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Abstract

We propose a novel sequential decision approach to
modeling ordinal ratings in collaborative filtering prob-
lems. The rating process is assumed to start from the
lowest level, evaluates against the latent utility at the
corresponding level and moves up until a suitable ordi-
nal level is found. Crucial to this generative process is
the underlying utility random variables that govern the
generation of ratings and their modelling choices. To
this end, we make a novel use of the generalised extreme
value distributions, which is found to be particularly
suitable for our modeling tasks and at the same time,
facilitate our inference and learning procedure. The pro-
posed approach is flexible to incorporate features from
both the user and the item. We evaluate the proposed
framework on three well-known datasets: MovieLens,
Dating Agency and Netflix. In all cases, it is demon-
strated that the proposed work is competitive against
state-of-the-art collaborative filtering methods.

Introduction
Collaborative filtering is currently the prominent approach
to learning users’ preferences from rating data. One of
the most effective techniques so far is matrix factorisation
which seeks a low-rank representation of the incomplete
rating matrix so that the reconstruction error is minimised
(Koren 2010; Takács et al. 2009; Salakhutdinov and Mnih
2008). This effectively treats rating as a Gaussian random
variable whilst there is no reason why the rating should obey
such law. Rating is a qualitative and ordinal assessment: the
order between rating values is of intrinsic significance but
not their absolute and relative values. Another technique is
to consider rating as an unordered categorical variable from
which a multinomial model can be constructed (Koren and
Sill 2011; Salakhutdinov, Mnih, and Hinton 2007). How-
ever, this is inefficient since the ordinal constraint is lost re-
sulting in models larger than necessary.

Recent work has recognised the importance of ordinal ap-
proach for collaborative filtering data (Koren and Sill 2011;
Truyen, Phung, and Venkatesh 2009; Paquet, Thomson, and
Winther 2011; Yu et al. 2006). This results in a number of
advantages: one can model the rating process directly with
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weaker assumptions, explain the recommendation to users
more naturally, and might result in a better predictive model.
The most popularly-used cumulative approach assumes the
existence of a latent utility per user-item pair, and an ordinal
level is selected given the utility falling into an designated
interval (McCullagh 1980). The main drawback of this ap-
proach lies in its rather restrictive assumption: while it is
suitable for the case where such a utility naturally support
the data (e.g., income ranges), it may not rich enough to
model more challenging data such as those arise from multi-
dimensional rating/assessment processes (Anderson 1984).

Alternatively, this paper advocates a sequential decision
approach to modelling ordinal ratings (Mare 1980; Albert
and Chib 2001). Under the proposed scheme, the user will
first evaluate an item against the lowest ordinal level. If the
item is deemed to be better than this level, it gets moved up
to the next level. The process continues until a suitable level
is reached, otherwise the item is assigned to the top level
as the default. Different from the cumulative approach, each
item in our proposed sequential approach is assumed to ‘per-
ceive’ against L− 1 latent utilities and L− 1 corresponding
thresholds. This offers a much more flexible way to model
each user and item according to different level-specific cri-
teria.

Crucial to our approach is the modeling choices for the
latent utility random variables. In this paper we propose
to investigate two classes of distributions: the mean val-
ues which give rise to normal distributions, and the extreme
values which lead to generalized extreme value (GEV) dis-
tributions (Gumbel 1958). Whilst the normal distributions
have been well studied in collaborative filtering, to the best
of our knowledge, the GEV distributions have not been in-
vestigated. GEV distributions arise as a result of modelling
the maximal values of some quantities such as the strongest
wind in a year at a particular location. As such, the GEV
family is suitable for modelling rare events such as ratings in
the collaborative filtering setting. In particular, it is expected
to work well with the sequential approach since we are in-
terested in the utility exceedance after each ordinal level. To
sum up intuitively, one can think of a generative process
follows: for each item and an ordinal level of interest, the
user has a number of random assessments according to dif-
ferent criteria of the context, each results in a utility value;
and depending on the choice of the distribution, either the



mean or maximum value will be used as the true utility of
that item. This utility then evaluated against, first, the lowest
level-specific threshold. If on average the utility exceeds the
threshold, we move to the next level and repeat the whole
process; otherwise, the current ordinal level is selected as
the rating.

