost|| MLE | Boost|| MLE | Boost
2 (0. 9] (0.9] (0. 9] (0.9] (0.9] (0. 9]

error(%)| 10.3 | 16.6 | 124 | 145 || 9.7 | 17.2
F1(%) 86.0| 80.2 || 84.8| 821 | 879 | 77.4
itrs 100 | 500 || 100 | 200 | 100 | 200
# ftrs 30 30 30 30 42 35

% ftrs 100 | 100 || 100 | 100 || 100 | 83.3

Table 6.3: Performance on activity transition features

Data SM | SM HS HS NM | NM
Agthm || MLE | Boost|| MLE | Boost|| MLE | Boost
2 o0 (0.@) o0 (0.@) (0.@) o0

error(%)| 18.6 | 10.1 || 13.0 | 10.8 | 15.0| 16.5
F1 (%) 758 | 89.3 | 86.8| 85.7 | 81.4| 80.9
itrs 59 200 74 100 53 100
# ftrs 125 | 57 125 | 44 245 60

% ftrs 100 | 45.6 || 100 | 35.2 || 100 | 24.5

W = 1, boosting consistently outperforms the MLE whilst mainiag only a partial
subset of features<( 50% of the original feature set). The feature selection capasit
demonstrated more clearly with the context-based feaetr@1s = 11), where less than
9% of features are selected by boosting for the SHORHAL scenario, and less than 3%
for the NORMAL_MEAL scenario. The boosting performance is still reasoaaldspite
the fact that a very compact feature set is used. There isftrera clear computational
advantage when the learned model is used for classification.

6.6.3 Learning the Activity-Transition Model

In this section we demonstrate that the activity transitimdel can be learned by both the
MLE and boosting. The transition feature sets studied presly do not separate the tran-
sitions from data, so the transition model may not be cdgréearned. We design another
feature set, which is the bridge between the activity-gégaice and the transition feature
set. Similar to the activity persistence set, the new setvisledl into data-association
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Table 6.4: Performance on context features with window Hize- 11
Data SM SM HS HS NM NM
Agthm || MLE | Boost|| MLE | Boost|| MLE | Boost
o 2 2 o0 o0 o0 o0
error(%) || 15.3 | 9.6 94 | 11.2 | 9.3 | 16.6
F1(%) 816 | 87.7 | 89.3| 86.6 | 87.7| 78.1
itrs 51 200 22 100 21 100
# ftrs 1375| 115 || 1375| 84 || 2695| 80
% ftrs 100 | 8.36 || 100 | 6.1 100 | 3.0
Table 6.5: Activity transition matrix of SHORMEAL data set
| Activity [ 123411
1 1{1|{0/0| O
2 Oj1(1/0|1
3 0/0(1(1|0
4 0/0(0|1|0
11 0/0(0|0| 1
features, as in Equation 6.27, and label-label features
fll,lz (xT—lvxT) = 5[1'7—_1 = ll]a[x’r = l?] (631)

Thus the set ha& = 5|5]| + | S|? features.

Given the SHORIMEAL data set, and the activity transition matrix in Tablé& 6the
parameters corresponding to the label-label features ige® gn Tables 6.6 and 6.7, as
learned by boosting and MLE, respectively.

At first sight it may be tempting to select non-zero paransegerd their associated tran-
sition features, and hence the corresponding transitiothendiowever, as transition fea-
tures are non-negative (indicator functions), the modelaly penalises the probabilities

Table 6.6: Parameter matrix of SHORMEAL data set learned by boosting

(Acivity | 1 [ 2 | 3 | 4 [ 11 |
1 1.8 0 -5904.9| -5904.9 0
2 -5904.9| 3.6 0 -5904.9 0
3 -5904.9| -5904.9| 2.425 0 -5904.9
4 -5904.9| -5904.9| -5904.9| 24 -5904.9
11 -5904.9| -5904.9| -5904.9| -5904.9| 2.175
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Table 6.7: Parameter matrix of SHORMEAL data set learned by MLE

Aciviy [ 1 | 2 [ 3 [ 4 [ 11 ]
1 10.81 4.311 | -5.7457| -5.3469| -1.8398
2 -2.2007| 15.056 | 3.6388| -5.6644| 0.41921
3 -5.3565| -2.3131 | 9.3656 | 1.6575| -2.3736
4 -5.4103| -4.556 | -4.1142| 7.1332| -5.2976
11 -3.17 | -0.09001| -2.9518| -4.8741| 8.9128

of any configurations that activate negative parametersrexmially, sincePr(z|z) o
exp(w Fy.(z,_1,z,)). Therefore, huge negative parameters practically cooraspo im-
probable configurations. If we replace all non-negativapeaters in Table 6.6 and 6.7 by
1, and the rest by 0, we actually obtain the transition matribable 6.5. The difference be-
tween boosting and MLE is that boosting penalises the imgdstgbtransitions much more
severely, thus leading to much sharper decisions with hagtiidence. Note that for this
data set boosting learns a much more correct model than tHe, Mlth an error rate of
3.8% (F} = 93.7%), in constrast to 15.6%( = 79.5%) by the MLE without regularisation,
and 11.8% [} = 85.0%) by the MLE withr = 5.

6.6.4 Effect of Beam Size

Recall that the beam search described in Section 6.4.3 sallbevbase learner to be an
ensemble ofB features. WherB = K, all the parameters are updated in parallel, so it
is essentially similar to the MLE, and thus no feature sedecits performed. We run a
few experiments with different beam siz8s starting from 1, which is the main focus of
this study, to the full parameter sat. As B increases, the number of selected features
also increases. However, it is inconclusive about the firafgpmance. It seems that
when B is large, the update is quite poor, leading to slow convargefhis is probably
because the diagonal matrix resulting from the algorithmotsa good approximation to
the true Hessian used in Newton updates. It suggests that ¢éiésts a good, but rather
moderate beam size that performs best in terms of both theemgence rate and the final
performance.

An alternative is just to minimise the exponential loss irupn 6.13 directly by using
any generic optimisation method (e.g. see (Aktal, 2003a,b)). However, this approach,
although fast to converge, loses the main idea behind bapstihich is to re-weigh the
data distribution on each round to focus more on hard-testfija examples as in Equa-
tion 6.16. These issues are left for future investigation.
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6.7 Closing Remarks

We have presented a scheme to exploit the discriminativaiteg power of the boost-
ing methodology and the semantically rich structured moél€RFs and integrated them
into a boosting based CRF framework which can handle misgan@bles. We have
demonstrated the performance of the newly proposed atgoiifadaBoost. CRF) over the
standard maximum-likelihood frameworks on video-baseviacrecognition tasks. The
built-in capacity of feature selection by boosting suggestinteresting application area in
small footprint devices with limited processing.

However, in our algorithm, we have assumed that the undeylyiference is efficient in
computing clique marginals. This assumption, unfortulgatenly holds for a restricted
class of tree-like Markov network structures. For generdimorks, approximate infer-
ence must be used. The drawback of this approximation isstheg the first and second
derivatives cannot be computed exactly, it is very hard adyae the convergence property
of optimisation method used in the learning algorithm. Bareple, the updating rule in
Equation 6.20 may be corrupted. One possible approach ttidtins problem of stochas-
tic derivatives is to apply stochastic gradient methodsa@Shapter 4 and Chapter 5 with
the hope that the long term effect of these methods will @eecaut the randomness intro-
duced by inference approximation. An alternative apprasth employ approximate loss
functions that support exact inference. This type of log$ @mvergence properties are
easier to characterise. This will be presented in the nexqbtein.



Chapter 7

AdaBoost.MRF for Learning CRFs with
General Structures

7.1 Introduction

In the last chapter we have addressed the problem of featieetion under partially su-
pervised conditions. The underlying inference of the lgaymprocess is assumed to be
efficient. However, this only holds for tree-like structsir@and learning CRFs in general
structures is intractable.

There are two general approaches to deal with this problemhastic and deterministic.
Stochastic methods allow running parameter updeteswith inexact computation, and
they carefully control the learning process in the way thahay converge to the true
maximum likelihood solution. Deterministic methods, oe tither hand, work only with
exact computation, but deterministically approximatetthie likelihood by more efficient
objective functions.

In the stochastic approach attention is paid to the quafithe stochastic process, e.g.
convergence, bias and variance. However, under the gemsrabrk setting these issues
are poorly understood. More specifically, as we have presentSection 2.4.6, approx-

imate inference can be carried out in different ways, eithesugh sampling or through

message passing algorithms. Unfortunately, sampling eaxtremely slow to reach good
approximation and message passing algorithms are notrgearchto converge. Under the
practical constraints of running time these methods ofésult in approximate quantities
required in parameter estimation, causing the optimisdtiop to stop prematurely.

In the deterministic approach, since there is no approxanmderence that affects the qual-
ity of the parameter updating process we can focus our aitetd the parameter esti-
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mation. The art is to maintain a good balance between inerefficiency and the qual-
ity of approximation of the objective function to the trukdiihood. Examples include
pseudo-likelihood (see Section 3.5.1.2 for descriptioth @hapter 5 for an application in
recommender systems), piece-wise pseudo-likelihood sugpvise likelihood (see Sec-
tion 3.5.2).

This chapter addresses the intractability of parameté@nasbn under general structures
by following the deterministic approach. We introduce a eloaigorithm called Ad-
aBoost.MRF. The name comes from the fact that it is based @aBAdst - a boosting
algorithm we have studied in the context of feature seladatiahe previous chapter. The
second part of the algorithm stands for Markov Random Fooeshe collection of Markov
trees induced by the graph under study. We exploit the fatetlyraph is a superimposition
of many spanning trees, which are intractable jointly fdeiance but efficient individu-
ally. The main part of the algorithm is a method to effectvdistribute the parameter
estimation task to individual trees and then combine thelt®at the end. We show that
under mild assumptions the AdaBoost.MRF is guaranteedaichréne unique optimum.
Furthermore, since the AdaBoost.MRF considers all thealades in the MRFs, the prob-
lem of hidden variable can also be handled effectively.

We demonstrate the effectiveness of the AdaBoost.MRF omadinee video surveillance
data described in Chapter 6. However, this time we jointlylelonultiple levels of activi-
ties using a grid CRF, known as Factorial CRF (FCRF) (Sugtcad., 2007) instead of the
flat CRF as in Chapter 6. Differing from previous applicaiaf the FCRF we tackle the
problem of missing labels. We compare our AdaBoost.MRF withstandard maximum
likelihood method, which uses Loopy BP (Section 2.4.6) amdariant (Wainwrighet al.,
2005b) as the underlying inference engines. To evaluateftaetiveness of the discrim-
inative FCRFs against generative methods, we implementiantaf the layered hidden
Markov models (LHMMs) (Oliveret al., 2004), that has previously been applied for ac-
tivity recognition. Differing from the original LHMMSs, ouvariant can handle partially
observed state variables to make it compatible with the FEG&IRsidered in this paper.

7.2 AdaBoost.MRF

In this section we describe AdaBoost.MRF, the boostingrétlym for parameter estima-
tion of general Markov random fields. As in the previous ckgpie consider the general
case where the state lakeimay have a hidden componéntand a visible componeni,
thatisz = (J, h).
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7.2.1 Boosted Markov Random Forests

0L o8 o

Figure 7.1: An example of Markov network (left-most) and sospanning trees (right).

Recall from Section 6.3 that given a set of weak leardétgr, z) }X_|, boosting seeks a
linear combination that makes a strong learner as follaifs:, 2) = Sor | wiFi(z, 2),
where{w,}}_, are corresponding weights.

In the fully supervised setting with i.i.d observationg=®, 2V} we want to minimise
the exponential loss of Equation 6.4. In partial supervisam the other hand, we are given
only the visible party) of 2 for the instancé. We propose to minimise thiacomplete
loss given by

Lineo=»_ Y _exp(G(, ") — G, 1)) (7.1)
l 9

In this setting, at step, the strong learne* (v, z) is updated by adding a weak-learner
F'(9, z) to the previous?~! (4, 2) as

G'(9,2) = G, 2) + o' F'(0, 2) (7.2)

whereco! is the weight of each weak learner in the ensemble. The weahkde and its
weight are chosen to minimise the loss in Equation 7.1, i.e.

(F*,a") = arg min Line, (7.3)

As we are interested in estimating the distributitid|z) we may choose the weak learner
as F'(v,z) = log Pr(v|z). However, if we use the distribution defined over the general
Markov networks, the computation of the weak learner iteeihtractable. To address
this issue we propose the use of spanning trees as weakreafimels, spanning trees are
weak approximations to the whole network. The spanningliesed learners are ‘weak’
because they are crude approximations of the true model

F(¥,z) =logPr.(¥|z) (7.4)

wherer is the index of the spanning trees in the network. This chalse allows incorpo-
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ration of the hidden information since
F(9,2) =log Y Pr.(¥, hlz) (7.5)
h

The strong learneé is therefore a collection of trees, and hence we call our fogps
method AdaBoost.MRF (AdaBoosted Markov Random Foresiguré 7.1 shows a sim-
ple example of a four-node network and some spanning trees.

7.2.2 Loss Bound using Hlder’s Inequality

With the tree selection procedure described in the prewsobsection, and given the fact
that the strong learner is the weighted sum of the tree kagjiiood, the incomplete expo-
nential loss (Equation 7.1) at the stepecomes

Linco = Z €xXp {Z J < IOg PI‘Tj (ﬁ\z(l)) — l()g Prq_j (ﬁ(l) |Z(l))> }

> H PrT] (9|21 )
— Z l'f By, (900 (7.6)

Although the evaluation of each weak learner is tractabhlesum over all visible variables
in the numerator is unfortunately intractable, except far $pecial case when all selected
spanning trees are the same

Fortunately, there exists a technique that helps to remoyestmmation in the numera-
tor. The idea is to apply the Holder’s inequality (Harellyal, 1952, Theorem 11) (see
Appendix A.2 for details) to the numerator

> TP, 010y < TI P, (9120)™) (7.7)
[ J U

where}; 1/r; = 1 andr; > 0. If we can ensure that’ > 0 anda’r; = 1 for all j, or

1This case can only happen if the Markov network is originaltyee or during the course of learning, no
other structures can compete with one particular tree. @imedr case is not interesting because any learning
method will do and we suspect that the latter case rarelydrappnless the tree is a very good approximation
to the original network.
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>,/ =1, we obtain

E{Zﬁ%@M%}
T Pr,, (900}

IN

£inco
l

1
2 T, e, (RO}
= Ly (7.8)

since}_, Pr, (9]z1) =1, VL, 5.

Using the fact thalog Pr,, (V|2) is a weak learner we can rewrite the upper bound lss
as

Ly(G) = Zexp { — Z o’ log Pr,, (19(”|z(l))} (7.9)
! J

= Zexp{ GHOWY, 2 )} (7.10)

It can be seen that the new bound is tractable to evaluates algb convex so that a global
minimum exists. We use the new lo&g; for learning. The domain of ;; is therefore a
linear space of functions (Masat al., 2000), which arg F*(9), 2)) = log Pr,, (9]2®)}

in our case.

The requiremenEj o’ = 1 can be met by defining the following ensemble

G'0,2) = (1-a")G"7(W,2) +a'F'(V,2) (7.11)
= G'"'9,2) +a's'(v, z) where (7.12)
s'(0,2) = F'(9,2) — G, 2) (7.13)

From Equation 7.12, it can be seen th&t) plays the role of the search direction with
respect to the functional(). Each previous weak learner’s weight is scaled down by a
factor of1 — o' as

o — (1 —a) (7.14)

forj=1,.. t—1,sothaty " al+af =37 a/(1—af)+a' =1,since} " o/ =
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7.2.3 Weak Learners, Convergence and Complexity
7.2.3.1 Selecting the best tree

We now show how to carry out the stepwise optimisation in Equa/.3 with the incom-
plete loss replaced by the upper boulid(G) in Equation 7.10.

The lossLy(G) as a function ofG(49, z) can be minimised by moving in the opposite
direction of gradient

—exp(—GI W0, 20Y) i 9 = 9

, (7.15)
0 otherwise

VLy(®,20) = {

However, as the functional gradiewtC, (G) and and the functional directionin Equa-
tion 7.12 may not belong to the same function space, dirgahigation may not apply. In
(Masonet al., 2000) the authors propose to fisidwhich points to the decreasing direction
of Ly, i.e.

(VLy,s) <0 (7.16)
Thus the best search directighis the solution of
st = argmin(V Ly, s) (7.17)

The step sizex' is determined using a line search or by setting it to a smaiktamt
€ (0,1).

Let us define the weight of data instarice

L exp{—GLY, 20
D = e 1( =0y (7.18)

These weights play the role of data distribution which isatpd as boosting proceeds.
Substituting Equation 7.15 into Equation 7.17, we have

st = argminz—Dt_l(l)s(ﬁ(l),z(l)) (7.19)
!

As s(0V, 20y = F(90 20) — GO, 2(0), minimising with respect te(¥, z()) and
FH0, 20)is equivalent, sinc&’~! (9" 2D} is a constant. Recall from Equation 7.4 that
FW, 20) = log Pr, (0¥ ]2W; w,), this minimisation translates to selecting the best tree
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7, and its parametens,, as follows

(14, Wr) = arg max Z D (1) log Pr (9020 w,) (7.20)
T

Our final result has a satisfying interpretatidhe functional gradient descent step tries

to solve the maximum re-weighted log-likelihood problemu@ion 7.20) for each tree

and selects the best tree with the largest re-weightediladithood As boosting proceeds,

some trees may be more likely to be selected than othersgsacttumulated weights of

trees may be different.

From Equation 7.18 it can be seen that after adding the leafte the ensemble in Equa-
tion 7.12, the data distribution is updated as

DY) o exp(—F,(v"Y, "))
_ eXp(—Gt_l(ﬁ(l), Z(l)> _ Ogtst<19(l), Z(l))>
_ Dt—l(l) exp(—oztst(ﬁ(l), Z(l))) (7.21)

This distribution must be re-normalised as

! D'(l)

Di(l) ST D) (7.22)
Sincea! > 0, the weight increases if = F'* — G'~! < 0. It can be interpreted théor a
given data instancg if the new weak learnef" is less likely than the average of previous
weak learnerg;~!, the AdaBoost.MRF will increase the weight for that dataanse
This is different from the usual boosting behaviour wheeedhata weight increases if the
strong learner fails to correctly classify the instancee PdaBoost. MRF seems to max-
imise data likelihood rather than minimise training erand this is particularly desirable
for density estimation.

7.2.3.2 Convergence property

We now provide a formal support for the convergence of the s&lection procedure in
Equation 7.20.

The search direction satisfying the condition in Equation 7.16 is callgdhdient-related
to G' (Bertsekas, 1999, p.35). We have the following convergeeselt (Bertsekas, 1999,
Proposition 1.2.3)

Proposition 2. Given aLipschitz continuitycondition onV Ly, i.e. |VLy(G) -V Ly (G|
< M||G - G||, forsomeM > 0,VG,G" € F, whereF is the function space, a gradient-
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related search directior?, and a reasonably (positive) small step sizehat satisfies

(VLu(G), s")]

<a'<(2- 7.2
e<a'<(2—¢) M (7.23)
wheree is a fixed positive scalar. Then
tlim G' = arg mc';n Ly (G) (7.24)

The Lipschitz continuity condition can be satisfied in ousehecausg ; is twice differ-
entiable, and the Hessian*Ly; is bounded (Bertsekas, 1999, p. 48). The conskéris
hard to find analytically, so in our implementation we setdtep size to a small constant
o' = 0.05, and we have found it is sufficient in our experiments. Thewtlgm terminates
when we cannot find any weak learnethat satisfies the condition in Equation 7.16.

7.2.3.3 Complexity

The running time of AdaBoost.MRF scales linearly in numbktrees k. Recall from
Section 2.4.5 that inference in trees wjti nodes,|S| states per node take€3(2[V|S5?)
time. If we only consider limited spanning trees, just erfotm@cover the whole network,
then R can be quite moderate. For example, for a fully connectedoar&twe just need
R = |V|, and in a grid-like network (Figure 7.3a}, = 2 is enough (Figure 7.4).

7.2.4 Combining the Parameters

Up to this point we have successfully estimated the parasieféndividual trees, and thus
the strong learner in the boosting sense, which is suffiéerdlassification purposes. The
prediction of output patterm given the input is given as

T = argmax G(x, z) (7.25)

reX

However, our ultimate goal is to (approximately) estimdie parameters of the original
network, which is a superimposition of individual trees.isTeubsection argues for a sen-
sible method for such an approximate estimation.

Recall thatG(z, z) = >, &' F'(z, z) and F*(z, z) = log Pr,,(z|z), thus

G(z,2) = Z a'log Pr, (z]2) (7.26)
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Assume that the tree distribution also belongs to the expiealdamily, that is

Pr (z|z;w,) = ﬁ exp(w]! F(z, 2)) (7.27)

wherew, is the tree parameter vector abtz; w.) = > exp(w, F(z,z)). Assume
further that the trees share the same feature functignsz). We require that the parts of
the parameters ., that correspond to cliques outside the trees to be zercs Thu

G(z,2) = Z ol (W] F(z,2)) — Z ' Z(zw,) (7.28)
Let

W = Z a'w,, (7.29)
t

then Equation 7.28 becomes

G(x,2) = w' F(z,2) — Z ' Z(zw,) (7.30)

Combining this with Equation 7.25 leads to

& = argmaxw ' F(z,2) (7.31)

rzeX

Obviously we want: to be the MAP assignment of the the original network, that is
arg max, Pr(z|z). One reasonable way is to assume thgtc|z) is parameterised by the
exponential family with parametev and feature sdf (x, z). The network distribution can
be written in terms of component tree distributions as

Pr(z|z) o exp {(Z o'w,,, F(z, z))} (7.32)
= Hexp {a"(w,,,F(z,2))} (7.33)
x H Pr,, (z|2)" (7.34)

As Pr(z|z) is a distribution, we have

t

Pr(als) = AbiPinl® Z)‘a (7.35)

|
> [T, Pro (] 2)

Thus, the combined model is a Logarithmic Opinion Pool (LByQHeskes, 1998; Pen-
nock and Wellman, 1999). Each modhrel, (x|z) is an ‘expert’ providing an estimate of the
true distributior)(z|z). The aggregatdrr(x|z) is indeed a minimiser of the weighted sum
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of Kullback-Leibler divergences between th¢z|z) and eactPr,, (x|z) (Heskes, 1998)

Pr(z|z) = arg 651(1;‘13) Xt: ot Zx: Q(z|z) log ch(ﬁ (7.36)

rr, (22)

The work of (Heskes, 1998) shows tHat(z|z) is closer to the true distributio@(z|z)
than the average of all individual expeRs,, (z|z). Our boosting algorithm can be seen as
an estimator of the weighting factofa’'}.