We evaluate the proposed methods on three well-known
collaborative filtering datasets: the MovieLens (1 million
ratings), the Dating agency (17 million ratings) and the Net-
flix (100 million ratings). In all cases, it is demonstrated
that our proposed sequential approach is competitive against
state-of-the-art collaborative filtering methods.

A Sequential Decision Model for Collaborative
Ordinal Regression

Let L denote the number of ordinal levels. Assume that for
a particular item i, a user u will perceive a set of utilities
{xuil ∈ R}L−1l=1 corresponding to the first L− 1 ordinal lev-
els1. Since the nature of such a perception process is un-
known, we assume that each utility is a random variable with
additive noise:

xuil = µui + εuil (1)
where µ is a function of (u, i) representing the structure of
the data2 and εuil is the random noise. Whilst we cannot
directly measure the perceived utilities, the observed data
provides evidences to estimate their distributions. To do so,
when judging the value of the item i against ordinal levels,
we further assume that each user also perceives L − 1 cor-
responding thresholds, i.e., τui = {τui1, τui2, .., τui(L−1)}.
The user will first consider if the perceived utility xui1 ex-
ceeds the his or her specific ordinal threshold τui1 defined
at the the lowest level of the scale. If it does, then the
user will evaluate the next utility xui2 against the thresh-
old τui2. The process stops at level l if the utility falls
below the threshold τuil. If none of the first L − 1 has
been found, the the top level will be chosen. This stage-
wise process is also known as the sequential ordering or
continuation ratio models in the literature (Mare 1980;
Albert and Chib 2001).

Denote by rui the rating given to item i by user u. The se-
quential ordering process can be formally described as fol-
lows. First, at the lowest level:

P (rui = 1) = P1 (xui1 ≤ τui1)

= F1

(
τui1 − µui

sui

)
= F1 (τ∗ui1)

where F1

(
τuil−µui

sui

)
= P1(xuil ≤ τuil) is the cumulative

distribution function (CDF), sui > 0 is the scale parameter,
and τ∗ui1 = τui1−µui

sui
.

1The last level is not modelled explicitly because if no suitable
ordinal level can be chosen for the first L − 1 levels then the last
level L will be chosen by definition.

2One may enrich the model by making µ depend on the ordinal
levels as well but we choose otherwise to keep the model compact
in this paper. Statistically speaking, since the parameters are shared
among ordinal levels, this usually results in a more robust estima-
tion.

At the subsequent levels l = 2, 3, ..., L − 1, we must
ensure that we have failed to pick the previous levels (i.e.,
xuim ≥ τuim for m < l) and the current level is feasible
(i.e., xuil ≤ τuil): P (rui = l) =

= P
(
xuil ≤ τuil, {xuim ≥ τuim}l−1m=1

)
=

{ˆ τuil

−∞
P (xuil)dxuil

} l−1∏
m=1

{ˆ ∞
τuim

P (xuim)dxuim

}

= Fl (τ
∗
uil)

l−1∏
m=1

{1− Fm (τ∗uim)} (2)

where we have made use of the fact that´∞
τuim

P (xuim)dxuim = 1−
´ τuim

−∞ P (xuim)dxuim.
Finally, at the last level when we have failed at all previous

levels (i.e., xuim ≥ τuim for m < L):
P (rui = L) = P

(
{xuim ≥ τuim}L−1m=1

)
=

L−1∏
m=1

{1− Fm (τ∗uim)} (3)

One can verify that indeed3 ∑L
l=1 P (ruil = l) = 1. Alter-

natively, we can summarise the sequential decision process
by

P (rui = l | rui ≥ l) =
P (rui = l, rui ≥ l)

P (rui ≥ l)

=
P (rui = l)

P (rui ≥ l)
= Fl (τ

∗
uil)

since rui = l would imply that rui ≥ l and P (rui ≥ l) =∏l−1
m=1 P (xuim ≥ τuim) =

∏l−1
m=1 {1− Fm (τ∗uim)}. Thus,

the odds P (rui=l)
P (rui≥l) reflects the name continuation ratio.