The AdaBoost.MRF is summarised in Figure 7.2.

Input: [ = 1,2, ..., n data pairs, graphgg® = (VO £0)}
Output: parameter vectow
Begin
Select spanning trees for each data instance
Initialise { D, = 1/n}, anda! =1
For each boosting round= 1,2, ...
Train all trees given weighted daf®'~' (1)}
[*Select the best tree distribution*/
(12, Wy,) = argmax, v, >, D'"1(1) log Pr, (9 |20; w,)
F* = log Pr,, (0®]z0)
St — Ft _ Gt—l
If >, D1(1)st (9, 20) < 0 Then go to Output
If t > 1 Then select the step size< o! < 1
[*Update the strong learner*/
Gt =(1—-a")G"! 4 ot F?
[*Scale down the previous learner weights*/
al —al(l—at),forj=1,..,t—1
[*Update the data weight*/
D¥(1) « D*(1) exp(—ats (9D, z0))

Dt(l
D'(1) — 55
End
Outputw = >, a'w,,

End

Figure 7.2: AdaBoost.MRF - AdaBoosted Markov Random Farest

Pennock and Wellman (1999) offer an interesting discussidhe relation between Markov
networks, the LogOP, and the properties of desirable agtpegwhich the LogOP satis-
fies. Our method is based on the idea of superimpositionnmn of sub-networks, that
is, if a node or an edge belongs to the aggregated networkst brelong to one of the
individual sub-networks. In (Smitht al., 2005) the authors consider the combination of
different models but they share the same underlying simipéencstructure. Models are
trained independently and then combined using the LogO®.riibdel weightga'} are
then estimated by maximising the likelihood of the combin@oldels. This approach is
fine as long as the underlying structure is tractable.
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Another related idea is the the product-of-experts (Hin&002), where all weights are
unity. In (Hinton, 2002) sampling is used to overcome theaictability, which may not
converge within a limited time. By contrast, our method f&cednt as it deals directly with
trees.

7.2.5 AdaBoost.MRF as Guided Search for MLE

As we rely on the boosting capacity to boost weak learnerstooag one, we do not need
to reach the maximum of the weighted log-likelihood in eamtnd. We can simply run a
few training iterations and take the partial results as lasithe condition in Equation 7.16
is met. To speedup the learning, we can initialise the patensér each weak learner to
the previously learned values.

This procedure has an interesting interpretation for steeetured networks. As we do
not have to select the best spanning trees anymore, thathlgaimply optimises the
re-weighted log-likelihood in a stage-wise manner. We arthat this approach can be
attractive because more information from the data disiiobucan be used to guide the
MLE, and it can create more diverse weak classifiers.

7.3 Evaluation

4

(a) FCRF (b) Collapsed FCRF

Figure 7.3: Factorial CRF with missing labels (a), and thiéapsed version into a chain
(b). Filled circles and bars are data observations, emptjesi are hidden labels, shaded
labels are the visible.

We evaluate the AdaBoost.MRF on the same home video swanedl dataset described
in Chapter 6. Recall that the data is hierarchical, in thatdbmplex human activities are
composed of primitive activities. However, this propertggsanot considered in Chapter 6
as we did not have efficient tools for learning more complexcstires than chains and
trees. In this chapter we model each data sequence as a ggidrigure 7.3). In other
words we build a two level Factorial CRF (FCRF) (Suttgral., 2007). The bottom level
represents all 12 primitive activities and the top level &ptex activities. Note that the
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setting of the bottom level in this chapter is different frémat in Chapter 6 in the sense
that the state space is the union of sub-state spaces catsideChapter 6.

Differing from the original setting of the FCRF in (Sutt@t al, 2007), we allow some
missing labels in training data. Specifically, we randomigvide half the labels for each
level. For testing, the MAP assignments resulted from Rdadpy max-product algorithm
are compared against the ground-truth.

In Figure 7.3 circles represent state variables (corredipgrio labels) and the bottom filled
bar is the whole observation sequence (the sequence oficatasl in this case). Empty
circles represent missing labels.

Since the model hierarchy is not deep, exact estimation afjimas can be carried out
by collapsing all the states at the current time into a meégegsee Figure 7.3b) and
performing aforward-backwardorocedure. Approximate inference using the BP (see Sec-
tion 2.4.5) and a BP-variant by Wainwright, Jaakkola andIsk§l (WJW) (Wainwright

et al, 2005b) methods has the complexity®@§27|£||S|?), wherel is the number of mes-
sage passing rounds;| is the number of edges in the network, afdis the state size per
node. However, the number of rounfiss not known analytically and there has not been
any theoretical estimate of it yet.

In our AdaBoost.MRF, inference in the trees takB&|V|S?) time, where|V| is the
number of nodes in the network. Thus, fld@| data instances an® trees, the Ad-
aBoost.MRF cost&®(4|D|R|V|S?) in total time for each gradient evaluation as we need to
take both® (¥, z) and®(z) into account. Similarly, the BP and WJW-based ML requires
O(4|D|1]£|5?) time. In fully connected network&S| = 5|V|(|V| 4 1), and in grid FCRFs,

I€] =~ 2|V|. If we take onlyR = |V| trees for the former fully connected networks, and
R = 2 for the grids, the total complexity per gradient evaluatasrthe BP and WJW-
based maximum likelihood and the AdaBoost.MRF will be samip to a constant. We
summarise the complexities in Table 7.1.

BP/WJW AdaBoost.MRF
O(4|D|I1|£]S?) | O(4|DIR]V|S?)

Table 7.1: Complexity per gradient evaluation.

7.3.1 Feature Extraction

At the bottom level of the FCRFs in our study the observaliée@ure set described in
Chapter 6 is reused. At the top level, however, instant médiron such as velocities offers
limited help since the complex activities often span longquks. Instead of using the real
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coordinateg X, ') for data association we quantize them into 24 squares irothra.r\We
also use much larger sliding windows with= s, = 20. To avoid computational overhead
we takee = —sy, —s; + 5, ..., 89 — 5, Sa.

There are also state features that capture the state ioansétween time steps at both
levels, and features that encode the state emission froipetteat state at the top level to
the child at the bottom. For simplicity we use indicator ftiogs for both cases.

7.3.2 Spanning Trees for AdaBoost. MRF

The AdaBoost.MRF algorithm described in Figure 7.2 requtree specification of a set
of spanning trees which will be used as weak classifiers. rGikie grid structure con-

sidered in this experiment there are many spanning tre¢sdhnabe extracted. However,
since the nature of our problem is about temporal regudaritthere the slice structure is
repeated over time, itis natural to decompose the netwdookiees in a such a way that the
structural repetition is maintained. With this hint there awo most noticeable trees that
stand out as shown in Figure 7.4, which roughly corresporidg¢dop and bottom chains
respectively.

(a) Top process (b) Bottom process

Figure 7.4: (a,b) Two process view of the FCRF in activity mitidg: (a) the complex
activity, and (b) the primitive.

With the same method the number of trees for dynamic modalsréspect the Markov
assumption is reduced drastically. If we impose furthetri@gons that each state can
only interact with the levels right above and below it, thée humber of trees can be
manageable (e.g. see Figure 7.5 for another example).

Lo’ I o

Figure 7.5: 2-slice structures of spanning trees for the FC®Rhose 2-slice structure is
given in the left-most graph in Figure 7.1.
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7.3.3 Segmentation and Annotation Results

1
0.8 :
T 0.6
S
5 *
S 0.4} ]
S - —— AdaBoost.MRF
 ——BP
0.2 - CWIW
- Exact
0 1 1
10° 10° 10* 10°

training time (s)

Figure 7.6: Macro-averageld, scores at the bottom layer vs training time.

For segmenting and annotating data we apply Pearl’s loopypnaduct algorithm.

For comparison we implement ML learning methods based orVBR)V and exact in-
ference for FCRFs. We also evaluate the effectiveness df@RFs against the Layered
HMMs (LHMMSs) (Oliver et al, 2004), where the output of the bottom HMM is used as
the input for the top HMM. Since, it is difficult to encode rifdature information in the
LHMMs without producing very large state spaces, we limé ttHMMs features to be
the discretised positions, and the differences betweeremuposition and the previous
and next ones. Our new implementation of LHMMs differs frdme priginal in (Oliver

et al, 2004) for each HMM has been extended to handle the parbabgrved states. All
learning algorithms are initialised uniformly. For segnagion purposes we report the
macro-averaged’ scores on a per-label basis.

For parameter optimisation of the (re-weighted) log-iikebd, initially we used the lim-
ited memory quasi-Newton method (L-BFGS) as suggesteddarCiRF literature, but it
seems to be slower and it converges prematurely to poori@adutor the BP and the ex-
act inference. The conjugate-gradient (CG) method workigbi our experiments. For
the Markov forests we run only two iterations of CG per baugtiound with the initial
parameters from the previously learned ones as we only reeetket the condition in
Equation 7.16. The WJW inference loop is stopped if the ngesshave converged at the
rate of 10~ or after 100 rounds. It appears that the final performanceRofsBsensitive
to the choice of convergence rates, while it is fairly stdblethe WJW. For example, the
F} scores at the bottom level for BP aie34, 0.87 and0.82 corresponding to the rates of
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Table 7.2: Macro-averageld, scores for top and bottom layers.

| Algorithm | Top-layer| Bottom-layer]|
AdaBoost.MRF 0.98 0.87
BP 0.99 0.87
WJIW 0.98 0.87
Exact 0.98 0.88
LHMM 0.88 0.67

1073,10~* and10~?, respectively. Below we report only the casel6f*, which appears
to be the best both in terms of accuracy and speed. Learrgogthims for the FCRFs are
stopped after 100 iterations if they have not convergedeatdte ofl10~°.

The performance of the AdaBoost.MRF and its alternativespsrted in Figure 7.6 and
Table 7.2, respectively. Overall, after enough trainimgetj the AdaBoost.MRF performs
comparably with the ML methods based on BP and WJW. The exBareince ML method
gives slightly better results as expected, but at the casiLah slower training time. How-
ever, it should be stressed that inference in our AdaBod®E Mlways converges, while it
is not guaranteed in the BP and WJW and it is generally irdatdetin the exact method.
The complexity per evaluation of the log-likelihood gradies known and fixed for the Ad-
aBoost.MRF, while for the BP and the WJW, it is generally def@nt on the convergence
criteria and how much the distribution is different from fanm (see Table 7.1).

Figure 7.7 shows the AdaBoost.MRF segmentation detail2aofaBdomly selected se-
guences which are concatenated together.

7.4 Closing Remarks

We have presented a novel method for using boosting in paearastimation of the gen-
eral CRFs with hidden variables. The algorithm AdaBoostBMi¥ers an efficient way

to tackle the intractability of the maximum likelihood methby breaking the model into
tractable trees and combining them to recover the origisdlorks. We apply the algo-
rithm to learn the FCRF for the problem of multilevel actwiecognition and segmenta-
tion.

As shown in our experiments, it appears that the AdaBoosE ehibits a structure learn-
ing behaviour since it may selectively pick some trees miguently than others, giving
higher weights to those trees. An important issue we haveuteinswered is that how
to automatically select the optimal tree at each round witlkmowing the set of trees in
advance.
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Figure 7.7: The segmentation compared with the ground-atitop (top graph) and bot-

tom levels (bottom graph).

There have been no exact methods (the AdaBoost.MRF is stélpgproximate method)
that can perform inference and learning on arbitrary mevél data. On the other hand
there are classes of multilevel temporal data that aretlgtnested, in the sense that the
life span of the higher level semantics exclusively corgaire life span of the lower ones.
This constraint may give rise to more efficient inference aaning. We will investigate
this issue in the next two chapters.



Chapter 8

Hierarchical Conditional Random Fields
for Recursive Sequential Data

8.1 Introduction

In the previous two chapters we have investigated two aspesgociated with general
CRFs: feature selection and efficient learning with genstraictures. In this chapter, we
turn our attention to the third aspehbtgerarchical data modelling

Hierarchies are indeed a natural property of many domaitisineach level is aabstrac-
tion of lower level details. We have seen in the previous chaptdrhigh level human ac-
tivities may include sub-activities at more primitive Ié&ven vision, objects are composed
of parts, which in turn are a combination of visual cues sugkdges, dots and textures.
Similarly, in natural language processing (NLP) syntaesrare inherently hierarchical.
For example, in the partial parsing task known as noun-ghfld®) chunking (Sang and
Buchholz, 2000), there are four levels: the sentence, mpbuases, part-of-speech (POS)
tags and unigrams. In this setting, the sentence is a segéMtPs and non-NPs, each
phrase is a sub-sequence of POS tags, and finally each PO8dsiglp consists of one
unigram (as in English) or more (as in Chinese and Vietnajnese

A popular approach to deal with hierarchical data is to baitthscaded model: each level
is modelled separately, and the output of the lower levekexdduas the input of the level
right above it (e.g. see (Olivat al,, 2004)). For instance, in NP chunking this approach
first builds a POS tagger and then constructs a chunker tbatgarates the output of the
tagger. This approach is clearly sub-optimal because tH&tB@ger takes no information
of the NPs and the chunker is not aware of the reasoning oatiget. In contrast, a noun-
phrase is often very informative to infer the POS tags bdlontp the phrase. As a result,
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this layered approach often suffers from the so-catkestading erroproblem as the error
introduced from the lower layer will propagate to higherdisv

A more holistic approach is to build a joint representatidralb the levels. However,
complex models are likely to suffer inference intractaillhere must be appropriate con-
straints that allow efficient inference. Fortunately thexists a class of hierarchical models
that satisfy both the requirements of joint representadiah efficiency. More specifically,
the models are recursive and sequential, in that each kaedéquence and each node in a
sequence can be decomposed further into a sub-sequencerajriim at the lower level.

There has been substantial investigation of these typesodemespecially in the area
of probabilistic context-free grammars (e.g. see (Manrandg Schitze, 1999, Chapter
11)). However, grammars are often unbounded in depth argddifiicult to represent by
graphical models. A more restricted version known as hoiaal hidden Markov model
(HHMM) (Fine et al, 1998) offers clearer representation in that the depth edfiand
the semantic levels are well defined. It can also be repredeast a Dynamic Bayesian
Network (DBN) (Murphy and Paskin, 2002). Essentially, thidMiM is a nested HMM in
the sense that each state is a sub HMM by itself.

In this chapter we follow a similar route to generalise chstiictured CRFs to nested
CRFs. As a result, we propose a novel model caHigerarchical Conditional Random
Field (HCRF), which is an undirected conditional graphical madelested Markov chains.
Thus HCREF is the combination of the discriminative natur€BfFs and the nested mod-
elling of the HHMM. To be more concrete let us return to the Ndthrase chunking
example. The problem can be modelled as a three-level HCRé&renthe root represents
the sentence, the second level the NP process, and the Hettelthe POS process. The
root and the two processes are conditioned on the sequemgwad in the sentence. Un-
der the discriminative modelling of the HCRF, rich contettinformation such as starting
and ending of the phrase, the phrase length, and the disbmnf words falling inside the
phrase can be effectively encoded. On the other hand, secldiengy is much more difficult
for HHMMs.

For learning and inference we derive an efficient algorithasda on the Asymmetric

Inside-Outside (AIO) of (Bukt al,, 2004) that exhibits cubic time complexity. We also
develop a generalised Viterbi algorithm for decoding thémal state assignment for a
given observational sequence.
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Notations and Chapter Organisation

This chapter introduces a number of new mathematical motmtwhich we include in
Table 8.1 for reference.

Notation Description
«% Subset of state variables from levetiown to leveld’
and starting from time and ending at time, inclusive.
el Subset of ending indicators from levetiown to leveld
and starting from time and ending at time, inclusive.
Cfff Set of state variables and ending indicators of a
sub model rooted at!, leveld, spanning a sub-string, ;]
o Contextual clique
i1,j,t Time indices
¢ Set of all ending time indices, e.qg.iifc 7¢ thened = 1
r,s,u,v,w State
Rﬁ’j’z State-persistence potential of statéeveld, spannindi, j|
Z:f Initialisation potential of state at leveld, times initialising sub-statex
Aﬁ’j’j Transition at levell, timei from stateu to v under the same parent
Eﬁf’z Ending potential of state at leveld and timei, and receiving
the return control from the child
®[¢,z] The global potential of a particular configuration
S?  The number of state symbols at leviel
Afj The symmetric inside mass for a statat leveld,
spanning a substring, ;]
A% The full symmetric inside mass for a statet leveld,
spanning a substring, ;]
Afj The symmetric outside mass for a statat leveld,
spanning a substring, ;]
AZ? The full symmetric outside mass for a statat leveld,
spanning a substring, ;]
aﬁ’j (u) The asymmetric inside mass for a parent stedéleveld, starting at
and having a child-state which returns control
to parent or transits to new child-statejat
)\fj(u) The asymmetric outside mass, as a counterpart of
asymmetric inside ma&é{’j(u)
¥(.),¢(.) Potential functions.

Table 8.1: Notations used in this chapter.

The rest of the chapter continues with the HCRF model dedimieind parameterisation
in Section 8.2. Section 8.3 defines building blocks requiceccommon inference tasks.
These blocks are computed in Section 8.3.2 and 8.3.3. Pteaestimation follows in Sec-
tion 8.4. Section 8.5 presents the generalised Viterbirdlgn. We analyse the complexity
of the AIO algorithm in Section 8.6 and conclude the chapte3ection 8.7.
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8.2 Model Definition

Consider a hierarchically nested Markov process uitkevels. Then as in the HHMMs
(Fine et al, 1998), the parent state embeds a child Markov chain wh@dessimay in
turn contain child Markov chains. The family relation is defd in themodel topology
which is a state hierarchy of depth. The model has a set of stat§$ at each level

d € [1,D],i.e. ¢ = {1...]S}, where|S?| is the number of states at lew&l For each
states? € S? wherel < d < D, the topological structure also defines a set of children
ch(s?) c S+t Conversely, each chilg’*! has a set of parengsi(s?*!) c S¢. Unlike
the original HHMMs where the child states belong exclusivel the parent, the HCRFs
allow arbitrary sharing of children between parents. Famegle, in Figure 8.1h(s! =

1) = {1,2,3}, andpa(s® = 1) = {1,2,4}. This helps to avoid an explosive number of
sub-states whep is large, leading to fewer parameters and possibly lessitigadata and
time. The shared topology has been investigated in the xootélHMMs in (Bui et al,
2004).

The temporal evolution in the nested Markov processes wijlasnce length df operates
as follows:

e As soon as a state is created at levet D, it initialisesa child state at level + 1.
The initialisation continues downward until reaching tiwétom levet.

e As soon as a child process at leve}- 1 ends it returns control to its parent at level
d, and in the case af > 1, the parent eitheransitsto a new parent state or returns
to the grand-parent at levél— 1.

The main requirement for the hierarchical nesting is thatlifie span of the child process
belongs exclusively to the life span of the parent. For eXangonsider a parent process
at leveld starts a new stateﬁj at time: and persists until timg. At time ¢ the parent
initialises a child state/*! which continues until it ends at time< j, at which the child
state transits to a new child stat ﬂ The child process exits at timg at which the
control from the child level is returned to the pareﬁ)}. Upon receiving the control the
parent stateg{j may transit to a new parent stasijdqlzl, or end atj, returning the control to

the grand-parent at levél— 1.

We are now in a position to specify the nested Markov processa more formal way.
Let us introduce a multi-level temporal graphical modelesfdth7” with D levels, starting
from the top as 1 and the bottom BYFigure 8.2). At each level € [1, D] and time index

In HHMMs, the bottom level is also callegroductionlevel, in which the states emit observational
symbols. In HCRFs, this generative process is not assumed.
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Figure 8.2: The multi-level temporal model.

i € [1,T], there is a node representing a state variable S¢ = {1,2,...,|5%}. Associ-
ated with eachr? is an ending indicator? which can be eithet or 0 to signify whether the
statex{ ends or persists at The nesting nature of the HCRFs is now realised by imposing
the specific constraints on the value assignment of endutigators (Figure 8.3).

e The top state persists during the course of evolutionef.g. ;, = 0, el. = 1.
¢ When a state finishes, all of its descendants must also finish,

i.e.ef = 1impliesef TP = 1.
¢ When a state persists, all of its ancestors must also persist

i.e. el = 0impliese} " = 0.
e When a state transits, its parent must remain unchangee? ke 1, ! = 0.
e The bottom states do not persists, k8.= 1 for all i € [1, 7).

e All statesend af’, i.e. e’ = 1.

Figure 8.3: Hierarchical constraints.

Thus, specific value assignments of ending indicators gdemontextghat realise the evo-
lution of the model states in both hierarchical (verticalfldemporal (horizontal) direc-
tions. Each context at a level and associated state vasifdnle acontextual cliqueand
we identify four contextual clique types:

e State-persistenceThis corresponds to the life time of a state at a given lesax Fig-
ure 8.4). Specifically, given a context= (e?_lzj = (1,0,..,0,1)), thenaﬁj’”sm’d =

(z§;, ), is a contextual clique that specifies the life span] of any states = 7 ..

e State-transition This corresponds to a state at ledet [2, D] at timei transiting to
a new state (see Figure 8.5a). Specifically, given a context(e? ' = 0,ef = 1)
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thena!" "% = (241 24, |, c) is a contextual clique that specifies the transition of

z¢ to z¢, | at timei under the same parenf}

e State-initialisation This corresponds to a state at ledet [1, D — 1] initialising a
new child state at level + 1 at time: (see Figure 8.5b). Specifically, given a context
¢ = (el | = 1), theno™* = (z¢ 29! ¢) is a contextual clique that specifies the

177

initialisation at timei from the parent:¢ to the childz¢*,

e State-ending This corresponds to a state at levet [1, D — 1] to end at time (see
Figure 8.5¢). Specifically, given a context= (e? = 1), theno™*? = (24, 2% ¢)
is a contextual clique that specifies the ending ot time: with the last childz? ™.

1771

61'71‘:1 6»;:0 €j—1 =0 ej‘:1

Figure 8.4: An example of a state-persistence sub-graph.
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Figure 8.5: Sub-graphs for state transition (left), inisi@ation (middle) and ending (right).