To sum up, each user assumes his or her own perception
about what the utilities should be, e.g., by evaluating against
user-specific thresholds. The evaluation is sequential in na-
ture, selecting a suitable level only if the utilities have failed
all lower levels. Lastly, we remark that the subscript l in the
CDF Fl(τ∗uil) for l = 1, 2, ..., L−1 is used deliberately since
one has the flexibility to choose different distribution family
at different ordinal level l, as presented in sequel.

Utility Distribution Families
We now proceed to specify the nature of the noise by defin-
ing the form of P (xuil ≤ τuil) = F

(
τuil−µui

sui

)
. Before

doing so, it’s worth asking where the perceived utility xuil
may come from. Let us assume further that when assessing
an item i against level l the user umakes a sequence of utility
estimates z(1)uil , z

(2)
uil , ..., z

(n)
uil and finally choose a value xuil.

We investigate two forms of decisions which might result in
significantly different modeling behaviors: the mean values
and the extreme values.

3Since P (rui ≤ L − 1) =
∑L−1

m=1 P (rui = m) we need
to show that P (rui = L) = P (rui > L − 1). We can
prove by induction as follows. Assume that P (rui > l − 1) =∏l−1

m=1 {1− Fm (τ∗uim)}. Using P (rui > l) = P (rui > l −
1) − P (rui = l) and Eq. (2) we would yield P (rui > l) =∏l

m=1 {1− Fm (τ∗uim)}. When l = L − 1, this is essentially
P (rui = L) in Eq. (3).
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Figure 1: The GEV family. Left: the density function. Right:
the cumulative distribution function.

Mean Values. Mean-value distributions arise when one
assume the perceived utility has the form of an average over
the utility estimates:

xuil =
1

n

n∑
m=1

z
(m)
uil

The asymptotic distribution of xuil is the well known Gaus-
sian distribution (CLT theorem)4, i.e., P (xuil ≤ τuil) =

Φ
(
τuil−µui

sui

)
where sui is the standard deviation. A closely

related distribution is the logistic, where
P (xui ≤ τuil) =

1

1 + exp
(
− τuil−µui

sui

)
The shape of the density functions of these two distributions
is symmetric, but the logistic has higher variance given the
same scale parameter.

Extreme Values. As in the sequential decision model we
are interested in the probability at which the perceived utility
surpasses a level-specific threshold, e.g., P (xuil > τuil) =
1 − P (xuil ≤ τuil), it may be natural to suggest that the
utility is a maximum value:

xuil = max
m
{z(m)
uil }

n
m=1 (4)

The extreme value theory states that the asymptotic proba-
bility P (xuil ≤ τuil) must belong to a family known as gen-
eralized extreme value (GEV) distributions (Gumbel 1958):

P (xuil ≤ τuil) = exp

(
−g
(
τuil − µui

sui

))
where

g(y) =

{
(1 + ξy)

−1/ξ
ξ 6= 0

e−y ξ = 0
under the support domain of ξy + 1 ≥ 0 with the shape ξ,
location µui and scale sui. When ξ = 0, the model is known
as the Gumbel distribution:

P (xuil ≤ τuil) = exp
(
−e−(τuil−µui)/sui

)
(5)

For other cases, the model is the Fréchet distribution for ξ >
0, and the reversed Weibull distribution for ξ < 0. See Fig. 1
for the distributions of these three cases. In practice, the case
of ξ = 0 (Gumbel) appears to be the most common.

The main difference from the mean value distributions is
that the shape of the density function of the GEV family is
asymmetric. For example, the Gumbel and the Fréchet dis-
tributions are heavily-tailed, that is, they allocate more prob-
ability mass for those utility values far from the median.

4This is not to say that the rating is normally distributed, only
its underlying generating variable is.

Model Specification and Estimation
We can expect that the location parameter µui captures the
data structure (e.g., the mean or median utility), and the scale
parameter sui specifies the variation in the quality percep-
tion and the rating choices5. More specifically, sui reflects
the fact that some users may choose to rate only a few high
quality items but some others are willing to input a wide
range of them. Similarly, some items may receive general
agreement on quality among users, but some others may
cause controversy.

Parameterisation
Assume that we have N users and M items. Let I(u) be the
set of items rated by the user u, and U(i) the set of users
who rate the item i. The location structure is decomposed as
follows6

µui = αu + βi + p′uqi+

+
∑

j∈I(u),j 6=i

wijf(ruj) +
∑

v∈U(i),v 6=u

ωuvg(rvi)

(6)
where αu, βi ∈ R are user and item biases, pu, qi ∈ RK are
latent features, wij is the item-item correlation weight, ωuv
is the user-user correlation weight and f(ruj) and g(rvi) are
some feature functions. The biases reflect the notions that
some users are biased in their ratings (e.g., they tend to rate
higher than average, or rate only what they like), and some
items are inherently high (or low) quality. The inner product
p′uqi measures the compatibility between user u and item i
in the latent feature space. It can also be seen as a low-rank
approximation to the location matrix.

The last two components captures the known fact that
items co-rated by the same user and users who co-
rate the same item tend to correlate7 (Resnick et al.
1994; Sarwar et al. 2001). Put differently, the co-rated
item set {j | j ∈ I(u), j 6= i} and those co-rating user set
{v | v ∈ U(i), v 6= u} provide contextual features for the
pair (u, i). To keep the number of contextual features man-
ageable, we keep only J � min{N,M}most popular items
and users8. In our implementation, we choose the feature
functions as f(r) = g(r) = r

L − 0.5.
The thresholds are defined as

τuil = γul + λil (7)
for l = 1, 2, ..., L − 1. Since the scale parameters are posi-
tive, we parameterise as

sui = eνu+ηi (8)
5For example, standard statistics for the Gumbel distribution:

the mean is approximately µui + 0.5772sui, the median is µui −
sui log log 2 and the variance is s2uiπ

2/6.
6The inclusion of neighbour ratings essentially defines a condi-

tional distribution P (rui|I(u),U(i)). This is somewhat similar to
the pseudo-likelihood model and the dependency networks (Heck-
erman et al. 2001).

7To the best of knowledge, these specific features are our con-
tributions.

8Typically we would want J to be in the order of hundreds or
thousands as opposed to the number of users or items, which can
be in the order of hundreds of thousands, or even millions



For robustness, we can specify the minimum scale by ensur-
ing that sui ≥ s0 – this effectively prevents the distribution
from collapsing into a single point mass, which is often a
sign of overfitting.

We also assume Gaussian priors over parameters, i.e.,
αu ∼ N (0, σα), βi ∼ N (0, σβ), pu, qi ∼ N (0, σIK),
wij ∼ N (0, σw), ωuv ∼ N (0, σω), γu ∼ N (0, σγI

L−1),
λi ∼ N (0, σλI

L−1), νu ∼ N (0, σν) and ηi ∼ N (0, ση),
where IL−1 and IK are the identity matrices of size (L− 1)
and K, respectively. Denote by θ the vector of all parame-
ters9, thus θ ∈ R(N+M)(K+L+J+1).