In the HCRF we are interested in thenditionalsetting in which the entire state variables
{212 el:2} are conditioned on observational sequencesor example, in computational
linguistics, the observation is often the sequence of wardbkthe state variables might be
the part-of-speech tags and the phrases.

To capture the correlation between variables and such tonuatig, we define a non-
negative potential functiow (o, z) over each contextual clique. Figure 8.6 shows the
notations for potentials that correspond to the four cantclique types we have identi-
fied above. Details of potential specification are describe¢lde Section 8.4.1.

o R{* = (ol ) wheres = xd

Ads Z w(o_?rcmsitd ) wheres = xH_l andu = flfd v = x;i+1

u,v,1 i
d d+1

owaz = (o™ 2) wheres = 2¢, u = 1

o £07° = (o] endd z) wheres = xd U= xdﬂ

Figure 8.6: Shorthands for contextual clique potentials.

Let ¢ = (zER, ekR) denote the set of all variables that satisfies the set of rvigical
constraints in Figure 8.3. Let’ denote ordered set of all ending time indices at lelel
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e.g. ifi € 7@ thene! = 1. The joint potential defined for each configuration is thedpici
of all contextual clique potentials over all ending timeioes: € [1,7] and all semantic
levelsd € [1, DJ:

P[¢, 2] = [ H H Rgl;jizliikJrl] X

dE[l,D} ik,ik+1€Td

< Al {[ 11 AijZH 11 WZZ?,;%H Eff:fﬂ}(&l)

dell,D—1] ipeTdtli drd ipeTdtl ipeTdtl

The conditional distribution is given as

Pr(¢lz) = ®[¢, 2] (8.2)

Z(2)
whereZ(z) = . @[, 2] is the partition function for normalisation.

In what follows we omit: for clarity, and implicitly use it as part of the partitionrfation

Z and the potentiab|.]. It should be noted that in the unconditional formulatidrere is
only a singleZ for all data instances. In conditional setting there i8(a) for each data
instancez.

Remarks: The temporal model of HCRFs presented here is not a stagdaptiical model
(Lauritzen, 1996) since the connectivity (and therefoeedlique structures) is not fixed.
The potentials are defined on-the-fly depending on the coofexssignments of ending
indicators. Although the model topology is identical tottb&shared structure HHMMs
(Bui et al,, 2004), the unrolled temporal representation is an unticegraph and the
model distribution is formulated in a discriminative wayurthermore, the state persis-
tence potentials capture duration information that is nailable in the dynamic DBN
representation of the HHMMs in (Murphy and Paskin, 2002).

In the way the potentials are introduced it may first appeaesemble the clique tem-
plates in the discriminative relational Markov network®{Rs) (Taskaret al., 2002). It is,
however, different because cliques in the HCRFs are dynandacontext-dependent.

8.3 Asymmetric Inside-Outside Algorithm

This section describes a core inference engine called Astniorinside-Outside (AIO)
algorithm, which is partly adapted from the generativegcted counter part of HHMMs
in (Bui et al,, 2004). We now show how to compute the building blocks thatrereded in
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most inference and learning tasks.

8.3.1 Building Blocks and Conditional Independence

level d e o @ leveld, ¢ o o o @
° o B o ) leveld+1 (] [ e i ) ) [} }
e ° (] L)
o e} ° o e} (o} ¢} Q L4
() (b)

Figure 8.7: (a) Symmetric Markov blanket, and (b) Asymnuoetfarkov blanket.

8.3.1.1 Contextual Markov blankets

In this subsection we define elements that are building Isldckinference and learning.
These building blocks are identified given the correspagpbundaries Let us introduce
two types of boundaries: the contextsgmmetrimandasymmetric Markov blankets

Definition 2. A symmetric Markov blanket at levéffor a states starting ati and ending
at j is the following set

H;i,; = (xglj = 576?:—15 = 17 e;'l:D = 176?:]'—1 = 0) (83)

Definition 3. Let Hi’j be a symmetric Markov blanket, we defajﬁ? andgf’jS as follows
Gy = @l elr) (8.4)
¢rro= QNG I (8.5)

subject tar{; = s. Further, we define

Gi o= (G ) (8.6)
Cy = () ®.7)

240 24

Figure 8.7a shows an example of a symmetric Markov blankgrésented by a double-
arrowed line).
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Definition 4. A asymmetric Markov blanket at levéfor a parent states starting at: and
a child stateu ending atj is the following set

Fff(u) = (xf] - va?+1 = Uu, eg—Dl - ]-7 6?+1:D = 17 6?:3’—1 = O) (88)

Definition 5. Let Fﬁ’j (u) be an asymmetric Markov blanket, we deﬁ'ﬁ;é(u) and gf’js (u)
as follows

(P(u) = (2P 29t eftip) (8.9)

(™) = O\ (u),T55 (u) (8.10)

247

subject tarf; = s andz¢*" = u. Further, we define

) = (2 (w), T (u)) (8.11)
) = (M (), T (w)) (8.12)

235 =V
Figure 8.7b shows an example of asymmetric Markov blankgtrésented by an arrowed
line).

Remark: The concepts of contextual Markov blankets (or Markov ké&ds for short) are
different from those in traditional Markov random fields aBayesian networks because
they are specific assignments of a subset of variables rrtdi#e a collection of variables.

8.3.1.2 Conditional independence

Recall that conditional independence refers to the sitnati which two subsets of vari-
ablesA and B are independent given the the subSeGenerally,C' consists of separating
variables that block any paths betwedrand B. If C is also the boundary ofl, for ex-
ample, then th€' is a Markov blanket ofA. Given the separating boundary we can safely
ignore any variables outside the boundary. This often tyreahplifies computation.

As our thesymmetriandasymmetric Markov blankegse the boundaries, we have impor-
tant conditional independence occurrences, which are suised in Propositions 3 and
4.

Proposition 3. gff andgf’jS are conditionally independent giveﬁﬁ’jS

Pr(¢iiy, (oI ) = Pr(Ciy |5 Pr(Ce|TI5)) (8.13)

In words, Propositions 3 says that variables falling insidé outside the symmetric Markov
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d,s e . . ,S . - . .
blanketll;; are conditionally independent glveﬁﬁj. This proposition gives rise to the
following factorisation

Pr(¢) = Pr(ILg;) Pr(Ciy, ¢0(IT) = Pr(I1E)) Pe(¢iy (1)) Pr(Co[TIE;)  (8.14)

Although in the following development, we will not use theforisation directly, it does
offer some insight how we should proceed in computihg¢) and the partition func-
tion. Here, we at each step, we can work with the separate marrpsPr(CﬁﬂHZ’j) and
Pr(g;mﬁf) as functions of the Markov blanket. Thus we can avoid dealiitly all vari-
ables¢ at the same time. Since we do not knﬁi&j for sure, we have to examine all
possible enumerations, which are abgLf|7™ for each level.

We also have similar argument and insight for the asymmbtaikov blankets.

Proposition 4. ¢ (u) and (¢’ (u) are conditionally independent giveif? (u)

Pr(Giy (u), ¢ (w) T35 (w)) = Py (u) U5 () Pr(¢ (u) U5 (u) (8.15)

The following factorisation is a consequence of Proposifio

Pr(¢) = Pr(Ti; () Pr(¢E (u), ¢ (u) |15 (u))

i:j

= Pr(I'y; (u)) Pr(¢iy (w) U5 (u)) Pr(CE (w) U5 (u)) (8.16)

i:J @]

The proof of Propositions 3 and 4 is given in Appendix A.3.1.

8.3.1.3 Symmetric Inside/Outside Masses

From Equation 8.5 we hawg = (¢%#, 11%¢ gdf) Sincell{;; separates;"’ fromg

:7 0 g0
can group local potentials in Equation 8.1 into three paﬁftsm [, [ém_ [, and®|I1 Z.:j]. By
‘grouping’ we mean to multiply all the local potentials be@png to a certain part, in the
same way that we group all the local potentials belongindiéomodel in Equation 8.1.
Note that althouglg’* containsl1{’* we do not groupb[IL{:’] into ®[¢{*]. The same holds

for (I)[gi:j]'

By definition of the state-persistence clique potentiad(ifé 8.6), we havé [Hfjj] = ij’js.
Thus Equation 8.1 can be replaced by

o[(] =<I>[<”]R“<I>[c Ny (8.17)
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~

There are two special cases: (1) whén= 1, @[gij;] = 1for s € S!, and (2) when
d =D, ®[¢2*) = 1for s € SP andi € [1,T]. This factorisation plays an important role
in efficient inference.

We know define a quantity calleymmetric inside mags®*

..;» and another callesymmetric
outside masg ;.

Definition 6. Given a symmetric Markov blankﬁﬁ’;, the symmetric inside masg'ﬂ’js and
the symmetric outside maﬁé’j are defined as

Al = > o] (8.18)
e
s ~d,s
Ay = ) 2l (8.19)
¢hs

2i:j

As special cases we hawe;;, = 1 ands € S*, andA?* = 1fori € [1,7],s € SP.
For later use let us introduce the ‘full’ symmetric insidessa > and the ‘full’ symmetric
outside masa’ as

AP = RISAL (8.20)
Al? = REAL (8.21)

In the rest of the thesis, when it is clear in the context, wéwske inside masss a short-
hand for symmetric inside massytside masfor symmetric outside masfill-inside mass
for full-symmetric inside mass, arfdll-outside mass$or full-symmetric outside mass.

Thus, from Equation 8.17 the partition function can be cotegdrom the full-inside mass
at the top leveld = 1)

Z =Y o]
¢
= > > [CIR

g;;,sesl

o z : d,s pd,s
- leirj%lif

seSt

= > Alr (8.22)

With the similar derivation the partition function can albe computed from the full-
outside mass at the bottom levél-£ D)

Z =Y A7° foranyie [1,T] (8.23)

0T )
sesp
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In fact, we will prove a more general way to computeén Appendix A.4
d,s A d,s pd,s
Z=2 2 2 NGNGR (8.24)
seSdie(l,t] j[¢t,T]

foranyt € [1,7] andd € [2, D — 1]. These relations are summarised in Figure 8.8.

°Z = Zsesl A} L;“
o7 =30 Ay foranyi e [1,T]
o7 =3 g Zlem > e ALSASSRY foranyt € [1,T] andd € [2, D — 1]

Figure 8.8: Computing the partition function from the filkide mass and full-outside
mass.

Given the fact thatﬁf is separated from the rest of variables by the symmetric Mark
bIanketHfj, we have Proposition 5.

Proposition 5. The following relations hold

1

Pr(GIME) = <=l (8.25)
i
P d,s Hd,s o 1 & 2d,s 8.26
I‘(gi:j‘ i:j) - Aff [Qw] ( . )
d,s 1 d,s pd,s p d,s
Pr(Hi:j ) = EAi:j Ri:j Ai:j (8.27)

The proof of this proposition is given in Appendix A.3.2.

8.3.1.4 Asymmetric Inside/Outside Masses

Recall that we have introduced the concept of asymmetri(kMabIankethjjS (u) which

separatesff(u) and¢ Z’;(u). Let us group all the local contextual clique potentialoass
ated with¢;/*(u) and'y? (v) into a joint potentiatb (¢’ (u)]. Similarly, we group all local
potentials associated Wltﬁ’ ) and F‘“( ) into a joint potential(b[éi’js(u)]. Note that

@[Qi’;( )]) includes the state-persistence poterﬂéj.

Definition 7. Given the asymmetric Markov blanldéi’j(u), the asymmetric inside mass
aﬁj (u) and the asymmetric outside ma)é’;‘f (u) are defined as follows

agi(w) = Y @ (u)] (8.28)
¢ (u)
M) = 37 @[l w) (8.29)

¢ (u)

243
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The relationship between the asymmetric outside mass gnuhastric inside mass is anal-
ogous to that between the outside and inside masses. Howleser is a small difference,
that is, the asymmetric outside mass ‘owns’ the segmgnt= s and the associated state-

persistence potentlaﬂfj, whilst the outside mass;,(s) does not.

8.3.2 Computing Symmetric/Asymmetric Inside Masses

leveld @
@ @ @ @ _{
[ ] o @ (] @
leveld +1 } o« e
[ ] { ) [ ]
[ ) O Q [ ] Q [ )

Figure 8.9: Decomposition with respect to symmetric/asytnit Markov blankets.

In this subsection we show how to recursively compute the paide mass and asymmet-
ric inside mass. The key idea here is to exploit the decontipasiithin the asymmetric
Markov blanket. As shown in Figure 8.9, an outer asymmetrarkdv blanket can be
decomposed into a sub-asymmetric Markov blanket and a symerb&anket.

8.3.2.1 Computing asymmetric inside mass from inside mass

Assume that within the asymmetric Markov blankéf , the childu starts somewhere
att € [i,j] and ends af, i.e. z{;' = u, eff!; =0 anded+1D ! = 1. Let us consider two
casest > ¢ andt = i.

Case 1 Fort > i, denote by = x{*!. We have two smaller blankets wﬂhIfjl ): the
symmetric blankeﬂ‘“rl " associated with the child = :cf“ and the asymmetric blanket
I'“ | (v) associated with the childending at — 1 under the parent Figure 8.9 illustrates
the blanket decomposition. The assignrr@fl;ft(u) can be decomposed as

Czd;s<u> = (Czt 1( ) Cd+1 u? xf—;la 6? 1:j—1 — = 0 €d+1D 1) (830)

Thus, the joint potenti@[fﬁf(u)] can be factorised as follows

BICH (w)] = B[C, ()] @G AT Ry (8.31)
The transition potentiall]’';”, is enabled in the context= (ef | = 0, = 1,2} =
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s,aftl = v,2{™ = u), and the state-persistence potenfRfl;"* in the contextc =
€

( d+1 0 d+1:D _ 1 d+1:D d+1

)€1 7 _17xt:j :u)'

et] 1

Case 2 Fort = i, the asymmetric blankdt;’ | (v) does not exist since > t — 1. We
have the following decompositions of as&gnm@”bs[ = (g;ljl“, el | = 1,6” . =0).
In the context = (e¢ ; = 1), the state-initialisation potentlaﬁ is activated. Thus we
have

G (w)] = my G R (8.32)

i:j 1]

Substituting Equations 8.31 and 8.32 into Equation 8.28, tagether with the fact that
t can take any value in the intervil j], andv can take any value i8¢, we have the
following relation

aif(u) - Z Z Z Z zt 1 ( [Cd“"]AﬁlflRﬁf’“ﬂL

tefi+l.glvesitt ¢he | (v) ¢t
n Z 7Td s(I) d+1 u ;i;rl,u
C,Zijl U
= Z Z g ( AdH “Aﬁlts AdH uWZf (8.33)

teli+1,j] vesd+l

As we can see, the asymmetric inside magsdays the role of dorward messagstarting
from the starting time to the ending timg. There is a recursion where the asymmetric
inside mass ending at tinyaeis computed from all the asymmetric inside masses ending at
timet —1,fort € [i + 1, 7.

There are special cases for the asymmetric inside massh@nirv= j, we only have

C]{CIS( ) Ad+ls d,s (834)

2:7 u Z

and (2) whenl = D — 1, the sum over the indexas in Equation 8.33 is not allowed since
at level D the inside mass only spans a single index. We have the faltpuistead

oy () = ) PWATAL
veSdt!
= > a Y()RGEAD (8.35)
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8.3.2.2 Computing inside mass from asymmetric inside mass

Notice the relationship between the asymmetric Markovltfbaﬁf;j(u) and the symmetric
blanketII};’, whered < D. Whene? = 1, i.e. the parens ends atj, andI'{’; (u) will
becomd{ with u = 4. Then we have decompositiog§’ = (¢ (u), u = 2¢) and

(= ((ﬁ;(u) el =1,u=z¢"). These lead to the factorisation

Q¢ = B () B (8.36)

u)J

where the state-ending potentﬁfj is activated in the context = (e;.l = 1). Thus, the
inside mass in Equation 8.18 can be rewritten as

N =2 2L GRS

uESTH ¢ ()

- Ty

ueSd+1 J( u)
= ) Eyai(u) (8.37)
ueSatl

This equation holds foi < D. Whend = D, we setA?*® = 1 forall s € S” and
i € [1,T], and when! = 1, we must ensure that= 1 andj = T

Remark: Equations 8.33, 8.34, 8.35 and 8.37 specilgfaright andbottom-upalgorithm

to compute both the inside and asymmetric inside massegallyiat the bottom level
Aff = 1fori € [1,7] ands € SP. A pseudo-code of the dynamic programming
algorithm to compute all the inside and asymmetric insidesaa and the partition function
is given in Figure 8.10.

8.3.3 Computing Symmetric/Asymmetric Outside Masses

In this subsection we show how to recursively compute thensgtric outside mass and
the asymmetric outside mass. We use the same blanket desimpas in Section 8.3.2.
However, this time the view is reversed as we are interestgdantities outside the blan-
kets. For example, outside the inner symmetric Markov @&k Figure 8.9, there exists
an outer asymmetric blanket and another sub-asymmetmn&é&tian the left.
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Input: D, T, all the potential function values.
Output: partition functionZ;
ALz, fors € S
A% ford e [2,D—1],se S%andl <i<j <T;
AD75 fors € SP andi € [1,77;
Z:j( u)forde [1,D—1],ue S%land1 <i<;j<T
/* Initialisation */
AP® =1foralli € [1,T] ands € SP
* At the level d=D-1 */
For:=1,2,..,T
Forj=i4,i+1,..,T
ComputeaD 1S( ) using Equation 8.35
ComputeA;; ~1* using Equation 8.37
EndFor
EndFor
[* The main recursion loops: bottom-up and forward */
Ford=D—-2,D—-3,..1
Fori=1,2,...,T
Forj=i4,1+1,..,T
Computea *(u) using Equation 8.34 j =i
Computen®: ( ) using Equation 8.3% j > i
ComputeA using Equation 8.3% d > 1
EndFor
EndFor
EndFor
ComputeZ using Equation 8.22.

Figure 8.10: Computing the set of inside/asymmetric insidases and the partition func-
tion.

8.3.3.1 Computing asymmetric outside mass from outside mas

Let us examine the variabl§§].s(u) associated with the asymmetric Markov bIanRjéJf(u)
ford € [1,D — 1] andl < i < j < T (see Definition 5). Foj < T, assume that there
exists an outer asymmetric Markov blankét’ (v) for somev € S9+! andt € [j + 1,T],

and a symmetric Markov bIankéIjﬁ;f right next toFﬁ’j(u). Given these blankets we

... ~d,s ~d,s 2 v . .
have the decomposmq_m (u) = (¢,, (v), Cﬁi’t 7x;?+1 = u), which leads to the following
factorisation

DI ()] = L RGBT ALY (8:38)

S J U,v, ]

The state transition potentiAIZﬁjf is enabled in the context= (ef = 0, ed+1 = 1), and

the state persistence potentil’ |y in the context = (e4™ = 1, ¢4}, | = 0,¢f™ =1).

In addition, there exists a special case where the statels atj. We have the decomposi-
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~d,s

tion éi’js(u) = (gi:j ,u=z"") and the following factorisation

~d,s

(¢

=V

~d,s s s
(u)] = @[, 1R By (8:39)
The ending potentiaEsz appears here because of the context (e? =1),i.e.sends at

7j
7.

Now we relax the assumption ofv and allow them to receive all possible values, i.e.
t € [, T] andv € S?*!. Thus we can replace Equation 8.29 by

s 2d,s 2 v v s
ANp) = D Y e[, (IRGTH IR AL,

veSHIElHLT] ¢ ) ¢y

2d,s d,s 1d,s
- Z (I)[gi:j]Ri:jEu,j
¢h2(u)

i

= D, D MEATLIALY + AT ED (8.40)

veSIHL te[j+1,T

ford € [2,D —2],andl <i < j < T. Thus, the/\fj(u) can be thought as a message
passedackwardfrom j = T to j = i. Here, the asymmetric outside mass ending iat
computed by using all the asymmetric outside masses entirfgret € [j + 1,7T].

There are two special cases. At the top level, ile= 1, then)\fgj(u) is only defined at
i = 1, and the second term of the RHS of Equation 8.40 is includédibn = 1, j = T.
At the second lowest level, i.d.= D — 1, we cannot sum ovéras in Equation 8.40 since
Afj{:t is only defined fort = j + 1. We have the following relation instead

Ao w) = D N AR A+ AL ED (8.41)

u,j
veSP
8.3.3.2 Computing outside mass from asymmetric outside mas

Given a symmetric Markov blankéﬁjl’“ for d € [1,D — 1], assume that there exists
an asymmetric Markov blankéﬁ’;(u) at the parent level, wheret € [1,1]. Clearly, for

t € [1,i — 1] there exists some sub-asymmetric Markov blafiKgt , (v). See Figure 8.9
for an illustration.

Let us consider two cases< i andt = «.

. oad+lu ~d,s 2d.s
Case 1 Fort < 1, this enables the decomposmglr_lj = (gt.j (u), (5 (v),u = ),

1]
which leads to the following factorisation

~d+1,u ~d,s

O[¢,. 1=

= =

(u>]q)[égf—l<v)]’4g:z,i—l (8.42)
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2

The state transition potentiAIff:fm_1 is activated in the context= (e , = 0, ef"! = 1).

. ~d+1,u ~d,s
Case 2 Fort = i, the decomposition reducesglc);r =(C

G (u),u= z¢ ), which leads
to the following factorisation

Ad+1,u] _ (I)[éd’s(u)]ﬂ-z:f (843)

2]

The state-initialisation potentiaﬁj plays the role in the context= (e¢ | = 1)

2

However, these decompositions and factorisations onlg pivien the assumption of spe-
cific values ofs € S¢, v € S, andt € [1,i]. Without further information we have to
take all possibilities into account. Substituting thedatrens into Equation 8.19, we have

s Ads d, d+1
IR 35 31D Sl S s e
seSdveSdtl tell,i—1] Cd S(“) ngs 1(v)
Ads
> Z G
sESdCdS

= D D> Nl a1 (v) Aﬁlﬁﬁzkds Jms (8.44)

seSdtell,i—1] veSdH se8d
ford e [2,D —2].

There are three special cases. The first is the base case avhefeand A5, = 1 for all

s € SL. In the second case, fdr= 1, we must fix the index = 1 since the asymmetric
inside massv* , is only defined at = 1. Also the second term in the RHS is included
only if - = 1 for the asymmetric outside ma$$ ) to make sense. In the second case,
ford+ 1= D, we only have = j.

Remark: Equations 8.40, 8.41 and 8.44 show a recursoyggdownand outside-inap-
proach to compute the symmetric/asymmetric outside ma¥gestart from the top with
d = 1landA}; = 1forall s € S* and proceed downward until= D. The pseudo-code
is given in Figure 8.11. Figure 8.12 summarises the quastd@omputed in Section 8.3.2
and 8.3.3.

Figure 8.13 summarises the AlO algorithm for computing allding blocks and the par-
tition function.

8.4 Parameter Estimation

In this section, we tackle the problem of parameter estwnaby maximising the (con-
ditional) data likelihood. Typically we need some paramcetorm to be defined for a
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Input: D, T, all the potential function values, all inside/asymmeingide masses.
Output: all outside/asymmetric outside masses
Initialise: A2 = 1,
Ap(u) = Eyyfors € St u e S2
/* the main recursive Ioops top-down and inside-out */
Ford=1,2,...D—1
For:=1,2,...,T
Fory =TT —1,...,1
Compute the asymmetrlc outside ma\é? ) using Equations 8.40,8.41
Compute the outside mas§:® using Equatlon 8.44
EndFor
EndFor
EndFor

Figure 8.11: Computing the set of outside/asymmetric dateiasses.

oA}ST,A}STforseSl
Aj;f/\fgforde[ —1),s€8541<i<j<T
o AP N fori e [1,T], seSD

o aff(u), x“( Yford=1,s€ S, uec S%jec[l1,T]
o o (u) AdS( Yforde [2,D—1],s€ Stue S 1<i<j<T

9 1.7

Figure 8.12: Summary of basic building blocks computed icti®a 8.3.2 and 8.3.3.

particular problem and we need some numerical method toelogtimisation task.

Here we employ the log-linear parameterisation, which mmmmnly used in the CRF set-
ting. Recall from Section 3.2 that estimating parametertheflog-linear models using
gradient-based methods requires the computation of featypectation, or expected suffi-
cient statistics (ESS). For our HCRFs we need to computetypes of ESS corresponding
to the state-persistence, state-transition, statesisiéition and state-ending.

8.4.1 Log-Linear Parameterisation

In our HCRF setting there is a feature vedi®fo, ) associated with each type of contex-
tual cliqueo, in that¢(o?, z) = exp(w_.f(c, z)). Thus, the features are active only in the

Input: D, T, all the potential function values

Output: all building blocks and partition function

Compute all inside/asymmetric inside masses using theitigoin Figure 8.10
Compute all outside/asymmetric outside masses using goeitim in Figure 8.11

Figure 8.13: The AIO algorithm.
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context in which the corresponding contextual cliques appe

For the state-persistence contextual clique, the feainmsporatestate-duration start
time: and end timg of the state. Other feature types incorporate the time imtd&hich
the features are triggered. Specifically,

RE™ = exp(Wpersstaf i (i, 4, 2)) (8.45)
AL = exXP(W Juransicafoiransic oo (15 %) (8.46)
Wi = exp(Womafom (i, 2) (8.47)
By = exp(Woeaafing (i, 2) (8.48)

Denote byF%((, z) the global feature, which is the sum of all active featuf¢s) at
level d in the duration[1, 7] for a given assignment a@f and a clique type. Recall that
7@ = {ix}}L, is the set of ending time indices (i.e{ = 1). The four feature types are
given in Equations 8.49-8.52.

Fi’pser'sist (<7 Z) = f;—ipi'rm.st (17 il? Z) + Z fo—dpser.szat (Zk + 17 Zk+17 Z) (8'49)

ipeTd k>1
Fifranmt U U(<7 Z) = Z fo-dt'rsanmt U U(lkh Z) (850)
ip@rd—1 i erd
Fizizt (C) Z) = fa-dzizt U U 7 Z fa-dzizt U,V ,Lk + 17 Z) (851)
ZkE’T'd
Fie, (Cz) = S, (i) (8.52)

iperd

Substituting the global features into potentials in EquatB.1 and 8.2 we obtain the fol-
lowing log-linear model:

Pr(¢|2) j exP Z W Foe (¢ (8.53)

whereC' = {persist, transit, init, exit }.

Again, for clarity of presentation we will drop the notion obut implicitly assume that it
is still in the each quantity.
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8.4.2 ESS for State-Persistence Features

Recall from Section 8.4.1 that the feature function for Mespersistencféipimst( j)is
active only in the context Wheﬂé € (. Thus, Equation 8.49 can be rewritten as

Fo () Z Z £07 oine (1, )OS € (] (8.54)

1€[1,T] je[i,T]

The indicator function in the RHS ensures that the feaﬁﬁtgist (1, 7) is only active if there
exists a symmetric Markov blankﬂi’j in the assignment of. Consider the following
expectation

B[ (i, )0[I; € ¢]] = ZPr (O (1, )OI € ] (8.55)
= —Zcb £ (i, )OGS €¢] (8.56)
Using the factorisation in Equation 8.17 we can rewrite
EIf0:, ... (6, 5)0[105 € Z@ IR (1, 1)0[TT € (] (8.57)
Note that the elements inside the sum of the RHS are only rovsZor those assignment

of ¢ that respect the persistent stafg and the factorisation in Equation 8.17, i.€.=
(¢, gf’;, I17?). Thus, the equation can be simplified to

BIf%: . (i, §)0[TE € ()] = ZZZ@ CUIREES: L (i.7) (8.58)
CZdJS gldjs
EAd CATTREEL (4, ) (8.59)

Using Equation 8.54 we obtain the ESS for the state-persistieatures

EFPQ) = > Y B[S (i, )05 € ¢]]

26[1 T) j€[3,T]

= Y ALNERER L) (8.60)

26[1 T]j€li,T)

There are two special cases: (1) whes 1, we do not sum ovef, j but fixi = 1,5 = T,
and (2) whenl = D then we keep = .
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8.4.3 ESS for Transition Features

Recall thatin Section 8.4.1 we defiﬁ;éj’ansitw(t) as a function that is active in the context
cransit — (ed=1 = 0, ed = 1), in which the child state/? finishes its job at time and
transits to the child state’ under the same parestt=! (that iss?—! is still running). Thus
Equation 8.50 can be rewritten as

FZI?‘(L'!Lsit’u’U(C) - Z fo-dt'rsanmt uv<t)5[ctran8it E C] (8.61)

te[1,7—-1]

We now consider the following expectation
RIS e (O[T € (] = Y PO i, , (0[] (8.62)

_ %Z@ I (OO € ) (8.63)
¢

Assume that the parentstarts at. Sincee? = 1, the childv must starts at + 1 and ends
some time later af > ¢ 4+ 1. We have the following decomposition of the configurat{on
that respects this assumption

~d—1,s

C=(C . (), ¢ (), ¢y) (8.64)

=4:7
and the following factorisation of the joint potential

~d—1,s

O[] = @[¢,

247

()] O[C " (W)@ R AYS (8.65)

The state persistent potentLB[lHj is enabled in the context = (ef = 1,¢f,,; | =
0,ef = 1) and the state transition potenti4}? , in the context/ .

Substituting this factorisation into the RHS of Equatio63gives us

—Z SN S S )@ ()L IR AL ()

€L FELHLTT ¢ (u) €1 (0) ¢,

which can be simplified to

1 Z Z )\d ls d 13( )Affleisvtfjtfansztuv(t) (8.66)

ze[l t] jet+1,7T]
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Using Equations 8.61 and 8.66 we obtain the ESS for the statsition features

E[Fg—tsran.szt U ’U(C)] - Z E[fo-dt'rsanmt U U(t)é[ctranSit E CH

te[1,7—1]

:% S oAt 0SS el )AL, (8.67)

te[1,7—-1] i€[1,t] jet+1,T)

Whend = 2 we must fixi = 1 sincea;;; (1) andA;;; (v) are only defined at= 1.

8.4.4 ESS for Initialisation Features

Recall that in Section 8.4.1 we defnﬁém ) as a function at level that is triggered at
timei when a parent at leveld initialises a Chl|du atleveld + 1. In this event, the context
¢t = (ed | = 1) must be activated far> 1. Thus, Equation 8.51 can be rewritten as

Foo, (O = Y £, ()6 €] (8.68)

1€[1,T)

Now we consider the following feature expectation
E[fifm (i)™t e ¢]] = ZPr fifm ()8]c™it € (]

_ ZZ@ (e , (1)0]c™ € (] (8.69)

For each assignment ofthat enablefjgfm (i), we have the following decomposition

¢ = (C (), CFtmy (8.70)

2415

where the context™ activates the emission frosto « and the feature functiofjf;iit (@),
Thus the joint potentiab[(] can be factorised as

(I)[C] _ (I)[&dvs (U)](I)[Cd+1 U]Rd"rl uﬂ_d s (871)

D4 1 u,i

Using this factorisation and noting that the elements witiie summation in the RHS
of Equation 8.69 are only non-zeros with such assignmergs;am simplify the RHS of
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Equation 8.69 to

~ Z Z Z d+1u]Rd+1u foifm (4)

je[’l T} Cd s( )Czdjl U

_ = Z )\ Ad-l—lu deds (’L) (872)

u 1 o-znzt

]GZT]

The summation ovef € [i, T'] is due to the fact that we do not know this index.

Using Equation 8.68 and 8.72 we obtain the ESS for the irgatibn features

E[F%. (O] = > E[f%.  (0)s[c™" € (]]
iE[lT]
= 7 Z w0 > A (w) AL (8.73)
ZElT GE[,T)

There are two special cases: (1) wheg: 1, there must be no scanning ©but fixi = 1
since there is only a single initialisation at the beginrohgequence, (2) wheh= D — 1,
we fix j = i for A" is only defined at = ;.

8.4.5 ESS for Ending Features

Recall that in Section 8.4.1 we deflﬁénd ) as a function that is activated when a child
u at leveld + 1 returns the control to |ts paretat leveld and timej. This event also
enables the context™ = (¢4 = 1). Thus Equation 8.52 can be rewritten as

o—end Z foc-lefzd ‘ end 6 C] (874)

JE[L,T)

Now we consider the following feature expectation
Ef. (7)™ e ()] = ZPr ) ()6 € (]

- ZZ@ [CIE% ()0l € (] (8.75)

Assume that the statestarts at; and ends aj. For each assignment gfthat enables

fjeid (j) and respects this assumption, we have the following decsitiqo
~2d,s 2q.s
¢= (G, G w) (8.76)
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This assignment has the context’ that activates the ending af Thus the joint potential
®[(] can be factorised as

O] = ¢ P (W) R ELS (8.77)

Substituting this factorisation into the summation of tHéSRof Equation 8.75 yields

Yod N e SR Bt () = > Alrag (w) Byt () (8.78)

i€[1,5] gd s Zdjs(u) i€[1,5]

Using Equations 8.74 and 8.78 we obtain the ESS for the gxitiatures

EF%. (O = > EfES, (), €]

je[l )

- = Z Byl () > ALal (u) (8.79)

ge [1,7) i€([1,]

There is a special case: whénr= 1 there must be no scanning®ofj but fixi =1, =T.

8.5 Generalised Viterbi Algorithm

By definition the MAP assignment is the maximiser of the ctindal distribution given
an observation sequenge

CMAP = arg max Pr(¢|z)

= argmax D[, 2] (8.80)

For clarity, let us drop the notationand assume that it is implicitly there.

The process of computing the MAP assignment is very simiahat of computing the
partition function. This similarity comes from the relatibetween the sum-product and
max-product algorithm (a generalisation of the Viterbicalthm) of Pearl (1988), and from
the fact that inside/asymmetric inside procedures desgtilb Section 8.3.2 are essentially
a sum-product version. What we need to do is to just convethalsummations into
corresponding maximisations. The algorithm is a two-steggdure:

¢ In the first step the maximum joint potential is computed awhl maximum states
and ending indicators are saved along the way. These stadesnaling indicators
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are maintained in hookkeeper

e In the second step we decode the best assignmebabitrackingthrough saved
local maximum states.

We make use of the contextual decompositions and factmmmsafrom Section 8.3.2.

Notations

This section, with some abuse, uses some slight modificatmthe notations used in the
rest of the chapter. See Table 8.2 for reference.

Notation Description
Aﬁ?"’d’s The optimal potential function of the subset of variabj;éjé
At The ‘full version of A%
aﬁf}f“x’dj’s(u) The optimal potential function of the subset of variabj;éjé(u)
AZ#%* The optimal childuf™ of s
af®**(u)  The optimal child;*] that transits ta;’t" and the time index.
Z¢ The set of optimal ‘segments’ at each level

Table 8.2: Notations used in this section.

We now describe the first step.

8.5.1 Computing the Maximum Joint Potential, Maximal States and
Time Indices

As B[] = B[C5| Y for s € S* we have

max ®[¢] = max Ry} max ®[(]75] (8.81)
¢ sesSt T '

Now, for a sub-assignmequf for 1 € [1, D — 1], Equation 8.36 leads to

d,s1 d,s ~d,s
max O[] = max E; max P[¢;; (u)] (8.82)

With some slight abuse of notation we introdtmﬁf"’d’s as the optimal potential function

of the subset of variableﬁf, andaﬁ?j‘x’d’s(u) as the optimal potential function of the subset
of variables(/’ (u).
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Definition 8. We defineA** anda/’***(u) as follows

AT = max O[(] (8.83)
: C ﬁf :
A max,d,s max,d,s pd,s
aﬁf}ax’d’s(u) = max q)[ff]s(u)] (8.85)
Gy (u)

The Equations 8.81 and 8.82 can be rewritten more compagtly a

O[CMAT) = max ATEet (8.86)
max,d,s d,s max,d,s
A = ug?ffl Ejai; " (u) (8.87)

ford e [1, D —1]. Whend = D, we simply se\™*"* — 1 forall s € SP andi e [1, T].

From the factorisation in Equation 8.31 and 8.32, we have

veSHH teli+1,] Gl @)

max (¢ (u)] = max{(max max R{TVUATTLS ) max D[CE | (v)]

d.s 7 7 ORIRAS 7
Ci;; (u)

X max @[53}1’“0 ; (Rfjl’“ max wﬁ;;’@[@;fjlv“o }(8.88)

ij-l’" CiijLu
and
7d7 7d7 A 7d 17 d7
P (u) = max max  max ot (0) AT AT )
' veSAL tefi+1,5] ' o

(Ag%d“’“m‘jfﬁ)} (8.89)

ford € [1,D — 2] andi < j. Ford = D — 1, we cannot scan the inden the interval
[i + 1, j] because the maximum insidle‘;}fx’[”“ is only defined at = j. We have the
following instead

7D_17 I 7D_17 A 7D7 D7
Q07 (w) = max T AT AT (8.90)

There is a base case foe= j, where the context = (¢ |, = 1) is active, then

amax,d,s<u> _ Azliax,d'i'lﬂiﬂ.d’s (891)

217 U,b

Of course, what we are really interested in is not the maxinuint potentials but the
optimal states and time indices (or ending indicators). \Wednsome bookkeepers to
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hold these quantities along the way. With some abuse of inaté&t us introduce the
symmetric inside bookkeepé‘rﬁrjg’d’s associated with Equation 8.87, and the asymmetric
inside bookkeepet;.,* -5 (1) associated with Equations 8.89, 8.90 and 8.91.

Definition 9. We define the symmetric inside bookkeapféf’d’s as follows

ATEE =y = argmax, e g By ol (u) (8.92)
Similarly, we define the asymmetric inside bookkeeﬁ&r ) associated with Equa-

tion 8.89 ford € [1,D — 2] as

aarg,d,s (U) _

max,d,s maxd+1u d,s

(U7t) = AIgMaAXyepit ] vesd+1 Qi1 vut—1

(8.93)
if Max, ¢ gi+1 P a;ntaxld 5( )Amax ,d+1, qul - > Amax Jd+1,u d+1 s andi < ] and
af#®*(u) = undefined (8.94)

otherwise. Ford = D — 1, theairf’d’s(u) is associated with Equation 8.90

arg,D—1,s

d, D, d,
o max, S( )Amax uA s

ij— 1 v,u,j—1

(8.95)

(u) = arg max,cgp @y,

The Equations 8.86,8.87,8.89,8.90 and 8.91 provide aseeyprocedure to compute max-
imum joint potential in a bottom-up and left-right manneitially we just seA"*"* = 1
for all s € SP andi € [1,T]. The procedure is summarised in Figure 8.14.

8.5.2 Decoding the MAP Assignment

The proceeding of the backtracking process is oppositeatiottthe max-product. Specif-
ically, we start from the root and proceed inap-downandright-left manner. The goal

is to identify the right-most segment at each level. Formallsegment is a triplés, i, j)
wheres is the segment label, arichnd; are start and end time indices, respectively. From
the maximum insidexm?""d’s at leveld, we identify the best child and its ending time
from Equation 8.87. This gives rise to the maximum asymmaﬂsldeama"ds( ). Then

we seek for the best childthat transits ta; under the same parenusing Equation 8.89.
Since the starting timefor v has been identified the ending time fas ¢t—1. We now have

a right-most segmertt, ¢, j) at leveld + 1. The procedure is repeated until we reach the
starting time; of the parent. The backtracking algorithm is summarised in Figure 8.15.

Finally, the generalised Viterbi algorithm is given in Fig8.16.
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Working in log-space to avoid numerical overflow

With long sequence and complex topology we may run into thblpm of numerical over-
flow, i.e. when the numerical value of the maximum joint paians beyond the number
representation of the machine. To avoid this, we can workénldg-space instead, using
the monotonic property of the log function. The equatiorthalog-space are summarised
in Table 8.3.

| Log-space equations | Ref. equations
log A7 % — max,cgar {log E®* 4 logag™ T3 ()} Equation 8.87

) d,
log aj"* (u) = max {maxte[lﬂ ) max,ega+1{log afy 5% (v)+

+log ARt log ATS |} log ARt 4 log i th S} Equation 8.89

log ;™ D 1% (1) = max,cgn{log af}axlD = S(U)+
+log AP 4 log AV} Equation 8.90
log a™%5 (1) = log A A +log Tl Equation 8.91

Table 8.3: MAP equations in the log-space.

8.6 Complexity Analysis

It can be seen from Figure 8.10 and 8.11 that the AIO algoritakesO(7?) time to
compute all the inside and outside masses and the partiioctibn for D > 3. For
D = 3, the complexity isO(T?).

For the ESS (Section 8.4), using the calculated buildingkdpit is not difficult to see
that the the ESS for state-persistence features 1ak&8) times (see Equation 8.60), the
transitionO(7?) (see Equation 8.67), the initialisatid®(7?) (see Equation 8.73) and the
endingO(7?) (see Equation 8.79). The overall complexity is therefo(g™).

The MAP estimation in Section 8.5 is basically the max-padersion of the sum-product
algorithm used in the AIO, thus it has the same cubic time deriy as the partition
function.

8.7 Closing Remarks

In this chapter, we have presented a major extension to dueytlof CRFs by proposing a
novel model called Hierarchical Conditional Random Fieldieal with recursive sequen-
tial data. The model is capable of representing complexalilry with flexible structures
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and encoding rich domain knowledge in a discriminative famork.

We have developed a graphical model-like dynamic reprasientof the HCRF. This ap-
pears similar to the DBN representation of the HHMMs in (Mw@and Paskin, 2002),
and somewhat resembles a dynamic factor graph (Kschisatiahg2001). However, it is

not exactly the standard graphical model because the doatetiques in HCRFs are not
fixed during inference. In addition, the ability to repressstate duration in the HCRFs is
not replicated in the HHMMs.

For learning and inference we have introduced an efficieimsetric Inside Outside
algorithm that exhibits cubic time complexity. We have shdwow to compute various
essential quantities such as the partition function, thePM&signment and the expected
sufficient statistics of feature functions. There are otingantities and special cases we
have not covered in the main text of the chapter, but theynataded as appendices. These
include state marginalBr(z¢) (Appendix A.4), the ‘mirrored’ AIO (Appendix A.5), and
the proof that the semi-Markov CRF of (Sarawagi and Cohef42& a special case of
our HCRF (Appendix A.6).

In the next chapter we will address many practical issuesiditng numerical overflow,
partial labels and efficiency and demonstrate the HCRFsdwark in some applications.
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Input: D, T, all the potential function values.
Output: the bookkeepers;
AT fors e Standl <i < j <T;
AL ford € [2,D — 1], s € S%
AZEP5 for s € SP andi € [1,T);
o (u)ford e [1,D—1],ue Sl andl <i<j<T
/* Initialisation */
APPs — Q1 foralli € [1,7] ands € SP
[* At the level d=D-1 */
For:=1,2,...T
Forj=di+1,....T

Computen™”~1*(u) using Equation 8.90 and
D=1 (4) using Equation 8.95
ComputeA}™”~* using Equation 8.87 and

AP~ using Equation 8.92

EndFor
EndFor
[* The main recursion loops: bottom-up and forward */
Ford=D—-2,D—-3,..1
For:=1,2,..,T
Forj=4,:+1,....T
If j =i
Computex
Else
Computeaﬁ?fx’d’s(u) using Equation 8.89 and
aghs () using Equation 8.93

(R

max,d,s
21

(u) using Equation 8.91

«
EndIf
If d>1
ComputeA}™** using Equation 8.87 and
AZ®%* using Equation 8.92
EndIf
EndFor
EndFor
EndFor
ComputeA>>"* using Equation 8.87 and
A% using Equation 8.92

Figure 8.14: Computing the bookkeepers.



8.7 Closing Remarks 150

Input: D, T, all the filled bookkeepers.
Output: the optimal assignmeigt”’ 4"
§* = arg max, g A0
Initialise triple bucketg! = {(s*,1,T)} andZ? = {} for d € [2, D]
Ford=1,2,...D—1
For each triple(s*, i, j) in 7¢
Letu* = A‘ff’dvs*
Fori <y
If a2#* (u*) is definedThen
(1, 07) = afF " (u)
Add the triple(v*, t*, j) to Z¢+! and Setj = t* — 1 andu* = v*
Else
Add the triple(u*, i, j) to Z¢*! and Break this loop
EndIf
EndFor
EndFor
EndFor
For each stored triples*, i, j) in the buckefZ?, for d € [1, D],
create a corresponding set of variable$, = s*, el | = 1,¢f = 1,el, | =0).
The joining of these sets is the optimal assignniéht”

Figure 8.15: Backtracking for optimal assignment (nestedkdv blankets).