Learning
Learning using maximum a posterior (MAP) maximises the
regularised log-likelihood with respect to parameters θ

L =
∑
u

∑
i∈R(u)

logP (rui | θ) + logP (θ)

The gradient of the log-likelihood reads
∂L =

∑
u

∑
i∈R(u)

∂ logP (rui | θ) + ∂ logP (θ)

where

∂ logP (rui = l | θ) =
∂Fl (τ

∗
uil)

Fl (τ∗uil)
−

l−1∑
m=1

∂Fm (τ∗uim)

1− Fm (τ∗uim)

Since τ∗uil is a function of model parameters, we can use the
following relation

∂τ∗
uil
F (τ∗uil) = P (τ∗uil)

to compute ∂τ∗
uil

logP (rui = l | θ) and the chain rule to
estimate the other derivatives:

∂pu
logP (rui | θ) = − qi

sui
∂τ∗

uil
logP (rui | θ)

∂qi
logP (rui | θ) = − qu

sui
∂τ∗

uil
logP (rui | θ)

∂νu logP (rui | θ) = −τ∗uil∂τ∗
uil

logP (rui | θ)
The regularised log-likelihood L is unfortunately non-

convex in both pu and qi. Thus, we suggests an alternating
approach by looping through:

1. Fix β, {qi,λi, ηi}Mi=1,w, maximise L with respect to
α, {pu,γu, νu}Nu=1,ω, and

2. Fix α, {pu,γu, νu}Nu=1,ω, maximise L with respect to
β, {qi,λi, ηi}Mi=1,w.

In our implementation, a simple gradient ascent is used at
each step. To speed up, the parameter update is made after
every block of items at step 1 or every block of users at step
2. Typical block size is 100− 1000.

Prediction
Prediction of ordinal level of an unseen item j is then

r̂uj = arg max
ruj

P (ruj | θ) (9)

and P (r̂uj | θ) can be used as a confidence measure of the
prediction. Alternatively, we can compute the expected rat-
ing as follows

r̂uj =
∑
ruj

P (ruj | θ)ruj (10)

9These seem to be too many parameters, but without contextual
features, they are the same to other matrix factorisation methods.

Related Work and Discussion
The additive model in Eq. (1) falls into the general cate-
gory of random utility models (RUMs) (e.g., see (McFad-
den 1980)). Under RUMs, utilities play the role of under-
lying property of observed variables (such as ratings). This
class is general and encompassing all the models considered
in this paper. There are two related aspects of ordinal mod-
elling under the RUM framework: the ordinal assumption
and the distribution family of the underlying utilities.

The standard matrix factorisation approach can be ex-
plained in the RUM framework by fixing the utility to rating
values, i.e., xui = rui = p′uqi + εui, and letting the error
term be Gaussian, i.e., εui ∼ N (0, 1). This is convenient
computationally but makes it hard to interpret the qualita-
tive nature of human preferences. For example, we cannot
simply assign numbers to expressions such as {very good,
somewhat good, neither good or bad, somewhat bad, very
bad}.

Another treatment of ordinal ratings is by using standard
categorical variables in a multinomial framework. In partic-
ular, for each rating level l, we assumes an independent util-
ity xuil = µuil+εuil, and the selection of a level is according
to the maximum utility: rui = l if xuil ≥ maxm 6=l{xuim}.
It can be shown that for the choice of Gumbel distribu-
tions (a.k.a. GEV, ξ = 0), we actually arrive at the stan-
dard soft-max form (McFadden 1973): P (rui = l | µ) =
exp(µuil)/

∑
m exp(µuim). The main drawback of this ap-

proach is that it usually requires L−1 times as many param-
eters as standard ordinal methods, leading to slower learning
and inference and less robust model estimation.

The cumulative ordinal regression model of (McCullagh
1980; Koren and Sill 2011; Paquet, Thomson, and Winther
2011) assumes one utility variable per user-item pair, and

rui = l if xui ∈ [τl−1, τl]

or equivalently

P (rui = l | µui, τ ) = F (τl − µui)− F (τl−1 − µui)
for some CDF F (·) and −∞ < τ1 < ... < τL = ∞ . In
(Koren and Sill 2011) the thresholds are user-specific, i.e.,
τul is used instead of the standard τl.

It has also been shown that the cumulative approach and
the sequential approach, whether there is a single utility vari-
able per user-item pair, are identical under the Gompertz dis-
tribution (Läärä and Matthews 1985)

P (xui ≤ τuil) = 1− exp
(
−e(τuil−µui)/sui

)
In fact, the Gompertz distribution also belongs to the GEV
family but with in a reverse way: we model the the mini-
mum utilities, i.e., xui = minm{z(m)

ui }nm=1, as opposed to
the maximum utilities as in Eq. (4) (Gumbel 1958). The se-
quential model is however more flexible since we neither
have to limit to a single utility variable per user-item pair
nor use the same distribution family for all ordinal levels.



Experiments
Data and Setting
We evaluate our proposed approach on three rating datasets:
the MovieLens10, the Dating11 and the Netflix12. The Movie-
Lens dataset contains roughly 1 million ratings on the 5-star
scale by 6 thousand users on nearly 4 thousand movies. The
Dating dataset has nearly 17 million ratings on the 10-point
scale by 135 thousand users on nearly 169 thousand pro-
files. The Netflix dataset consists of 100 millions ratings on
the 5-star scale by 480 thousand users on nearly 18 thousand
movies. To create more uniform evaluation, we convert the
Dating dataset into the 5-point integer scale.

For each dataset, we keep only those users who have no
less than 30 ratings. Of these we reserve 5 items for valida-
tion (e.g., for hyper-parameter setting & stopping criterion),
10 items for testing, and the rest for training. As the Movie-
Lens and the Netflix datasets also has time-stamps, the train-
ing items are rated before the validation and validation be-
fore the testing. For the Dating, the selection is random.

Three performance metrics are reported on test data: the
root-mean square error (RMSE), the mean absolute error
(MAE) and the log-likelihood (LL). The use of RMSE, prob-
ably popular due to the Netflix challenge, implicitly assumes
that the rating is Gaussian, which may not be very desirable.

Implementation
For comparison, we implement the standard probabilis-
tic matrix factorisation with following rating assumptions:
Gaussian (Salakhutdinov and Mnih 2008), multinomial as-
sumption (see also (Koren and Sill 2011)), and cumulative
(Koren and Sill 2011; Paquet, Thomson, and Winther 2011).
The multinomial and cumulative models share the same lo-
cation structure as in Eq. (6) but without the context features
(matrix factorisation methods are essentially about low-rank
decomposition only). All methods are trained by maximis-
ing their regularised log-likelihood, also known as MAP es-
timation. Prediction in discrete methods (multinomial, cu-
mulative and sequential) can be performed using either the
optimal choice as in Eq. (9), or expected rating as in Eq. (10).

Our implementation of the cumulative model differs from
that (Koren and Sill 2011) in a number of ways: first, we
investigate the case where the threshold depend both on user
and item:

τuil = τui1 +

l−1∑
m=2

eγum+λim

for l = 2, 3, ..., L−1. To prevent arbitrary shifting in utility,
we fix τui1 = −L/2. Second, we introduce the scale param-
eter sui ≥ s0 as in Eq. (8). And third, we evaluate a variety
of utility distribution families in addition to the standard lo-
gistic in (Koren and Sill 2011).

Hidden features are initialised randomly fromN (0, 0.01).
Unless specified otherwise, all other parameters are ini-
tialised from zeros. When the contextual features in Eq. (6)

10http://www.grouplens.org/node/12
11http://www.occamslab.com/petricek/data/
12http://netflixprize.com/

Method RMSE MAE LL
Matrix Fac. (Gaussian) 0.932 0.737 -1.353

Multinom. (GEV, ξ = 0) 0.942 0.742 -1.252
Cumul. (Logistic) 0.911 0.693 -1.238
Cumul. (Gaussian) 0.928 0.715 -1.248
Cumul. (Gompertz) 0.925 0.714 -1.256

Cumul. (GEV, ξ = 0) 0.937 0.750 -1.278
Sequent. (Logistic)* 0.913 0.706 -1.223
Sequent. (Logistic) 0.911 0.703 -1.217
Sequent.(Gaussian) 0.911 0.704 -1.216