Input: D, T, all the potential function values.

Output: the optimal assignmegt”/4”

Run the bottom-up discrete optimisation procedure desdrib Figure 8.14.
Run the top-down backtracking procedure described in Eigut5.

Figure 8.16: The generalised Viterbi algorithm.



Chapter 9

Extensions to HCRF and Applications

9.1 Introduction

In Chapter 8 we have introduced a novel model for recursigeiesatial data and derived
a polynomial time algorithm called Asymmetric Inside Odtsi(AlIO) for learning and
inference. However, the AIO has some important drawbackispitevent scalability.

First, the computation may be unstable because the magnatuthe partition function,
which is the sum of exponentially many positive potentiadsreases exponentially fast in
the sequence length, and thus goes beyond the numerical capacity of most masfone
moderatel’.

Second, the AlO algorithm cannot deal with the situationmiie training data is partially
labeled. On the other hand, the generalised Viterbi is basdgte assumption that the test
data does not have any labels. It does not make use of paitbilsl that may be obtained
externally. We term the process of training with partialdpartial-supervisionand the
process of inference with partial labalsnstrained inferenceBoth the processes require
the construction of appropriate constrained inferencerélgns.

The third problem is that the AIO generally tak€$7®) time, which quickly becomes
impractical for non-trivial problems with largg (e.g. about 100 or larger). Approximation
technigues that trade some accuracy for speed must be fatedul

In this chapter we present a number of extensions to the b&RF to address these three

problems

¢ Following the work of (Buiet al., 2004) we derive in Section 9.2 a scaling algorithm
that is effective in reducing numerical overflow.
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e In Section 9.3 we extend the AlIO algorithm and the genemNgterbi algorithm to
cope with arbitrary partial labels.

e In Section 9.4 we derive an efficient approximate infererdeme based on Rao-
Blackwellisation (e.g. see (Casella and Robert, 1996)bb&isampling (e.g. see
Section 2.4.6).

e An approximate learning algorithm based on pseudo-likelth(see Section 3.5.1.2)
is presented in Section 9.5.

e Section 9.6 exploits a special case of exponential didiahwof state duration, and
introduces a factor-graph representation which enabfesesft sum-product infer-
ence (see Section 2.4.8).

The rest of the chapter is organised as follows

e In Section 9.7.2 we will discuss the unconditional case oRFCand how it relates
to the HHMM.

e Section 9.8 will evaluate the effectiveness of HCRFs in twpl@ations: human
activity recognition using the same data as in Chapters 67arahd noun-phrase
chunking (Sang and Buchholz, 2000). The HCRFs are run uraidging conditions
and tested against several competitive CRFs.

e Section 9.9 concludes the chapter.

Notations

The current chapter makes use of several mathematicalomgdieside those introduced
in the previous chapter. These are included in Table 9.leference.

Notation Meaning

[, Level which the transition occurs at time
x Scaling factors

.) Potential functions

a,(.) Rao-Blackwellised forward

B,(.) Rao-Blackwellised backward

Table 9.1: Notations used in this chapter.
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9.2 Numerical Overflow and the Scaling Algorithm

In this section we present a scaling method to reduce nuaienerflow. The idea can be
traced back to belief propagation by normalising (or redgrimessages at each step (see
Equation 2.75). In the context of HHMMs with which the nuncatiunderflowproblem is
associated, a similar idea has been proposed indBali, 2004). Fortunately, the overflow
problem in the undirected models is closely related to thaediow issue of the directed
counterparts and thus, a similar strategy can be used.

9.2.1 Scaling the Symmetric/Asymmetric Inside Masses

Before proceeding to algorithmic details let us revisit &tipn 8.37. If we scale down the
asymmetric inside ma&él ) by a factors; > 1, i.e.

d,s

/ o (u
a2 () — o () (9.1)

kj
then the symmetric inside ma&’;j is also scaled down by the same factor. Similarly, as
we can see from Equation 8.33 that

z : z : d+1u d,s d+1u d,s
azt 1 A Avut l—i_A uz

t=i+1 pcSd+1

whereA{ T = AFFPU RN if AfTY for t € (1, 5] is reduced by:;, thenal? is also re-
duced by the same factor. In addition, using the set of raaurslations in Equatlons 8.33
and 8.37, any reduction at the bottom Ievelﬁolf’.s will result in the reduction of the sym-
metric inside masAd * and of the asymmetric inside masgé;(u), ford < D, by the same
factor.

SupposeADs for all i € [1,] is reduced by a factor of; > 1, the quantltlesﬁ and
alj( u) will be reduced by a factor f[7_, «;. That is

- Al
I 9.2)
i=1Hi
'd,s Oéil’;(u)
al:;’ (U) A 7 (93)
i= 1KZ

It follows immediately from Equation 8.22 that the partititunction is scaled down by a



9.2 Numerical Overflow and the Scaling Algorithm 154

factor of [T, &

! A'ls Z
7= Alf=—— (9.4)

ses! L= %

whereAlss = ABl:. Clearly, we should deal with the log of this quantity to aloi
numerical overflow. Thus, the log-partition function candoenputed as

T
log(Z) =log Y A7+ logs; (9.5)
1

sest Jj=
whereA’lljjf has been scaled appropriately.

One question is how to choose the set of meaningful scalictgrfg{r,}7. The simplest
way is to choose a relatively large number for all scalingdes but making the right
choice is not straightforward. Here we describe a more ahtvay to do so. Assume that
we have chosen all the scaling factdes }]~'. Using the original Equations 8.33, 8.34,
and 8.35, where all the sub-components have been scaledpaigpely, we compute the
partially-scaledinside mass\;* for d € [2, D] and asymmetric inside masg}*(u), for

d € [1,D — 1] andi € [1, j]. Then the scaling factor at timjeis computed as

K= 0 (u) (9.6)

S,u

The next step is to rescale all the partially-scaled vagisibl

"d,s

b () — Oy (1) forse S de[l,D —1] (9.7)
Kj

"ds

Ab — U forse St del2,D—1] (9.8)
Kj

"Ds

AP — 11 forgse SP (9.9)

jj ,
Ry

wherei € [1, j].

9.2.2 Scaling the Symmetric/Asymmetric Outside Masses

In a similar fashion we can work out the set of factors from deeivation of symmet-

ric/asymmetric outside masses since these masses sopEndien the inside masses as
building blocks. In other words, after we finish scaling theide masses we can com-
pute the scaled outside masses directly, using the samé egiations described in Sec-
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tion 8.3.3.

The algorithm is summarised in Figure 9.1. Note that themoflperforming the loops in
this case is different from that in Figure 8.10.

Input: D, T and all the contextual potentials.
Output: Scaled quantities: inside/asymmetric inside masses,
outside/asymmetric outside masses.
Forj=1,2,..,T
Computeozf;j(u), d € [1, D — 1] using Equations 8.33, 8.34 and 8.35
Computex; using Equation 9.6
Rescaley, ’(u) using Equation 9.7
For:=1,2,..,7
Ford=2,3,...D—1
Rescaley!"* (u) using Equation 9.7
Rescaleﬁffj using Equation 9.8
EndFor
EndFor
RescaleA?* using Equation 9.9
EndFor
Compute true log-partition function using Equation 9.5.
Compute the outside/asymmetric outside masses using the
scaled inside/asymmetric inside masses instead of thmalkig
inside/asymmetric inside in Equations 8.40 and 8.44.

Figure 9.1: Scaling algorithm to avoid numerical overflow.

9.3 Partially Observed Data and Algorithms with Con-
straints

So far we have assumed that training data is fully labeled,that testing data does not
have any labels. In this section we extend the AIO to handdectises in which these

assumptions do not hold. Specifically, it may happen thatr#weing data is not completely

labeled, possibly due to lack of labeling resources. In tlaise, the learning algorithm

should be robust enough to handle missing labels. On the l#imel, during inference, we

may partially obtain high quality labels from external smes. This requires the inference
algorithm to be responsive to that data.
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9.3.1 The Constrained AlO algorithm

In this section we consider the general case when (v, h), whered is the visible set
labels, andh the hidden set. Since our HCRF is also an exponential modékites the
same computation required for general CRFs (EquationséhdB.12). We have to com-
pute four quantities: the partial log-partition functigi, =), the partition functiorZ(z),
the ‘constrained’ ESE.;, 4 .[F (¥, h, 2)], and the ‘free’ ESSE..[F((, z)]. The partition
function and the ‘free’ ESS has been computed in Sectionar®13.4, respectively. This
section describes the other two quantities.

Let the set of visible labels beé = (z, ¢) wherez is the visible set of state variables and
is the visible set of ending indicators. The basic idea iswehave to modify procedures
for computing the building blocks such Aﬁ’j andafjj(u), to address constraints imposed
by the labels. For examplekfgjS implies that the state at leveld starts ati and persists
till terminating at;j. Then, if any labels (e.g. there is af} = s for k € [i, j]) are seen,
causing this assumption to be inconsiste]sli’; will be zero. Therefore, in general, the
computation of each building block is multiplied by an idgnfunction that enforces the
consistency between these labels and the required caristi@mi computation of that block.
As an example, we consider the computatiol\df anda>? (u).

The symmetric inside magsf,’ is consistent only if all of the following conditions are

:j
satisfied:
1. If there are state label§ at leveld within the intervalfi, j], thenz¢ = s,
2. If there is any label of ending indicatdf ,, thene? | = 1,
3. If there is any label of ending indicatef for somek € [i, j — 1], thene? = 0, and

4. If any ending indicato#/ is labeled, the@? = 1.

These conditions are captured by using the following idgfdinction:
I[[Aﬁ’;] = 5[%6[1;3'} = 3]5[55—1 = 1]5[€Ze[i:j—1] = 0]5[€? = 1] (9.10)

When labels are observed, Equation 8.37 is thus replaced by

AG; = H[M’f]( > aiff(u)EZ:;?) (9.11)
ueSat+i
Note that we do not need to explicitly enforce the state ciescy in the summation
overu since in the bottom-up and left-right computatimﬁf(u) is already computed and
contributes to the sum only if it is consistent.
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Analogously, the asymmetric inside maff%ﬁ(u) is consistent if all of the following con-
ditions are satisfied:

1. The first three conditions for the symmetric inside maé; hold,
2. If the state at level at timej is labeled, it must be, and

. If any ending indicato# " is labeled, them? ™" = 1.

These conditions are captured by the identity function

Il (w)] = 0Ty ) = sI0[y = 1d[eepy—n = O18[F] T = wlole;™ =1]  (9.12)

(2% _]

Thus Equation 8.33 becomes

o (u) = (Z > i WAL AT e+ AL ffi”) (9-13)

k=i+1 peSd+1

Note that we do not need to explicitly enforce the state ctescy in the summation over
v and time consistency in the summation o¥esince in bottom-up computatioa,ﬁf’j(u)
and Aiﬁ;l’“ are already computed and contribute to the sum only if theycansistent.
Finally, the constrained partition functiofi(?, z) is computed using Equation 8.22 given
that the inside mass is consistent with the observations.

Other building blocks, such as the symmetric outside m#sand the asymmetric outside
mass\{7(u), are computed in an analogous way. Sin¢¢ andA}” are complementary
and they sharéd, s, i, j), the same indicator functioﬁAd’s] can be applled Similarly,
the pair asymmetric inside ma&# ) and asymmetric outside mafs$ ) are com-
plementary and they shatkes, i, j, u, thus the same indicator functldlfui:j( u)] can be
applied.

Once all constrained building blocks have been computeg ¢ha be used to calculate
constrained ESS as in Section 8.4 without any further madibos. The only difference
is that we need to replace the partition functiofx) by the constrained versiof(v, z).

9.3.2 The Constrained Viterbi Algorithm

Recall that in the Generalised Viterbi Algorithm descrilve®ection 8.5 we want to find
the most probable configuratigit’4?” = argmax, Pr({|z). When some variableg of
¢ are labeled, it is not necessary to estimate them. The tastwsto estimate the most
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probable configuration of the hidden variablegiven the labels:

PMAP = arg max Pr(h|9, z)

= argmax Pr(h,v|z)
= argmax O[h, 0, 2] (9.14)

It turns out that the constrained MAP estimation is idertioghe standard MAP except
that we have to respect the labeled variables

Since the Viterbi algorithm is just the max-product versairthe AlO, the constrained
Viterbi can be modified in the same manner as in the constta#i® (Section 9.3.1).
Specifically, for each auxiliary quantities such&g™* anda;;**(u), we need to main-
tain a set of indicator functions that ensures the consigterith labels. Equations 9.10
and 9.11 become

H[A%M’d’s] = 5[%6[@;‘} - 3]5[55—1 = 1]5[€Ze[i:j—1] = 0]5[€? = 1]
Azzjax,d,s _ I[[A?fx’d’s] <urerg}i§l az}ax,d,s (U)EZZj) (915)

Likewise, we have the modifications to Equation 9.12 and Equ®.13, respectively.

mazx,d,s ~ ~ ~ ~ -
H[ai:j ()] = 5[xZ€[i,j] = 5]5[6?—1 = 1]5[€Z€[i:j—l] = O](S[x?“ = u]é[e;”l = 1]

max,d,s - max,d,s max,d,s A mazx,d+1,u 4d,s X

Q.4 (u) = H[ai:j (u)] max { ker%ifj] vg}gadfl Qe (U)Ak:j Av,u,k—p

u,b

Agax,d-l—l,uﬂd-i—l,s} (916)

Other tasks in the Viterbi algorithm including bookkeepargl backtracking are identical
to those described in Section 8.5.

9.3.3 Complexity Analysis

The complexity of the constrained AlO and constrained Vitédras an upper bound of
O(T?), when no labels are given. It also has a lower boun®@f') when all ending in-
dicators are known and the model reduces to the standardtixesured graphical model.
In general, the complexity decreases as more labels arkalaleaiand we can expect a
sub-cubic time behaviour.
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9.4 Approximate Inference using Rao-Blackwellised Gibbs
Sampling

Recall that the AIO algorithm derived in Chapter 8 generédigesO(7?) time. This
quickly becomes impractical for non-trivial problems witirge 7" (e.g. about 100 or
larger). In this section we develop an approximation schEmaference of the HCRFs
that may help improve the speed. The main idea is to comBibbs samplinde.g. see
Section 2.4.6) andRao-Blackwellisatior{e.g. see (Casella and Robert, 1996)). Before
proceeding into algorithmic details let us make severatplaions that simplify the HCRF
computation

e The set of ending indicatorg2 can be made simpler by noticing that for each time
step there is only one transition at a certain level becallifeesstates above it must
remain unchanged, and all the states below it must finishsTie entire slice of
indicatorse;” can be replaced by a single variablec [2, D], wherel, is the level
at which a transition occurs at tinie

e The complete free variable set is nowi2, [) which has two components, the sub-
set of state variables}:? and the subset of transition indicatdis-_;. Under the
restrictions of hierarchical consistengyhen all the transition indicators are known,
the entirez:2 can be collapsed into a Markov tréEigure 9.2b).

e It is well-known that inference in tree structures is efiitiésee Section 2.4.5), and
marginalising out all the state variables takes linear timita respect to number of
tree edges. In our HCRF case with observed ending indicatesime isO(DT).

For presentation clarity, we will useas a shorthand for}:2, x; as a shorthand for}:?,
and! as a shorthand fdg.._;.

Figure 9.2: An HCRF with knowi: (a) links between unrelated states are removed, and
(b) the collapsed version into a Markov tree.
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9.4.1 Rao-Blackwellised Gibbs Sampling

Rao-Blackwellisation is a technique that can improve thaliuof sampling methods by
only sampling some variables and marginalising out the tastur HCRFs, for example,
we can sampléand marginalise out

= —2() (9.17)

whereZ(l) = > _®[z,1]. However, there are problems with this strategy. First, patimg
Pr(l) still requiresZ, which is expensive. Second, the size of state spader@) is
(D — 1)T=1, which is difficult to sample directly.

Fortunately, Gibbs sampling allows us to samjph@t fromPr (/) but from the local distri-
butions

li, ~ Pr(l|l—) forte[l, T —1),1; € [2,D] (9.18)

wherel_, = {I\l;} = l1.4—1,4+1.7, and

Pr( )

>y Pr(l, 1)

o
= S 20 (5-19)

Pr(lt\l_t) =

The main efficiency comes from the fact that, as we will sho@éttion 9.4.37(/) and
therefore,Pr(l;|l_;), can be computed exactly in linear time

In what follows we borrow the idea avalking chainfrom (Bui et al,, 2002) in the context
of the Abstract Hidden Markov Model (AHMM) and adapt it to ddCRFs. The main
source of complication in the adaption is that the HCRF isabéof modelling duration
whilst the AHMM is not. Moreover, the HCRF is strictly nestetiilst the AHMM is not.
As the HCRF is undirected its factorisation of potentialesloot have any probabilistic
interpretation as in the AHMM.

Givenl, the temporal evolution of the HCRFs can be visualised aslkingachain, either
moving forward (Figure 9.3b), or backward (Figure 9.3c)efieight of the forward leg at
time ¢ corresponds to the transition levgl Since the states abovVeare unchanged dt
the ‘body’ of the walking chain is copied from the previousd index.

In the proposition below we show that the walking chain carfldttened into a standard
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g
T I

(@)
- S D
% | g
T T
= 12
(a) A HCRF fragment (b) Forward (c) Backward (d) Merge

Figure 9.3: The walking chains. Given a fragment of the HCRinae ¢, the states above
the transition level, stay unchanged so they can be collapsed into a single node.

sequential chain.

Proposition 6. Givenl, the joint potentialb|x, /] can be factorised as follows

Plz, ] = H oi(e, Teya]l) (9.20)
]

te[1,T—1

wherey, (x;, z,,1|l) are non-negative functions.

Proof: This can be derived by construction. Indeed there is mome din@ way to do this.
Let

D—1 D—1
Pole, wa|l) = [ 11 Eﬁ:i} Al [ 11 w:f:fﬂ} (9.21)

d=ly d=l

d d 1 , Ilg—1
where we have useﬂff;f as a shorthand f@xfjl o Afj;jvt as a shorthand fof Zf”lj , and
t )

Ty Ty

d,x?
x®s formyt . Now let

v,t+1 zi A+1 "
D D—1
Futonanl) = ol T || TL w1 9.22)
d=lI1 d=1
D—1
Croi(wr_y,zr|l) = @T—1<$T—17~TT|Z)|: E;i; X
d=1
D lp1—1 D
x{ I1 Ri?_l][ RdTH I1 R‘%’:}} (9.23)
d=lr_1 d=1 d=lr_1
D
Biolwy, meq|l) = @t(xt,xt+1|l){HRﬁf],Vt €2,T 2] (9.24)
d=Il;
d,:pf

where we have uset; as a shorthand foR;;"*, andi is the starting time of the seg-
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ment of leveld that ends at. We have assumed that the computation proceeds from left
to right and the index is recorded for each levelalong the way (e.g. whenever the ini-
tialisation potentlalzr is triggered). Then the first construction is completed kiyirse

@t(xtaxt—i-l‘l) = @t($t7$t+1|l)-

Alternatively, let

D—1
Filenmll) = xl,mz[ nd }
=1

d
D l1—1 D
X [ 11 R;l;j} { Rf;j} { } (9.25)
d=ly d=1 d=ly

D D-1
Praa(er-n,2rll) = ¢roi(rr_i,arll) [ H R$: }[HEg}] (9.26)
d=lp_; d=1
D

?t(xt, ..'lft+1|l) = cﬁt(xt, ..'lft+1|l), |: H Rf—flj:| YVt € [2, T — 2] (927)
d=l

wherej in RtJrl is the ending time of the segment that startg &t1 and leveld. We
have assumed that the computation proceeds from rightttariefthe indey is recorded
for each levell along the way (e.g. whenever the state ending poteﬂﬁgilis triggered).
Then we have another construction by settingr,, ;.1 |1) = @ (2, 2,41|]) B

Remark: Proposition 6 suggests that computation in the HCRFs, wieeknown, should
be be similar to that on Markov chains, because the factaisaf Equation 9.20 is a case
of Markov chain factorisation of Equation 2.47. The comgliion is that the state space of
x; in the case of HCRFs is not usually small and that the stringhérd forward-backward
procedure described in Section 2.4.3 is not applicables Wil be the subject of the next
subsection.

9.4.2 Rao-Blackwellised Forward/Backward

Let @, ¢[z1.|l1..—1] be the product of all contextual clique potentials that arabéed in the
corresponding contexts causedi/py . More specifically, we have

(I)at$1t|l1t 1 H <P $z,$z+1|l) (9-28)

i€[1,t—1]
where @ (z;, z;41|1) is defined in Equations 9.22-9.24.

Similarly, let ®3,[z.r|l.7—1] be the product of all contextual clique potentials that are
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enabled in the corresponding contexts causel. fy,. More specifically,

Qg i[ver|ler—1] = H @ (s, il (9.29)

JEt,T—1]
where’p ;(z;, z;,1|) is defined in Equations 9.25-9.27.

With some abuse of notations, denotedyz;|l.,_1) the RB-Forward and 5, (x;|l;.7—1)
theRB-Backward

Definition 10. Leta;(z,) = 1 and 8y (zr) = 1. For general time indices the RB-Forward
and RB-Backward are defined as follows

Oét(%‘llzt—l) = Z (I)a,t[xlzt‘ll:t—l] (9-30)
T1:t— 1|{$ idig_ 1—mf}ff;1171

ﬁt($t|lt:T—1) = Z (bﬁ,t[l't:T“t:T—l] (9-31)
Ti41: T‘{xt+1 g= d}lt -1

wherei? and ;¢ are the start and end time for the segment of sigte

In performing these two sums one must keep these stateseat/lev(1, [, ; — 1] stay the
same in the intervali, j] for somei < t and¢ < j. These states are fixed ig" "
The indices{:} are known when we scan forward and the indi¢¢} are known when
we scan backward. In the following we will develop a recuggivocedure that finds and
stores these indices as we compute the RB-Forward and RBaBad sequentially. The
main results of this section are summarised in Proposition 7

Proposition 7. The RB-Forward and RB-Backward can be expressed compachbjflaws

a(wy|ly—1) = H ¢ (zf, zh) (9.32)
d=li—1
Bi(willer—1) = mext, fany) (9.33)

d=l¢

wherey? ,(.) andy,(.) are some positive function Gff, z). In addition, the compu-
tation of o, (.) and 3,(.) for all ¢ € [1, T costsO(DT) time and space.