Sequent. (Gompertz) 0.924 0.713 -1.233
Sequent. (GEV, ξ = −0.2) 0.910 0.705 -1.217
Sequent. (GEV, ξ = 0.0) 0.912 0.709 -1.224
Sequent. (GEV, ξ = 0.2) 0.918 0.718 -1.237
Sequent. (GEV, ξ = 0.5) 0.927 0.739 -1.258

Table 3: Results on MovieLens (using latent features with
K = 50). The RMSE column is generated using Eq. 10
for prediction, and the MAE column using Eq. 9. (*) This
is when the scale parameter is fixed to sui = 1. See also
Table 1.

are used, their weights are not updated until the improve-
ment rate after each iteration for validation falls below 10−4,
i.e., the earlier iterations only improve the biases and the
latent features. Algorithms are stopped if the improvement
rate of likelihood of the validation data falls below 10−5.

Model Verification
We verify the proposed sequential methods on the Movie-
Lens and Dating datasets under different settings of
mean/max-values utility distributions and the use of la-
tent/contextual features. Table 1 reports the results for the
MovieLens. The performance of utility distributions appears
to be similar. Location parameters composed of bias features
alone are quite effective – however this should not be too sur-
prising because the models also rely other parameters such
as thresholds and scales. The latent features and the con-
text features are equally predictive but the latent features are
faster to compute. And finally, the combination of features
offers further improvement.

On the Dating dataset, only item-based contextual fea-
tures are used (Table 2). It appears that for all three utility
distributions, the contextual features are quite powerful: they
already outperform the latent features when J = 100, and
adding J = 5000 contextual features improves the MAE
by approximately 9%, given that we have used only 5% of
possible features (the number of items is M ∼ 105).

Models Comparison
In this set of experiments, we compare the sequential ap-
proach with other approaches, namely the matrix factorisa-
tion, the multinomial and the cumulative. For efficiency, we
employ only latent features in Eq. (6) and set the dimen-
sionality to K = 50. The results on the three datasets are
reported in Tables 3, 4 and 5, respectively. Several observa-
tions can be made from Tables 3, 4 and 5: First, the standard



Biases only K = 50, J = 0 K = 0, J = 200 K = 50, J = 200
Utility CDF RMSE MAE LL RMSE MAE LL RMSE MAE LL RMSE MAE LL

Logistic 0.949 0.757 -1.253 0.911 0.703 -1.217 0.918 0.705 -1.221 0.909 0.699 -1.216
Gaussian 0.942 0.746 -1.244 0.911 0.704 -1.216 0.914 0.707 -1.216 0.906 0.698 -1.213

GEV, ξ = 0.0 0.942 0.748 -1.248 0.912 0.709 -1.224 0.913 0.710 -1.222 0.906 0.702 -1.220

Table 1: Performance of the sequential model under different settings on the MovieLens dataset. The RMSE columns are
generated using Eq. 10 for prediction, and the MAE column using Eq. 9. Recall that K is the number of latent features and 2J
is number of context features (both item-based and user-based).

K = 50, J = 0 K = 0, J = 100 K = 50, J = 500 K = 50, J = 5000
Utility CDF RMSE MAE LL RMSE MAE LL RMSE MAE LL RMSE MAE LL

Logistic 0.874 0.555 -0.877 0.862 0.542 -0.863 0.843 0.522 -0.856 0.824 0.505 -0.841
Gaussian 0.864 0.543 -0.865 0.847 0.528 -0.849 0.836 0.517 -0.849 0.813 0.495 -0.832

GEV, ξ = 0.0 0.863 0.544 -0.872 0.846 0.528 -0.855 0.837 0.518 -0.856 0.812 0.497 -0.839

Table 2: Performance of the sequential model under different settings on the Dating dataset. Here we use the item-based
contextual features only. Adding user-based features does not improve the performance.