Remark: The significance of Proposition 7 is that the vertical chaiiis enough to rep-
resent the RB-Forward and RB-Backward without worryingulibe past. More impor-
tantly the factorisation in Equations 9.32 and 9.33 impiied we never need to explicitly
storea,(.) andg;(.) as a function of:;, which is expensive witkD(|S|”) memory. We only
need to store the local potential functian, (.) andyg ,(.) which requireO((D —1)|S|?)
space.
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Proof: Let us first work with the RB-Forward and prove Equation 9.8% will proceed
by induction.

Base CaseAt ¢t = 2, from the definition of the RB-Forward in Equation 9.30

042($2|l1) = Z (I)a,2[x1:2‘l1] (9-34)
21 [{2f=ag} 5"
= Z Do a[z12|lh] (9.35)

subject to{z¢ = 24¢}'.~'. Consider the forward ‘walking chain’ in Figure 9.3b. It cists

of three elements: (1) the upper bad)/', where the variables at the first slice are copied
forward to those at the second slice, i€" = zi™", (2) the ‘left-leg’ 21 7P, and (3)
the ‘right-leg’xlzl“:D. ®, 2[x1:2]l1] is the product of local potentials distributed along the
body, the left-leg and the right-leg. Thus summing o¥gr is equivalent to marginalising
out the left-leg of the walking chain. This can be donéin- [; + 1 steps. The result after
marginalisation are the body and the right-leg, which aréspet the vertical chain at time

t = 2. Thus,ay(z2]l1) is a product of local potentials along the vertical chain

Induction The argument runs in a similar fashion to the base case.Mesoat the RB-
Forward o, (z,-1|l1.4—2) is a product of local potentials along the vertical chajn;.
From Equation 9.30, we have

Oét(xt|l1:t—1) = Z (I)a,t—l[xlzt—l|l1:t—2]¢)t—1(~rt—laxt”) (9-36)
ivl:tfl\{Ifd:t71=$?}ff;1171
= Z ?t—l(xt—l,xtm Z ‘ba,t—l[flzt—1|51:t—2]
xit:f:D 301:1572\{$2d1t72:x§l—1}fit;1271
= Z ?t—l(xt—laxt|l)at—1(xt—l|l1:t—2) (9.37)
ly_1:D

Ti_1

subject to{z4,, | = x¢}-17". In Equation 9.36, we have used the following factorisation

‘ba,t[$1:t|51:t—1] = (ba,t—l[xlzt—l|l1:t—2]$t—1(xt—1>xt“) (9.38)

which is a result of Equation 9.28. Recall that ;(z,_1|l1.,—») and @, (x,_1, x,|]) are

products of local potentials along the Ieft-I;efgf“:D, the right-legx?”“:D and the body

z}" . Summarising ovel_ i, ,.» is equivalent to marginalising over the left-leg, which
Ti_1

can be done efficiently iv — [, + 1 steps. After marginalisation, the body and the right-leg

form a vertical chain at time Thusa,(x|l;.,—1) is a product of local potentials along the

vertical chaing;.

The forward process is illustrated as a forward walking ehaiFigure 9.3b. As the tran-
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sition occurs at level_1, the left-leg is marginalised out, the right-leg is creatgdle the
body stays the same.

Overall it is now clear that the computation of the RB-FomvapstsO(DT') time and
space.

The proof of Equation 9.33 in the case of RB-Backward is ayals to that of RB-
Forward. The process is illustrated as a backward walkiragncim Figure 9.3c, where
the right-leg is a summarisation of thwe,; (.). As the transition occurs at levig| only the
left-leg below it is created, while the part above it staysghme. This completes the proof
[

The implementation of forward-walking and backward-watkiis summarised in Fig-
ure 9.4 and Figure 9.5, respectively.

Input: ¢,—1(.) andl,_;
Output: 1,.(.)
/[* Integrating out the left leg using upward message passing
pP(s) =1
Ford=D—1,..,1,
pi(s) = 30,08 1 (s, u) By REE p (w)
EndFor

[* Integrating overu atl;, ; */
i T (s, 0) = X, i () R AL

[* Creating the forward-walk (the right-leg) */

Ford=1;,..D—1
do(s,u) — s

EndFor

[* Keeping the higher potentials */
Ford=1,.,l; —1

@Dg,t(s, u) — wg,t—l (s,u)
EndFor

Figure 9.4: Forward-walking chain.

Of course, computing the RB-Forward and RB-Backward is hetrhain point. As we
can see by analogy to the Markov chains (Section 2.4.3),dhegssential ingredients for
inference, which we will cover next.
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Input: ¢:41(.) andl;
Output: 1,(.)
/* Integrating out the right leg using upward message pagsin
pP(s) =1
Ford=D -1, ..,
Nd(s) —> ¢g’t+1(s, u)WZ::_i_lRf:llijd—H( )
EndFor

/* Integrating over atl; */
ét—l(& u) = Eu Nlt (U)Riivlszﬁf,’;t

[* Creating the backward-walk (the left-leg) */
Ford=1;,..,.D—1

Ui(s,u) — By
EndFor

[* Keeping the higher potentials */
Ford=1,..,[; —1

wtd(sv u) — ¢g+1(87 u)
EndFor

Figure 9.5: Backward-walking chain.

9.4.3 Efficient Computation of Pr(l;|l_;)

Now we show how to compute the quantity of interest for Gibamgling Pr(l;|l_;).
Proposition 8 summaries the computation.

Proposition 8. We can expresBr(/;|l_;) as follows

Pr(li|l ;) o< Y H O (e, ) (9.39)

oD d=l;

where¢(.) is some positive function @f¢ ,, z!). In addition, the computation of
Pr(l;|l_;) forall t € [1,T — 1] costsO(DT) time and space.

Proof: Recall from Equation 9.19 that we just have to compZté) in order to estimate
Pr(lt|l_t).

Recall that the joint potentid}[z, /] (see Equation 8.1) is the product of all local potentials
that are enabled in the contexts caused.byhus the joint potential can be factorised as
follows

1 D
‘b[l", l] = (boe,t—l—l [$1:t+1|l1:t]q)ﬁ,t+1[$t+1:T|lt+1:T—1] [H RZ’;] [ H Rf—fl:j} (9-40)
d=1 d=l;
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fort e [1,7—1], whered > [;,_;,d > l;, andi < t < j. To visualise this relation, imagine
a merge between the forward-walk and the backward-walkepeted in Figure 9.3d. As
we walk in both directions we already know the starting tina@d the ending timg of the
segment with persistence potent@’j.

Consider the decomposition: = (x1., x411, Ti0.r). Given the factorisation in Equa-
tion 9.40 and the definition of RB-Forward/Backward in Edqoia¢ 9.30 and 9.31 we have

Z(1) = D @l =) > > P!l

T1:t Tt41 Tt42:T

It—1 D
= > <[H Ri’;} [H Rffu]Oét+1($t+1|llzt)5t+1($t+1\lt+1;T_1)> (9.41)
d=1

Tt4+1 d=ly

Notice that by Proposition 7 the RB-Forward and RB-Backwaade the factorised form
along the vertical chaim;; = (zy,,, 27,4, ...,22,). Hence Equation 9.41 has the form of
the sum-product along the chain, which can be computed steps (see Section 2.4.3).
We can even compute and store all the valueBgf) for all [, € [2, D] in D time using
the same dynamic algorithm along chain. This implig3@DT|S|?) time complexity to
compute all the conditional probabilitiés(l,|l_;) for t € [1,T — 1] andl, € [2, D].

Substituting Equations 9.32 and 9.33 into Equation 9.41gradping local quantities into

appropriate function ofz{, ,, z}"), for d € [1, D — 1] will give us Equation 9.3®

9.4.4 Estimating State Marginals

We have shown that Gibbs sampling the time indicesn be carried out efficiently. In this
section, we show how to approximately estimate the prolbglof a state at given level
and timet, a quantity often used in smoothing:

Pr(zl) = — Z Pr(zd|i{")_)) (9.42)

ne[l N]
whereNN is the number of samples.

We have

Pr(z?,1) = ZPr(m,l)

- (9.43)
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whereZ(zd,1) = > a [z, 1]. Using Equation 9.17, we have

z\x

Pr(zf|l) =

= (9.44)

We have computed(l) in Section 9.4.3. Using the same logic we have an expression
similar to Equation 9.41

li—1—1

)
2t =30 || 1T #] LH R el dalir ) | (049

ze\xd d=1 =li—1

This equation is almost identical to Equation 9.41 except tlow we sum over,\z¢
instead ofr,. Thus, likeZ(l) in Equation 9.41, we can computéz?, ) in 2D|S|* steps.

We propose the following sampling procedure to estirﬁa(ezf). First we compute all the
RB-Backward3L ;. Then we proceed from left to right to estimate the RB-Fodvay.
Sincea; only depends o, _;, we can samplé using Equation 9.18;¢ for d € [1, D]

using Equation 9.42 and updatgas we go. Then the process is repeated until convergence
criteria are met. It means the stat€¢/sare only updated after eve#yD Gibbs samples. The
intuition is that since successive states sampled by thesGampler are highly correlated
and the marginals may not change significantly after eagh ste can also wait for quite

a bit of time before picking a value. Finally, the completeqadure to compute Rao-
Blackwellised smoothing probabilit}?r(xf) is summarised in Figure 9.6.

Input: Model parameters
Output: Smooth marginal®r(z{) t € [1,T),d € [1, D]
* Initialisation */

Samplel
/* Main MCMC loop */
For:=1,.,N

Fort=1T,T-1,..,1
Computes; using the backward-chain of Figure 9.5
EndFor
Fort=1,2,...,T —1
Resamplé,
Computex; . ; using the forward-chain of Figure 9.4
Update the smooth marginafs (¢, ,)
EndFor
EndFor

Figure 9.6: Computing the Rao-Blackwellised smoothingpimlity.
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9.5 Learning based on Pseudo-Likelihood

Learning in HCRFs using the standard maximum likelihoochwiite AIO algorithm as

the underlying inference is expensive. This subsectioastigates the application of Be-
sag’s pseudo-likelihood (see Section 3.5.1.2) as an aliieato the true likelihood for our
HCRFs:

Lpsewds = log (Pr oll,z) ] Prliz, = ) (9.46)

teft, T—1]

~ logPr(z,l|z) (9.47)

Again, let us drop: for clarity. In Section 9.4 we have shown how to efficientlyrquute
Pr(l;|l_;) forallt € [1,T — 1] in linear time. Similarly, for the’r(x|l) we have

Pr(z,1)
>, Pr(es )
[z, ]
2. Pl 1]

1
= 2%l (9.48)

Pr(z|l) =

Here,Z (1) has been computed in Equation 9.41 (Section 9.4) in lingee.ti

Now we need to compute the gradient of the pseudo-likelifoodarameter estimation:

VLpseuto = ViogPr(zll) + Y VlogPr(ly|l_) (9.49)

te[1,7—1]

Using Equation 9.48, the first term of the RHS reads
VlogPr(z|l) = Vieg @[z, l] — Vlog Z(l) (9.50)
The termV log ®|x, [] is straightforward due to the factorisation in Propositton

Vieg®[z,l] = Y Vlogpy(wpsi|l) (9.51)

te[1,7—1]

Now we proceed to estimaleé log Pr(l;|{_;) in the RHS of Equation 9.49. Recall from
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Equation 9.19 thabr(l,|l—) = Z(1)/ 3=, Z(1,1-1), we have
VlogPr(li|l_y) = VlogZ(l)—Vlog» Z(Ij,l_)
l/

= log Z (1 AU
v Og () Zl’ l£7 Zv t7

Z(U, 1) VZ(1, 1)
_ 1 Z t t )
Vlog Zzl/ 2 10) 20, 1y)

= Vg Z(l) = Y Pr(ljli_)Viog Z(I},1_,) (9.52)
I

Thus, both Equations 9.50 and 9.52 require estimatiovi bfg Z (/). Recall the factorisa-
tion in Proposition 6, s@r(z|l) is a standard sequential CRF (see Chapter 3) with local
clique potentialsy; (z.+1]l). Then from Proposition 1 we have

ViegZ(l)= Y > Pr(eun|)Viogeu(isnll) (9.53)

te[1,7—1] 141

Estimating the local expectation in Equation 9.53

Z Pr(2e41|0) V1og @i (24441 ]1) (9.54)

Tt:t41

by directly summing over,., ., is not a good choice because we end up with the sum of
|S|?P terms. Fortunately, the factorisation given in Proposiiobelow greatly simplifies
the computation.

Proposition 9. Pr(z,,1|{) can be factorised as follows

v

—1
1
Pr(zy|l) = m V(. fﬂ:r11|l) (9.55)
d=1

wherey, ({11! |l) are some non-negative functions.

Proof: We have

Pr(zpgall) = Y Pr(fl)

T\Tp:t4+1

1
= 70 > P,

T\Tt:41

o Z([L’t:t 1,[)
= T;) (9.56)
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whereZ (zy.411,1) = Ez\xmﬂ Oz, 1]. As(z,1) = (T14-1, Teerr, Tevor, lie—1, by livrr 1),
®[z,[] can be factorised as

‘b[%l] = q)a,t[$1:t|l1:t—1]q)ﬁ,t+1[$t+1:T|lt+1T 1] X
li—1 D—
XAZZt H Rg; H Eds H R H ut—i—l H Rt+1] (9.57)
d=1 d=l, d=l; d=l; d=l

This gives rise to

Z(xt:t—i-lal) = at($t|llzt—1)5t+1($t+1|lt+1:T 1) X
li—1

D—
X AT H R H Eyi H R H H Ri'%,; (9.58)
=1

d=l d=ls d=ls d=ls

Due to Proposition 7, the RB-Forwang(z;|(1.;—1) and the RB-Backwar@; .1 (z¢y1|li11.7-1)

are factorisable along the vertical chaing:péndz, |, respectively. As aresulf(z.;y1,1)

is also factorisable in the same manner. With appropriasmgement of the local factors
of Z(w1.4+1,1) into potentials of the formy, (zf:%7'|1), Proposition 9 follows. This com-

pletes the prool

As a result of Proposition 9 the local margifial(z,..,1|l) can be represented by a vertical
chain. More precisely, since below levgl there are no links between nodes, we have a
three-branch tree. The expectation in Equation 9.54 itber efficient to compute in
O(D) time. Overall we can compute the gradient of the log-psdikatihood in O(DT?)
time due to Equation 9.53.

9.6 Representing HCRF with Exponential Duration using
Dynamic Factor Graphs

This subsection describes a method to represent the idei@rafdhical topology of the
HCRF in the form of a dynamic CRF (Suttat al, 2007), analogous to what Murphy
and Paskin (2002) have done to convert the HHMMs (F&hal.,, 1998) into DBNs (see
also Section 2.5.1). The dynamic CRF is a standard grapmodkel with fixed cliques
and connectivity. This allows many efficient approximatieiance methods, which may
require sub-cubic time in practice.

The main source of difficulty is that in general, the HCRF doetshave fixed cliques and
connectivity, as we have already seen in previous sectibodunately, there is a special
case of HCRFs which gives us a way to represent the HCRF usitygamic CRF. This

is whenthe duration distribution is precisely exponentigb we can factorise the state-
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. . d7s . . - . 1.
persistence potentid;;; into product of node potentials at each time stepli, j|:

R =T #l(s) (9.59)

te[i,j]

We show how to create a factor graph (see Section 2.4.8) wglspecial case. This can be
considered as an undirected version of the DBN/HHMM. Apprate inference in factor
graphs such as loopy sum-product can therefore be used.mEtieod (possibly) allows
linear time inference, as opposed to cubic time using theteéX® method, so it may scale
better when the sequence is long.

node—factor----__ ‘

initialisation/transition—factor

Figure 9.7: Dynamic factor graph representation of HCRH&d-squares represent factor
nodes, big circles represent variable nodes, and smalksirepresent ending indicators.
We ignore the observation for presentation clarity sincait be thought as being absorbed
into the node potentials.

Figure 9.7 depicts the resulting factor graph. There is amode to represent the top level
because the top state persists during the whole sequendanglindicators at the bottom
level are not used since they are always triggered. Therthege types of factorsode
initialisation/transitionandending The last three capture the corresponding events, and
more importantly, ensure the hierarchical consistenchefmodel. Associated with these
factor types are corresponding potential functions:

e Node potentiab{(x¢), ford € [1, D], t € [1,T]

e Initialisation/transition potentiab? (z¢, |, x4, ,, ef ") ford € [2, D], t € [1,T — 1]
with an additionakyd(x{ !, 2¢) for d € [2, D] at the beginning of sequence.

e ending potentialyd (x4t ef) ford € [1,D —1],t € [1,T].

Now we describe the potentials in more detail.
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Initialisation/Transition Factor: At the beginning of the sequenced(z4~*, 2¢) = wﬁ,‘ll’s

for d € [2, D], wheres = 297", u = x¢. For other time indices, farc [1,T — 1], there are
three sub-cases:

e Atthe second level the potential is

2,r
- Au,v

«1f ef = 1, wherer is the root variabley = z7,v = 27, .

— du = v], otherwise

e At the bottom level the potential is

Dys _ _.D-1, _ D, _ D
- Ay ifep_i,=0,wheres =z, ,u=x",v=u1,.

Uy

— 771, otherwise.

e At other levels, ford € [3, D — 1], the potential is

— 0if e¢714 = (1,0). The constraint here is that if a parent finishes then itsichil
must also finish.

— §[xd = 2l ] if ¢/~ = (0,0). Here the both the parent and child continues so
at least the child state must stay the same.

d—1,s ;¢ d—1:d __ _ .d-1 _ d

— Tuer if e %= (1,1), wheres = x{ 7, u = a7, |,
d,s ; _ d

— A% otherwise, where = 7, ;.

Ending Factor: At the end of sequence all states end so the potentiEl‘j:% for d €
[1, D — 1], wheres = o4, u = 2%, Fort € [1,T — 1], the potential is

. EZ,’f if e =1, wheres = z¢,u = 291,

e 1, otherwise.

9.7 Hierarchical HMMs as HCRFs

In this section we show that with slight modification to the RIEit covers the HHMM
(see Section 2.5.1 for a general review, and see (Phung, Z0pter 5) for elaborated
details) as a special case.
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9.7.1 From HCRFs toUnconditional HCRFs

We have worked exclusively with the conditional distrilautiPr({|z) of Equation 8.2,
where we simply ignore modellinBr(z). Now, let us modify the HCRF in the way that
each state at the bottom level (also called production lievelHMMs) 2P is associated
with an observable;. States at other levels are not directly associated witRor sim-
plicity we only consider the discrete case, wheyre= Z = {1,2,...,|Z|}. We turn our
attention to the unconditional case where we want to mBdgl, =)

Pr(C,2) — %@[g, . (9.60)

Note that we have only a single partition functign= > . . ®[(, 2| for all data instances.

We shall use the same contextual cliques as in the definifitmedHCRF in Section 8.2.
However, the potentials associated with those contexfiales listed in Figure 8.6 are
not functions of the observational sequen@xcept for the the persistence potential at the
bottom levelr >, with t € [1, 7).

Like in most undirected graphical models, the most impdrtarantity is the partition
function. For any. we alway have the following factorisation

O[¢, 2] = ®[Q\xyy] [ R (9.61)

1€(1,T]

where®[¢\zP;] is the product of all local potentials other than the statsiptence at the
bottom level and is a shorthand for”. Then the partition function can be computed as

z = ) |®l\atn) > [T O (9.62)
< z 1€[1,7]
= > e\t T] D R (9.63)
¢ 1€[1,T] =t
= > | e\eta IT B (9.64)
¢ 1€(1,7]

whereR,* = =>_., RES* . IndeedR);* plays the role of a state persistence potential. Then
the computation of can proceed in the same way as in the AlO algorithm (Secti®n 8.
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9.7.2 From Unconditional HCRFs to HHMMs

Now we turn into converting this unconditional HCRF to an HNMn a similar way
to converting a chain MRF into an HMM (Section 2.4.3.1). Wase the concepts of
symmetric and asymmetric Markov blankets, which are degiat Figure 9.8. .
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Figure 9.8: Symmetric (left) and asymmetric (right) Markaankets for HHMMSs.

Note that, the unconditional HCRFs are strictly more genitan the HHMMs in that
HCRFs allow arbitraryduration modelling and the local potentials atene dependent
which are not present in HHMMs.

Let us drop all these extra elements, and an HHMM is an untiondi HCRF with fol-
lowing constraints

Y owlt = Ly >0forallse s del,D—1] (9.65)
ugeSat1
AN FEY = LAY >0,E7 >0

vesd

forall s € S u e S*. d e [2,D] (9.66)
> RS = 1,R;™ >0foralls € S” (9.67)

Zt€EZ

and other state persistence potentials are not modelleathér words % plays the role
of the initialisation probability of a child given the parent at leveld; Ag;; the transition
probability from stateu to statev at leveld under the parent; £¢~1* the probability
that the childu will exit under the parent; and R2;** the emission probability of an
observable at timeby the production state Notice the relationship of the transition and
ending potentials which says that under the pasettie childu has two choices: to transit
to a new childv or to return the control to its parent. Formally, these ptiédhare defined
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as follows (Phung, 2005, Chapter 5)

d,s

Tt =

u
d,s

Au,v
d,s

Eu

R£7S7zt

Pr(zf*! = ulz? = s,ef = 1) (9.68)
Pr(zf, =v,ef ' =0)zf ' = 5,2 = u,el = 1) (9.69)
Pr(ef = 1]z = 5, 20T = u, el*! = 1) (9.70)
Pr(z/|zP = s) (9.71)

It is straightforward to verify that with these definitiorfsetset of constraints in Equa-
tions 9.65-9.67 are satisfied.

In the HHMM setting these potentials (or probabilities)tiselves are parameters. In what
follows we draw the probabilistic interpretation of the lding blocks under this setting.

The concept of Markov blankets and conditional independaemeed to be modified to
incorporatez. Denote byzi:j = Zui-1j111s 1€ 2 = (25, 2;;). With some abuse of
notation, let us deflnefl > zij) as the set of variables falling inside the symmetric Markov

2:77

blanketl1%* and((,:., 2;.;) falling outside.

The symmetric inside mass now becomes

5:(1) zg’ZZJ
E :PI‘ 2j7ZZJ7 2] 1

’LJ

d
Pr(zi, €f1

d,s
Ai:j

o d:D
=0,¢j

The symmetric outside mass can be expressed as

~d,s

A?:v; Z (I)[gzg 1 Zisj ]
¢
= ZPI" ds, Zijs 211:
¢
= Pr(z Ziis fDl—l,xf:j:

Similarly, we define(¢’

O,e?:D = 1]ed) = 1,x§i:j =)
= 1left) = l,xf:j =5) (9.72)
Laf, =slef” =1,¢ef,_; =0)

s|e?:D 1,6?:3»_1 =0) (9.73)

(u), z;;;) as the set of variables falling inside the asymmetric

Markov bIanketFﬁ’;(u), and (gf’js(u), 2;.;) falling outside. The new asymmetric inside
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mass is defined as

agi(u) =) @G (u), 7]

Ciiy ()

- Z ): 2y €y = 0,25 = u,ef TP = 1[el) = 1,25 = 5)
¢ (w)

= Pr(z, fj L= 0,$?+1 = u, e?“:D = 1]t = 1,x§l:j =) (9.74)

Coupled with this is the asymmetric outside mass
d,s ~d,s
o) = 3 B¢ (w)
oo (u)
d,s d:D __ d __ d+1:D __ d _ d

= Z Pr(gi:j (u)véz’;yei—[l) =17 = S|6j+l P=1, €ij—1 =0, ]H u)
¢ (w)

= Pr(z, = 1,:):% = s|ed+1D 1,6%—_1 = O,x;”l u) (9.75)

We now examine several relations between those buildingkblo Suppose we want to
infer the conditional probability’r(z¢ = s|z) of certain state at time € [1,7] and level
d € [2, D — 1] given the observation sequence

Pr(z? = s|z) = —+ 2%/ (9.76)

Naturally, the state; must start and end somewhere so that i, j|, so we can expand
Pr(z¢ = s,z2) as

j—1
i€[1,t],jelt,T]
= Z Pr(z;.;, eﬁj_l =0, e?:D = 1]t = l,xf:j =35) X
1€[1,t],5€(t,T)
x Pr(z;.;, e l,xﬁj = s|e;-l’D = 1,6?:3»_1 =0)
= > APAL (9.77)
i€[1,t],jelt,T]

which naturally leads to the data likelihood

Pr(z) = ZPr(xf:

scSd

= > > Al (9.78)

seSdig[l,t],j€[t,T)

foranyt € [1,7]andd € [2, D —1].
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Another relation is between the inside and asymmetric esidsses. Expanding the RHS
of Equation 9.72 we arrive at

ds d _ d:D d:D
Ai:j - PI"(ZZ':]', €ij—1 = 0, € = 1|6 =1, xz] S)

_ d g pd+l —, pdtLlD d:D

= g Pr(zi €5, = 0,257 = u, €] =1,e7 = 1]¢; 1,x” s)
ueSa+1

_ d g pdtl —y, edtlD d:D d _

= E Pr(zij, €1 = 0,25 = u, €] = llef” = 1,27, = 5) X
ueSdt!

d _ qpd _ o od¥l _ o dl _
x Pr(ef =1|z§ = 5,257 = u,ef7 =1)

_ d78 d,S

= Y aF(uwE] (9.79)
ueSdt!

where the asymmetric inside mass is from Equation 9.74 amexiting potential from
Equation 9.70. This result is identical to Equation 8.37>aseeted.

9.8 Evaluation

9.8.1 Recognising Indoor Activities

In this experiment we evaluate the HCRFs on the home videgeslance dataset (see
Chapter 6 and Chapter 7). Recall that the data has a hieraf@ugfivities: each complex
activity is a sequence of simpler activities. Thus, we bailthree-level HCRF in which
the top level is just a dummy node, the second level has 3ssfegpresenting complex
activities), and the bottom level has 12 states (reprasgstmple activities).

At the bottom level (simple activities), we reuse the featset used in Chapter 6 and
Chapter 7. At the second level (complex activities), we ugerage velocities and a
vector of positions visited in the state duration. To enctige duration into the state-
persistence potentials, we employ the sufficient stasistithegammadistribution as fea-

turesfi(s,i,j) = I(s)log(j —i+ 1) and fri1(s,4,7) = I(s)(j —i + 1).

At each leveld and timet we count an error if the predicted state is not the same as the
ground-truth. Firstly, we examine the fully observed caseme the HCRF is compared
against the grid-structured CRF (known as Factorial CRFRIFC(Suttonet al., 2007))

at both data levels, and against the sequential CRF (SCRiffe(ty et al., 2001) at the
bottom level. Table 9.2 (the left half) shows that (a) bo#hrfultilevel models significantly
outperform the flat model and (b) the HCRF outperforms the FCR

We also test the ability of the model to learn the hierardhmaology and state transitions.
We find that it is very informative to examine parameters Whiorrespond to the state
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[Alg. [d=2[d=3[[Alg.  [d=2][d=3]
HCRF| 100 | 93.9 || Po-HCRF| 80.2 | 90.4
FCRF | 96.5 | 89.7 || Po-SCRF - 83.5
SCRF - 82.6 ||| - - -

Table 9.2: Accuracy (%) for fully observed data (left), arattfally observed (Po) data
(right).

transition features. Typically, negative entries in thengition parameter matrix means
that the transition is impossible. This is because statifes are non-negative, so nega-
tive parameters mean the probabilities of these transi@oa very small, compared to the
positive ones. For the transition at the second level (tmeptex activity level), we obtain
all negative entries. This clearly matches the trainingdeliere each sequence already
belongs to one of three complex activities. With this metihv@dare able to construct the
correct hierarchical topology as in Figure 9.9. The staadition model is presented in
Figure 9.10. There is only one wrong transition, from stéted state 10, which is not
presented in the training data. The rest is correct.

Figure 9.9: The topo learned from data.

Next we consider partially-supervised learning in thatwlis0% of start/end times of a
state and state labels are observed at the second levelndiigeindicators are known at
the bottom level. The results are reported in Table 9.2 (et half). As can be seen,
although only 50% of the state labels and state start/enestiane observed, the model
learned is still performing well with accuracy of 80.2% ar@4 at levels 2 and 3, re-
spectively.

We now consider the issue of partially observing labelsriudecoding and test the effect
using degraded learned models. Such degraded models (emguiaisy training data or
lack of training time) are extracted from the 10th iteratadrihe fully observed data case.
The labels are provided at random times. Figure 9.11 shosvgélsoding accuracy as a
function of available labels. It is interesting to obseivatta moderate amount of observed
labels (e.g20 — 40%) causes the accuracy rate to go up considerably.
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Figure 9.10: The state transition model learned from datenitve states are duplicated
for clarity only. They are shared among complex states.
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Figure 9.11: Performance of the constrained max-produgtirdhm described in Sec-
tion 9.3.2 as a function of available information on lab@gend time.

9.8.2 POS Tagging and Noun-Phrase Chunking

In this experiment we apply the HCRF to the task of noun-phidsunking. The data
is from the CoNLL-2000 shared task (Sang and Buchholz, 2080yhich 8926 English
sentences from the Wall Street Journal corpus are usedifairtg and 2012 sentences are
for testing. Each word in a pre-processed sentence is lhlibgiewo labels: the part-of-
speech (POS) and the noun-phrase (NP). There are 48 PO&ulifidels and 3 NP labels
(B-NP for beginning of a noun-phrase, I-NP for inside a npinase or O for others). Each
noun-phrase generally has more than one word. To reduceothputational burden, we
reduce the POS tag-set to 5 groupsun, verb, adjective, adverb and othe®nce in our
HCRFs we do not have to explicitly indicate which node is atlleginning of a segment,
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the NP label set can be reduced further into NP for noun-gheasd O for anything else.

The POS tags are actually the output of the Brill's taggeill(Br995), while the NPs
are manually labeled. We extract raw features from the texhe way similar to that in
(Suttonet al., 2007). However, we consider only a limited vocabulary &otied from the
training data in that we only select words with more than uo@nces. This reduces the
vocabulary and the feature size significantly. We also maleeai bi-grams with similar
selection criteria. Furthermore, we use the contextuablewwn of 5 instead of 7 as in
(Suttonet al,, 2007). This setting gives rise to about 32K raw feature® fiodel feature
is factorised a¥ (z., z) = I(z.)g.(z), wherel(x.) is a binary function on the assignment
of the clique variables., andg.(z) are the raw features.

We build an HCRF topology of 3 levels where the root is just enthy node, the second
level has 2 NP states and the bottom level has 5 POS statesoifeparison, we implement
a FCRF, a SCRF, and a semi-Markov CRF (SemiCRF) (SarawagCahdn, 2004). The
FCRF has grid structure of depth 2, one for modelling the Niegss and another for the
POS process. Since the state spaces are relatively smaltevadble to run exact inference
in the FCRF by collapsing both the NP and POS state spacesotmlaimed state space of
size3 x 5 = 15. The SCRF and SemiCRF model only the NP process, taking tiset&g3
as input.

The raw feature set used in the FCRF is identical to thoselitH@RF. However, the set
shared by the SCRF and the SemiCRF is a little more elabdrate i takes the POS tags
into account (Suttoet al., 2007).

Although both the HCRF and the SemiCRF are capable of mode#irbitrary segment
durations, we use a simple exponential distribution as it loa processed sequentially
and thus is very efficient. For learning, we use a simple enditochastic gradient ascent
method since it has been shown to work relatively well antlifaR€RFs (Vishwanathan
et al, 2006). At test time, as the SCRF and the SemiCRF are ablesttheBrill's POS
tags as input, it is not fair for the FCRF and HCRF to prediosthlabels during inference.
Instead, we also give the POS tags to the FCRF and HCRF anarpecbnstrained in-
ference to prediconly the NP labels. This boosts the performance of the two meneil
models significantly.

The performance of these models is depicted in Figure 9.d2\enare interested in only
the prediction of the noun-phrases since this data hassB?0S tags. Without Brill's POS

tags given at test time, both the HCRF and the FCRF performsentian the SCRF. This is
not surprising because the Brill's POS tags are always gividre case of SCRF. However,
with POS tags the HCRF consistently works better than akotodels. The FCRF does
worse than the SCRF, even with POS tags given. This does aa #fe observation made
in (Suttonet al,, 2007). However, we use a much smaller POS tag set than (Saittd,,
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2007) does. Our explanation is that the SCRF is able to makefusider context of the
given POS tags (here, within the window of 5 tags) than the FQnited to 1 POS tag
per NP chunk). The SemiCRF, although in theory it is more esgive than the SCRF,
does not show any advantage under current setting. Reeadlihtt SemiCRF is a special
case of HCRF in that the POS level is not modelled, it is pdsgibn conclude that joint
modelling of NP and POS levels is important.

95
90}
o
3
»n 85¢
) SCRF
L —— HierCRF+PQOS
B ——HierCRF
80 —o— FCRF+POS
—0—FCRF
—— SemiCRF
75 :
10° 10°

number of training sentences

Figure 9.12: Performance of various models on Conll2000nA@uase chunking.
HCRF+POS and FCRF+POS mean HCRF and FCRF with POS giventdines re-
spectively.

9.9 Closing Remarks

In this chapter we have presented a number of extension®tbl@RF to address three
important issues: numerical overflow in computing the partifunction, learning and
inference with partial labels (partial supervision andsteained inference, respectively),
and the cubic time complexity of the AIO family. We have dedva scaling algorithm
that helps to minimise the overflow. For the second issue i@ agorithm is extended
so that it is consistent with the known labels. And for thd lasue we have proposed a
number of approximation techniques based on Rao-Blaclsa&ibn and Gibbs sampling
for inference, and pseudo-likelihood for learning. We halg® shown how to represent an
HCRF with exponential duration by a factor graph, in whicference can be carried out
approximately by using the sum-product algorithm. We hasmahstrated the capacity
of the HCRFs on home video surveillance data and the shalkwsing of English text, in
which the hierarchical information inherent in the contesips to increase the recognition.
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Conclusions

10.1 Summary

This thesis has presented a study of various aspects ofdbethgintroduced Conditional
Random Field, a probabilistic and discriminative framekvior modelling and learning
structured outputs. First, we have demonstrated the strerfi@gCRFs in the area of Natu-

ral Language Processing with the applicatiorstatistical Viethnamese accent restoration
(Chapter 4), and in the area fcommendation syster(Shapter 5). Motivated by these
applications we have provided a deeper investigation imeotheory of CRF in the area

of feature selectiofChapter 6)Jearning with arbitrary structure¢Chapter 7), and mod-
elling recursive sequential dat@Chapter 8 and Chapter 9). The common theme of these
theoretical contributions is learning with missing labiela partially supervisednanner.

In Chapter 4, the thesis contributes to the existing liteeabf CRFs by a novel applica-
tion in the area of accent restoration with the focus in \Aetese. Given a sequence of
accent-less Viethnamese words, the problem is to restoreripmal accents without fur-
ther information. This is a common problem in computatidimguistics of Viethamese, in
which texts may not have appropriate accents, causing aretrapsion problem to read-
ers. This problem is challenging as the raw texts are highigiguous even with native
speakers. To the best of our knowledge there has been nalyulelported work to solve
this problem. We propose the use of a second-order chain GRfotlel the output space
of the restored sequence of accents. The result is excelldm®4% word accuracy when
tested in a diverse news domain.

The second motivating application of the CRFs is reportegdhapter 5 where we propose
to model theentire rating databasef recommendation systems by a single novel CRF-
based framework calleBreference NetworksDifferent from most existing work in the
literature of automatic recommenders, our modelling isnf@irand can seamlessly incor-
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porate varieties of domain knowledge, including the contérthe products and services,
the user attributes like demographics and historical @®find the correlations between
users and between products. More importantly we have etafiirishown that our Pref-
erence Networks outperform well-known methods. Our studg alearly demonstrates
efficiency issues associated with large-scale and densehected CRFs. Specifically, the
network in our study has hundreds of thousands of nodes atdresle has thousands of
neighbours.

Chapter 6 investigates the issue of feature selection ambadded process of partially su-
pervised learning CRFs. Feature selection, as evidencedriampirical work Chapter 4
and Chapter 5, is an issue of great practical importance tagritically affects the final
performance of the CRF-based systems. To this end we hapeged a boosting-based
method called AdaBoost.CRF that extends the current bapstethodology to structured
output with missing labels. Experiments have shown thatptioposed algorithm is ca-
pable of selecting a small subset of features from a largifegoool with little loss in
performance.

Chapter 7 presents an attempt to deal with the efficiencyeigsth arbitrary structures,

as evidenced in the empirical study in our Preference Nétsv(Chapter 5), and in the
assumption of the underlying inference made in Chapter 6e8an the boosting method-
ology we propose an alternative loss that requires onlyr@émfee over a set of spanning
trees. The trees are co-learned in an iterative fashion aatlyfire-combined to recover
the original network. The result is a scalable algorithmethlAdaBoost.MRF that can

handle missing training labels and exhibits linear time plaxity.

The third theoretical contribution is presented in Chagtevhere we introduce a major
extension to the theory of CRFs for modelling recursive setjal data. This data type is
inherent in many domains such as signal and image processingan activities and natu-
ral language processing, where the semantics can be desethpodifferent resolutions.
Motivated by the early work of HHMMs we propose a novel Hieracal CRF to address
the problem. We introduce a graphical model based reprasemthat helps to visualise
the temporal evolution of the model and to encode varietieg®main knowledge into the
system. Finally, an efficient algorithm based on the Asymimétside Outside family is

derived for learning and inference.

Chapter 9 continues the framework outlined in Chapter 8utjincseveral important exten-
sions for practical application of HCRFs. First, we deriv&aling procedure to avoid nu-
merical overflow in the computation of the partition functicGGecond, the AlO algorithm is
modified to handle partial labels occurring in learnipartial supervision and inference
(constrained inferengde Third, based on Rao-Blackwellisation and Gibbs sampligg
propose a sub-cubic time approximate procedure for interehikewise, a sub-cubic time
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pseudo-likelihood learning style is also offered in theptka For the HCRF with expo-
nential state duration distributions, we have shown thediit be represented as a standard
factor-graph which allows fast approximate inference dasethe Pearl’s sum-product al-
gorithm. Finally, the HCRFs with partial labels are evaathbn two datasets: the human
activity recognition, and noun-phrase chunking. Expentakresults validate the expres-
siveness and usefulness of the HCRF formulation in theseaghmmvhen compared with
rival methods.

10.2 Future Directions

There are issues associated with the CRFs which have notlddeassed in this thesis and
are left for future investigation. The most important onpashaps efficient inference and
learning algorithms to compute various aspects of the Cédeth systems with arbitrary
structures. In Chapter 7 we have put forward an effort ingb ferameter learning of the
CRFs by decomposing the network into superimposing spgrrees. However, the trees
are still manually specified and thus the algorithm may bg effective for network with
highly regular structures (e.g. grids, as in our study)s bést to automatically select the
best spanning tree at each boosting step.

Most parameter learning work in CRFs, including this thesidy deals with non-Bayesian
setting. Although regularisation is often used we do noégrdite over the parameters.
Bayesian learningnay be important for controlling overfitting and incorpanat prior
knowledge of the parameters. The only work addressing thislem that we are aware of
is Bayesian CRF by (@t al. (2005).

Beside parameter learningtructure learningpf CRFs has not received adequate attention,
although it is much more popular in the directed Bayesiawoes. From the connection
of this problem with the spanning tree selection in our statipdaBoost.MRF, we con-
jecture that the main difficulty is associated with the ctindial nature of the CRFs. More
specifically, the structures of the CRFs sometimes deperitiegonditioning variables
even in the same domain.

The main argument for sole use of conditional distributiefiz|2) is that we do not waste
effort in modellingPr(z). However, whilePr(z|z) addresses the output directly, a sig-
nificant amount of information is thrown away withr(z). When labeled training data is
sufficient, learning onlyPr(z|z) is of great practical advantage. In many real world situ-
ations, unfortunately, labels are too expensive while helled data is cheap. In this case
Pr(z) provides important information to infer about the naturalafa, i.e. thentrinsic
manifold of the data. Recent advances@mi-supervise@ctiveandtransductivdearning
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have proven that unlabeled data can be very valuable to wephe classification perfor-
mance. Current work is mostly carried out with unstructusaetput models. We expect
that the graphical structure of CRFs will offer new insigint® the problem.

Regarding HCRFs, we have introduced several approximatiethods for inference and
learning in Chapter 9. It remains to investigate into thehdviour and effectiveness for
real applications. In addition, we have shown in Section2tfiat the HHMM can be
derived from the unconditional version of HCRF. The HHMM ¢sshown to be a special
case of the Probabilistic Context-Free Grammar (PCFG).cohditional version of PCFG
has been investigated elsewhere in the literature of Natamguage Processing. Thus, it
may be interesting to study the relationship between the H&®Rl the conditional PCFG.
To the best of our knowledge, the numerical scaling issughwe have addressed in the
HCRF, has not been explicitly raised and solved.

As a modelling tool, HCRFs are designed for the recursiveisetil data. This gives rise
to the question that to what extent can HCRFs be still apiplécéor generic hierarchical
data, i.e. the assumption of nested Markov chains does mcttyshold? For example, in

noun-phrase chunking the POS tags do not belong excludivelgy noun and non-noun
phrases. Another interesting issue is that given the datdésently spatial as in images,
how can we convert it into a sequential form to which HCRFsloamapplied?
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Appendix A

Appendix

A.1 Derivation of Variational Updates

In this appendix we will show how to obtain Equations 2.85 ar86, which we repeat
here for convenience

:uﬁ—mz(xc,a> = €eXp (ZQc,ﬁ(xc,ﬁ>logwc,a,ﬁ(xc,a,ﬁ)) (Al)
Te,B
Qura) o ®alea) T[] TI #o-alree) (A2)
BEN (o) c€anp

whereq, 3 are two subnetworks that share the common clique variablgs, z. . is the
part of this subset that exclusively belongsitous_.. (2. ) is the message sending from
[ t0 . ; @and N («) is the set of neighbouring sub-networkscof

Recall that we want to minimise the KL-divergence betweenapproximate distribution
Q(z) and the true distributioRr(z)

A

Q = argrrgnKL(QHPr) (A.3)

= arg HSH ; Q(z)log g;(xx)) (A.4)

whereQ(z) is constrained to the factorised distribution

Q(z) = [ [ Qu(za) (A.5)
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Now let us expand the KL-divergence
L(Q|| Pr) = ZQ ) log Q(z ZQ ) log ®(x) + log Z (A.6)

where we have usedr(z) = ®(x)/Z. Since we are only interested in findiayz), the
last term can be neglected. The first term is the negativegntf the new network, which
is the negative sum of entropies of independent sub-netwvork

> Qx)log Q(x ZZQa o) log Qu () (A.7)

The factorisation in Equation A.5 implies th@{(z) = Q(x\z,)Qu (7). As we need to
ensure thad | Q.(7,) = 1, adding a Lagrangian term to the KL-divergence and then
taking derivative of Equation A.6 with respectdp, (z,,) yields

OK L(Q]| Pr)

0 (e~ 18 @alza) +1= > Q@\ra) log 2(x) + Ao (A8)

CC\:L’Q

where)\, is the Lagrangian factor. Setting this gradient to zero, treeve

\ZTa

Qa(Ta) o< exp {log Oo(r0) + Y Q\xa)log @(x)} (A.9)

Sincea is assumed to be a tractable sub-network, it remains toesitigicompute

Y a\aa Q@\70) log B().

Due to network partitioningz = (z4,, Za,, ---), We can decompose into three parts:
those belong exclusively to a sub-netwarkthose to other sub-networks, and those at the
boundary between and other sub-networks. Thus we have the following fachtios

(2) = Ba(2a)®-a(t\ea) [[ I Yowsltoas) (A.10)

BEN (o) ceanp

whered,,(z,) is the product of local clique potentials belonging the tb-setwork«. and
d_,(z\z,) is the product of local clique potentials of other sub-netkso

Then the third term of the RHS of Equation A.8 becomes

Z Q(x\z,)log®(z) = log®,(z4) + Z Q(x\1)log®_,(x\z4) +

\ZTa 2\ZTa

+)QE\Ta) Y. Y 108 Ueas(Teas) (All)

2\za BeN (a) ceanp



A.2 General Hlder’s inequality 210

The second term of the RHS of Equation A.11 is a constant wipect ta),, (z,), while
the third term reduces to

ZQx\xa Z Z logwcaﬁxcaﬁ)

\Ta BEN (a) cean

Z Z ZQCB Zep) 108 Ve 0 5(Tens) (A.12)

BeN (o) ceanf . 3

In the last equation we have spiitz, into z. g and the rest, which are integrated out with

Q(\a)-

Substituting Equation A.12 into Equation A.11 and then EigueA.11 into Equation A.9,
and setting the gradient to zero, we have

Qu(a) x exp log Pa(xa) + > Y Y Qeplwep)10g¥ens(Teas) p (A13)

BeN () ceanf . 3

Rearranging the terms in the RHS into the appropriate message obtain the Equa-
tions A.1 and A.2.