RMSE MAE LL
Matrix Fac. (Gaussian) 0.843 0.589 -1.274

Multinom. (GEV, ξ = 0) 0.892 0.532 -0.901
Cumul. (Logistic) 0.895 0.538 -0.907
Cumul. (Gaussian) 0.906 0.548 -0.918
Cumul. (Gompertz) 0.904 0.554 -0.928

Cumul. (GEV, ξ = 0) 0.910 0.568 -0.936
Sequent. (Logistic) 0.874 0.555 -0.877
Sequent.(Gaussian) 0.864 0.543 -0.865

Sequent. (Gompertz) 0.876 0.551 -0.881
Sequent. (GEV, ξ = 0) 0.863 0.544 -0.872
Sequent. (GEV, ξ = 0)* 0.812 0.497 -0.839

Table 4: Results on Dating (using latent features with K =
50, discrete methods use expected rating). (*) Adding J =
5000 item-based contextual features. See also Table 2.

matrix factorisation (MF) does not fit the data well, strongly
indicating that rating is neither numerical nor Gaussian, and
generally falls behind on the MAE metric. Its RMSE scores
are reasonable but this is not surprising because the method
optimises the RMSE score directly. Second, the multinomial
method fits relatively well. This can be expected since it has
more parameters than necessary, but at the cost of slower
training time. In term of RMSE, the multinomial is not very
competitive, possibly because it is purely discrete. In the
case of the Dating dataset, it fares well on the MAE met-
ric.

The cumulative methods perform relatively well on the
RMSE and MAE metrics but do not exhibit very good like-
lihood fitting. The sequential methods perform best on like-
lihood metrics – this is a sign of appropriate data modelling.
On other metrics, they are also very competitive against
other methods.

Method RMSE MAE LL
Matrix Fac. (Gaussian) 0.913 0.706 -1.344

Multinom. (GEV, ξ = 0) 0.934 0.699 -1.211
Cumul. (Logistic) 0.908 0.658 -1.211
Cumul. (Gaussian) 0.917 0.677 -1.224
Cumul. (Gompertz) 0.919 0.693 -1.236

Cumul. (GEV, ξ = 0) 0.920 0.679 -1.225
Sequent. (Gaussian) 0.903 0.665 -1.184
Sequent. (Logistic) 0.905 0.665 -1.187

Sequent. (Gompertz) 0.913 0.676 -1.197
Sequent. (GEV, ξ = 0) 0.905 0.669 -1.194

Table 5: Results on Netflix (using only latent features with
K = 50).

Conclusion and Future Work
We have proposed an approach to address two largely ig-
nored issues in collaborative filtering recommender systems:
First, rating is inherently qualitative and ordinal in nature;
and second, the process from which ratings are generated
should be modelled explicitly. We started from the utility
assumption that for each (user,item) pair there exist underly-
ing, latent utility variables that govern such generation. We
then investigated two related aspects: the ordinal assump-
tion (e.g., normally distributed, multinomial, cumulative or
sequential) and the distribution family of the underlying util-
ities (e.g., mean values or extreme values).

More explicitly, we advocated seeing ratings as being pro-
duced in a sequential decision process: the user starts from
the lowest ordinal level by evaluating the perceived item util-
ity against the level-specific threshold. If the utility exceeds
the threshold then the next level will be considered, other-
wise, the current level is selected. We investigated two ma-
jor families of utility distributions, namely the mean values
and the extreme values under the sequential decision frame-
work. We have demonstrated that the approach is competi-
tive against state-of-the-arts on several large-scale datasets.



There are a number of directions for future work. First, we
have shown that the sequential decision assumption leads to
better data fitting (on test data), as measured by the likeli-
hood criterion. However, using likelihood as a performance
measure is not a common practice in collaborative filtering,
and the degree to which it is correlated to the end goals
(e.g., usefulness for end users) is not clear. Second, an in-
trinsic drawback with this approach is that in that it does not
offer any mechanism to reverse the decision. Modelwise,
the probabilistic treatment proposed in this paper lends it-
self naturally to Bayesian analysis, which may lead to more
robust prediction. And finally, an omitted aspect of collab-
orative filtering data is the high level of missing rate, and it
is of high interest to incorporate the missingness mechanism
into the model.
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