A.2 General Holder’s inequality

Let us start with the elementary Holder’s inequalities rdyaet al., 1952, Theorem 13).
Forr > 1,a>0,b>0andl/r +1/r" = 1, the following holds

n

zn: aib < () a;‘)l/"(zn: by (A.14)
i=1 i=1 i=1

The sign of equality hold iff] = ab}’, Vi, for some scalar . The casex = 0 is trivial,
thus we do not consider here. The Cauchy’s inequality is eigpease ifr = r’ = 2.

By induction, we can obtain the following extension to thésle inequality (Hardet al.,
1952, Theorem 11)lf a;; > 0, for: = 1,2,..,nandj = 1,2,..,m, and ifr; > 1 with
> joy I/ry =1, denotingA; = {a;;}7,, then

m n

e ﬁ ap)n, (A.15)
o

i=1 j=1 i=1

and the sign of equality holding iff; = «;;A,.; for some scalarsy;;. In other words,
the equality sign holds iff all vectord; are proportional

Let us proceed by induction to prove the ‘inequality’ part.
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Base CaseForj = 1, Equation A.15 holds trivially.

Induction Assume Equation A.15 holds for any< j < [, we will prove that it also holds
forj =14 1. Then

I+1 l
E H iy = E @il+1 H @i
i j=1 i j=1

1/r ; 1/
< (Tew) (SIa)

% %

1/r I 1/r
= (Za;‘,lH) (ZH@?}) (A.16)

i i j=1

using the basic Holder inequality (A.14) for> 1;7' > 1;1/r +1/7' = 1. Let3;; = a’

Z?j,

then the applying our assumption that Equation A.15 holdg fg [ to the second factor
in the RHS of Equation A.16 yields

IN

I 1/r
(H{Z ﬁziz-}l/ré)
j=1

i

l
= [T s
j=1

i

l
= [ a ¥/ (A.17)
j=1

i

i)

i j=1

Wherez:;:1 1/} = 1. Substituting Equation A.17 back into Equation A.16, weehav

141 r
S = (Sewn) TSl 1)
i j=1 7 J=1 7

As Zé’:l 1/r; = 1, we then have /r + Zz-:l 1/ri" = 1/r +1/r" = 1. Now we change
the notation as;,, < r andr} « 7', we haveZ?;l1 1/r; = 1. Thus Equation A.18
becomes

I+1 I+1 ,
Yollas < IO @i (A.19)
iog=1 j=1

This means that the inequality Equation A.15 holdsjfer [+1. By the induction principle
the inequality Equation A.15 holds for gll> 1. This completes the prodl
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A.3 Proofs

A.3.1 Proof of Propositions 3 and 4

Before proving Proposition 3 and 4 let us introduce a lemma.
Lemma 1. Given a distribution of the form

Pr(z) — %@[x] (A.20)

wherez = (z,, s, 7p), if there exists a factorisation
D[r] = Dlrg, 2] P[xs| P2, 23] (A.21)

thenz, andx, are conditionally independent given.

Proof: We want to prove that

Pr(z,, zp|xs) = Pr(z,|zs) Pr(xy|zy) (A.22)

Since Pr(xy, wp|zs) = Pr(za, 20, 25)/ Y, 4, P1(%a, 7p, 75), the LHS of Equation A.22
becomes

Dz, x5 Plxs|Plxs, )
D ey, Pla, 2] P[] Pl 7]
D[y, 4] D[z, xy)

= S ]y, ) (A.23)

Pr(z,, xp|xs)

where we have used the following fact

S B, 200 fr,, 1] = Bl (%j@[xa,xs]) (;¢[xs,xb]) (A.24)

Za,Th

and canceled out the normalisation factoand®[z].

To prove Pr(z,|zs) = ®lze, 2]/ ), Pz, s, we need only to showr(z,|r,) o
®[z,, v,] since the normalisation ovey, is due to) , Pr(x,|r,) = 1. Using the Bayes
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rule, we have

Pr(z,|zs) o Pr(xg, xs)

= Z Pr(z,, zs, xp)
Tp

1
_ E@[xa,xsmxs];@[xs,xb]

x Plrg, xs] (A.25)
where we have ignored all the factors that do not depend,on

A similar proof givesPr(x|zs) = @[ms,xb]/sz ®[xzs, 2,). Combining this result and
Equation A.25 with Equation A.23 gives us Equation A.22.sléompletes the prodll

In fact, x, acts as a separator betwegrandz,. In standard Markov networks there are no
paths fromz, to x, that do not go through,. Now we proceed to proving Proposition 3
and 4.

Given the symmetric Markov blankﬁlﬁ’j, there are no potentials that are associated with
variables belonging to bott‘ﬁf and g:’js . The blanket completely separates (I‘j? and
gj. Therefore, Lemma 1 ensures the conditional independeftmbr(ﬁf andgf’ji”.

P . ,8 d,s d,s
Similarly, the asymmetric Markov blankéﬁj (u) separates;.;’(u) andgi:j (u) and thus
these two variable sets are conditionally independentalemma 18

A.3.2 Proof of Proposition 5

Here we want to derive Equations 8.25, 8.26 and 8.27. Withstme conditions as in
Lemma 1, in Equation A.25 we have shown tivatz,|zs) o ®[z,,zs]. Similarly, this
extends to

Pr(¢i Iy oo @[¢h, TIE7)

7 17 17

= 2] (A.26)
which is equivalent to
PrCHIIL) = o B[]
2ot @LGT]
o (o) (A.27)
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The last equation follows from the definition of the symmzimside mass in Equation 8.18.
Similar procedure will yield Equation 8.26.

To prove Equation 8.27, notice the Equation 8.14 that says

Pr(¢) = Pr(I1;) Pr(¢i; [115) Pr(¢hIIE;) (A.28)

3]
or equivalently

1

1
Pr(II%*) = Pr(¢) —— — (A.29)
’ Pr(¢ L) Pr(¢he (1)
_ Ll Ay (A.30)
4 ﬂdﬂ@@ﬁ]
1 gsnadsy AT AL
= ORI OIC ] (A.31)
4 s <I>[Cﬁ;]q>[§j’j]
1 d,s pd,s A d,s
= EAi:jRi:in:j (A'32)

In the proof proceeding, we have made use of the relation waion 8.17. This completes
the proofll

A.4 Computing the State Marginals of HCRF

We are interested in computing the marginals of state viasab (z¢). We have

Pr(af) = ) Pr(af,(\xf)

\af
= ZPI‘ §(xf € ¢)
= —Z‘I’ (24 € ¢) (A.33)

Let s = z¢ and assume that the statestarts ati and end ayj, andt € [i,j]. For each
configuration{ that respects this assumption, we have the factorisatidéaoétion 8.17
that says

~d,s 2dis, od s

i:j
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Then Equation A.33 becomes

Pr(zf =s) = ZZ(I) RdS(S(tG [2, 1)
_ - Z Z AdSAdS ds (A35)
ze[lt]]etT

The summing ovei and; is due to the fact that we do not know these indices.

There are two special cases, (1) whka 1 we cannot scan the left and right indices, the
marginals are simply

Pr(z! = s) = =AlL (A.36)

sinceA;. = 1 for all s € S'; and (2) whenl = D, the start and end times must be the
same { = j), thus

1 -
Pr(zP = s) = =AL? (A.37)

sinceA* = 1forallt € [1,7] ands € SP.

Since)", ¢ Pr(zf = s) = 1, it follows from Equation A.35 that

Z=3 ) > AGAGRG (A.38)

seSdie(l,t] j[¢t,T]

This turns out to be the most general way of computing thetfmarfunction. Some special
cases have been shown earlier. For example, when, i = 1 andj = T, Equation A.38
becomes Equation 8.22 sinAé;ST = 1. Similarly, whend = D, i = j = t, Equation A.38
recovers Equation 8.23 sincée® = 1.

A.5 The Mirrored Version of AIO

Due to the fact that the HCRFs are undirected there is agtnallbias in the direction

where the time indices are scanned. It is therefore stiaighard to derive a mirrored

and equivalent version of the AIO algorithm described int®ac8.3. In what follows we

present only building blocks for the mirrored AIO algorittand some variants of ESS
computation. Other computation including the MAP estimatilearning and inference
with partially observed state information and numericalisg can be derived straightfor-
wardly using these blocks and methods described in the rexsin t
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A.5.1 Mirrored Markov Blankets

O O O o O O O

O
elh e e e @ @O

)
level d+1

® O Q0 ©) ©

© ©
O O O O [}
O O O O O O O

Figure A.1: A mirrored asymmetric Markov blanket.

Let us define anirrored asymmetric Markov blankéigure A.1) as follows:

Definition 11. A mirrored asymmetric Markov blanket at levidor a parent states ending
at 7 and a child state, starting at, is the following set

3d’s(u) = (2, = 5,29 =, effll:D =1, e?:D =1,¢l. ,=0) (A.39)

2] i [t ) Yy

Further, let us define the following sets of variables tha associated with the blanket

Er(u) = (@HD a0 e ) (A.40)
€00 (u) = Q& (w), 355 (u) (A.41)

We defing " (u) andéj’js(u) as follows

) = (65w, 335 (w) (A.42)
§Zf(“> = (§§f§”(U),3if(U)) (A.43)

Remark: jﬁ’j(u) is a ‘mirrored’l“ﬁ’j/ (v) in the sense that is the starting child of while
v is the ending child of’. We also know that ends atj while s’ starts ati. The similar
relation holds for the pairg’’(u) versus({ (v) and¢; (u) versusgf’js' (v).

A.5.2 Mirrored Asymmetric Inside

We group all the local potentials associated with varialmesfff(u) and in the blanket

ij(u) into a joint potentiakb[éﬁf(u)], and define a quantity calledirrored asymmetric
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O O O ©] O O ©

level ¢y @ ) O @ @ O

)
level d+1

Figure A.2: Decomposition with respect to symmetric/miesbasymmetric Markov blan-
kets.

inside masgor ‘mirrored asymmetric inside’ for short) as follows

BEt(u) = RE(u)] (A.44)

€0 (u)

Analogous to the derivation in Section 8.3.2, let us exaraingrrored decomposition (see
Figure A.2). Using the same argument as in Section 8.3.2 we the following recursive
relations. A mirrored version of Equation 8.37 reads

Al = N mh B (u) (A.45)
ueSd+1

A mirrored version of Equation 8.33

Z Z ﬁt+1 y Ad+1 uAd S o _|_ Ad+1 uEd S (A46)

teli,j—1] veSdtl

A mirrored version of Equation 8.34

ﬁdS( ) Ad+1 sEds (A47)

2:7 U,

A mirrored version of Equation 8.35

B M) = Y BT WREGAL (A.48)

ve§d+1

The Equations A.45,A.46,A.47 and A.48 specifypattom-upandright-left algorithm to
compute the symmetric inside masses and mirrored asynumeditle masses. Initially, at
the bottom leveN?>* = 1 fori e [1,T] ands € SP.
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A.5.3 Mirrored Asymmetric Outside

Recall that in Section A.5.1 we have introduced a notion afanéd asymmetric Markov
blanket”ds( ). leenjds( ), we can group all the local potentials which are defined on

gi;( u) and on the blanket into a joint potentrﬁ[g ( )]. Let's define a quantity called
mirrored asymmetric outside mag&s ‘mirrored asymmetric outside’ for short) as follows

o) = S BE () (A.49)

2]
£55 (u)

2415

The relation between the mirrored asymmetric outside amtbneid asymmetric inside is
analogous to that between the asymmetric outside and asymimside.

Using the same techniques used in Section 8.3.3, we haveltbeihg relations. A mir-
rored version of Equation 8.44 reads

A?:;'rl " Z Z /~th Z +1t Aff;l]s + Z ,uf’]s(u)Egzj (A.50)

seSd te[j+1,T) veSdtl scSd

for d € [1, D — 2|. Atthe bottom level, i.ed + 1 = D, we only have = j.

A mirrored version of Equation 8.40
i)=Y > e ) AT AT+ AL (A51)
veSdtL tell,i—1]
ford e [2,D —1].

A mirrored version of Equation 8.41

P ) = YD WP AR AT AR R (As2)

i i—1:j u,i
vesb

Equations A.50,A.51 and A.52 show a recurdivp-downandoutside-inapproach to com-
pute the symmetric outside masses and the mirrored asyioroetside masses. We start
from the top withd = 1 andA |, = 1 for all s € S* and proceed downward until= D
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Figure A.3: The symmetric Markov blanket contains an asymimkelanket and a mirrored
asymmetric blanket.

A.5.4 Variants of Expected Sufficient Statistics
ESS for transition features:

As a mirrored version of Equation 8.67 we have

S ]' S S S sS u
EF O = 5 D Albitan () D D0 Bl )iy (A

te[1,7—-1] i€[1,t] je[t+1,T]

There exists another variant that makes use of both the asymenmside and mirrored
asymmetric inside. Given a symmetric Markov blankét ', the set of variables;; "*

within the blanket can be decomposed into smaller companedich include those falling
within the sub-asymmetric Markov blankef, "*(u) and those within the sub-mirrored
asymmetric Markov blankejfﬂlj( ) (see Flgure A.3). Foy > i, there is a context

c=(ef™' = 0,ef = 1). Following the similar derivation as in Section 8.4, we dfta

d,s z : d,s pd,s 2 : 2 : d 18 d 1,s Ad,s
E[thran.szt A U Auvtfo-t'ranmt U U t—‘,—l;j (U)Az‘j

te 1,7-1] i€[1,t] je[t+1,T]
for d € [3, D]. Ford = 2, we mustfixi = 1andj =T

Since everything here is just a mirrored version of the Al@oathm the roles of initiali-
sation and of ending potentials can be swapped.
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ESS for initialisation features:

As a mirrored version of Equation 8.73 we have

BRSO = 5 30wt () 30 Adatw) (A.53)

i€[1,7) JE[i,T]

ESS for ending features:

As a mirrored version of Equation 8.79 we have

E[F%S. Z > WA B, () (A.54)

26[1 T] j€i,T]

A.6 Semi-Markov CRF as a Special Case of HCRF

In this Appendix we first describe the semi-Markov CRF (SeR# (Sarawagi and Co-
hen, 2004) in our HCRF framework and show how to convert a S&Hhiinto an HCRF.
Then under the light of HCRF inference we show how to modifydhiginal SemiCRF to
handle (a) partial supervision and constrained infereguee (b) numerical scaling to avoid
overflow. The modifications are of interest in their own right

A.6.1 SemiCRF as an HCRF

state persistence state transition

Figure A.4: The SemiCRFs in our contextual clique framework

SemiCREF is an interesting flat segmental undirected modebgneralises the chain CRF.
In the SemiCRF framework the Markov process operates atdfgment level, where a
segment is a non-Markovian chain of nodes. A chain of segsniend Markov chain.
However, since each segment can potentially have arbigagth, inference in SemiCRFs
is more involved than the chain CRFs.

Represented in our HCRF framework (Figure A.4), each nodd the SemiCRF is asso-
ciated with an ending indicateg, with the following contextual cliques
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e Segmental statevhich corresponds to a single segmept and is essentially the
state persistenceontextual clique in the context= (e;,_1.; = (1,0,..,0,1)) in the
HCRF's terminology.

e State transitionwhich is similar to the state transition contextual cliguthe HCRFs,
corresponding to the context= (e; = 1).

Associated with the segmental state clique is the poteffigland with the state transition
is the potentiady , ;, wheres, s’ € S, andS = {1,2, ..., |S|}.

A SemiCRF is a three-level HCRF, where the root and bottondaremy states. This
gives a simplified way to compute the partition function, E&8d the MAP assignment
using the AlO algorithms. Thus, techniques developed s phaper for numerical scaling
and partially observed data can be applied to the SemiCRIbe Toore consistent with the
literature of flat models such as HMMs and CRFs, we call thenasgtric inside/outside
masses by thorward/backwardrespectively. Since the model is flat, we do not need the
inside and outside variables.

Forward

With some abuse of notation, Ief; = (z1.;1,€1-1,2; = s,e; = 1). In other words,
there is a segment of stateending atj. We write the forwardy,(s) as

aj(s) = > QG4 (A.55)

Cf:j

As a result the partition function can be written in term of tbrward as

Z(z) = Z(I)[CLT,Z]:ZZ@[G%Z]

Cl:T S Cf:T

= > ar(s) (A.56)

We now derive a recursive relation for the forward. Assuna the segment ending at
j starts somewhere ate [1,j]. Then fori > 1, there exists the decompositigh; =
(¢ 1s iy = 8, €51 = 0) for somes’, which leads to the following factorisation

(I)Kf:jv 2] = (I)[Cf:,i—l]As',SJ—lRf:j (A.57)

The transition potentiall, s ;_; occurs in the context = (e;_; = 1), and the segmental
potential ?; ; in the context = (z;; = s,e;-1 = 1,¢;,;1 = 0).
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Fori = 1, the factorisation reduces ®(7 ;, 2] = R} ;. Since we do not know the starting
i, we must consider all possible values in the intefvaj. Thus, Equation A.55 can be
rewritten as

aj(s) = Z Z Z Cu 1Ay si—1 Ry + Ry (A.58)

i€[24] " ¢l

= > ) aia(s)Avia Ry + R (A.59)

1€[2,5] s
Backward

The backward is the ‘mirrored’ version of the forward. Intparlar, let

szT = (Tj411s €, T = S8, 05-1 = 1)

and we define the backwarti(s) as

> P2 (A.60)

s
gj:T

Clearly, the partition function can be written in term of theckward as

> Bi(s) (A.61)

The recursive relation for the backward

= D D RyAciBials) + Rig (A.62)

JjE[,T—1] s

Typically, we want to limit the segment to the maximum lengthl. € [1,7]. This lim-
itation introduces some special cases when performingsseucomputation of the the
forward and backward. Equation A.58 and A.62 are rewritefodows

aj(s) = S () Avsia Ry + Ry (A.63)
i€[j—L+1,5],i>1 &
Bils) = D> D RAwBin(s) + Rig (A.64)

jEli+L—1],j<T s

Since it is a bit clumsy to represent a SemiCRF as a thre¢H8UBF, we can extend the
HCRF straightforwardly by allowing the bottom level stategersist. With this relaxation
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we have anested SemiCRF modalthe sense that each segment in a Markov chain is also
a Markov chain of sub-segments.

A.6.2 Partially Supervised Learning and Constrained Infelence

Following the intuition in Section 9.3.1, we require that thle forward and backward
quantities and the potentialg; ; used in Equations A.63 and A.64 mustdmnsistentvith
the labels in the case of partial supervision and constiainference.

Specifically, any quantities that are not consistent arécseero. Let the labels bé =
(z,¢). Then the potentiak; ; is consistent if it satisfies the following requirements:

e if there are any labeled states in the inteffvaf], they must be,
e if there is any labeled ending indicatér {, thene,_; =1,
e if there is any labeled ending indicatar for somek € [i, j — 1], thene, = 0, and

e if any ending indicatok; is labeled, thef; = 1.
These conditions are captured by using the following idgfdinction:

H[Rf:j] = 5[%6[@;’} = 3]5[5i—1 = 1]6[gk€[i:j—1} = 0]5[5]' = 1] (A-65)

Notice how these conditions and equation resembles thogeiEquation 9.10. This is
because a SemiCREF is just a simplified version of an HCRF wtherpotentiali?; ; plays
the role of the inside\??.

Similarly, the forwardy;(s) is consistent if the following conditions are satisfied:

e if there is a labeled ending indicator atthene; = 1, and

o if there is a labeled state gtthenz; = s.
The consistency is captured in the following identity fuoot
Ila;(s)] = dle; = 1]6[x; = s] (A.66)
Furthermore, the backwayg(s) is consistent where:

o if there is a labeled ending indicatoriat 1, thene;_; = 1, and
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e if there is a labeled state athenz; = s.

And again, we have the following identity function

[[Bi(s)] = dlei-1 = 1]6[z; = 5] (A.67)

By installing the consistency identity functions in Eqoat A.65, A.66 and A.67 into
Equations A.63 and A.64, we now arrive at

%(s)ﬂ[aj(s)]( > Zai1<s’>Asgs,iJ[sz]R;+H[Riv]Riv) (A.68)
i€

]_L+17]]7Z>1 s

@(s)ﬂ[@(s)]( > ZH[Rf:]]Rf:jAs,sgjﬁjH(s’)+I[[Rf:j]Rf:T> (A.69)
JEl

ii+L—1]j<T s

A.6.3 Numerical Scaling

We have already shown that a SemiCRF is indeed a 3-level HOdfeathe top and the
bottom levels are dummy states, that is, the state size iamohall the potentials associated
with them have a value of one. To apply the scaling methodrttestin Section 9.2, we
notice that

e a,(s) plays the role of the asymmetric inside magsg(s)

e 53(s) plays the role of the asymmetric outside mags$(s)

What we do not have here is the explicit notion of inside nm%;% but it can be considered
as having a value of one. So to apply the scaling algorithmgnré 9.1 we may scale the
state-persistence potenti&f ; instead. The simplified version of Figure 9.1 is given in
Figure A.5.

Of course, the partial scaling step can be the source of ncaheverflow with H{; K-
The trick here is to realise thét [ [, ar, = exp(logb—), log ay) So that we never compute
b/ [1,. ax directly but the equivalencep(logb — >, log ay).
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Input: T, the transition potentials and the state-persistencenpate.
Output: Scaled quantities: state-persistence potentials, faidvackward.
Forj=1,2,..,T
[*Partial scaling*/
Forio=53—-L+1,..,7—1
Rescalel?}; | — Rj; ,/ [T
EndFor
Computen;(s) using Equation A.55
Computex; = > «a;(s)
[*Full scaling*/
Rescaley;(s) « «;(s)/k;
Fori=j53—-L+1,.,7
Rescalelr;; — R;;/k;
EndFor
EndFor
Compute true log-partition function using Equation 9.5.
Compute the backward/ESSes using the scaled potentials.

Figure A.5: Scaling SemiCRF.



