
Embedded Restricted Boltzmann Machines for Fusion of Mixed Data Types and

Applications in Social Measurements Analysis

Truyen Tran

Department of Computing

Curtin University

Bentley, Western Australia, Australia

t.tran2@curtin.edu.au

Dinh Q. Phung and Svetha Venkatesh

School of Information Technology

Deakin University

Geelong, Victoria, Australia

{dinh.phung,svetha.venkatesh}@deakin.edu.au

Abstract—Analysis and fusion of social measurements is
important to understand what shapes the public’s opinion
and the sustainability of the global development. However,
modeling data collected from social responses is challenging
as the data is typically complex and heterogeneous, which
might take the form of stated facts, subjective assessment,
choices, preferences or any combination thereof. Model-wise,
these responses are a mixture of data types including binary,
categorical, multicategorical, continuous, ordinal, count and
rank data. The challenge is therefore to effectively handle
mixed data in the a unified fusion framework in order
to perform inference and analysis. To that end, this paper
introduces eRBM (Embedded Restricted Boltzmann Machine)
– a probabilistic latent variable model that can represent mixed
data using a layer of hidden variables transparent across
different types of data. The proposed model can comfortably
support large-scale data analysis tasks, including distribution
modelling, data completion, prediction and visualisation. We
demonstrate these versatile features on several moderate and
large-scale publicly available social survey datasets.

Keywords-Information fusion; mixed data types; embedded
restricted Boltzmann machines; social measurements analysis.

I. INTRODUCTION

Understanding the public opinion, perception and attitude

towards various economic, social and cultural issues con-

tributes to sustainable social development and policy mak-

ing. An important key step towards such an understanding is

to design effective measurement and survey tools, collecting

data from a diverse population at a large-scale and analyse

the data. For example, the Pew Global Attitudes Project1 has

set out the objectives of surveying hundreds of thousands

of people across continents to capture timely snapshots of

world views over cultures, values, local conditions and state

of lives. On the one hand, getting the right global survey data

is difficult and expensive: a process that requires expertise

from local knowledge and experience, culture and religion,

economy, sociology, and political science. On the other hand,

making sense of the collected data is equally complicated

due to the complex nature of responses.

1pewglobal.org

The challenges arise in analyzing such collections of data

are manifolds. First, responses are heterogeneous in type:

they typically contain a mixture of stated facts, personal

assessment, choices and preferences. Put in statistical terms,

responses can be either binary, categorical, multicategorical,

ordinal, continuous, count or category-ranked. There are

no simple scaling and coding techniques that can make

these responses more homogeneous without distorting the

data. Modelling the covariance among these data types is

inherently difficult, let along inferring meaningful statistics.

Second, the subsampled data is prone to bias, noise and

missing entries.
The research questions are therefore how can we represent

and fuse complex responses in a unified manner? More im-

portantly, how might one infer the implied semantics which

are hidden in the raw responses? What is the correlations

among any group of responses? Given previous answers, can

we predict the an unseen outcome? For example, can we

predict a person’s financial success based on his attitudes

towards things in life? If a respondent refuses to answer

a particular sensitive question, can we make an educated

guess? What are the similarity and gulfs in public views

between countries and cultures? What is the variance among

people of the same ethnic group, same country or the same

region? How can we effectively visualise the data? etc.

Researchers have attempted to address these questions using

statistical tools (e.g., [7]); however, most existing methods

are limited to understanding univariate data or bivariate

correlations. There has been limited focus on joint modelling

of such complex data types [1].
This paper2 presents embedded RBM (eRBM), a prob-

abilistic tool that provides answers to these questions. As

its name implies, it is based on a probabilistic graphical

architecture known as the Restricted Boltzmann Machine

(RBM) [17], [5], [8]. A RBM is a bipartite Markov random

field [9] wherein the input layer is associated with observed

responses, and the output layer typically consists of hidden

binary factors of variation. The model is ‘restricted’ in the

2This paper is a condensed version of the technical report, which will
be made available at http://truyen.vietlabs.com.



sense that connectivity is limited to nodes between layers

only. The idea is that an input can be encoded into a set

of binary factors, where a factor contributes to the model

density only when it is activated.
Leveraging from the RBM architecture, we make a num-

ber of innovations in this paper. First, it presents a novel

use of the RBM, borrowed from the machine learning

literature, for the social surveying analysis. Second, our

RBM differs from standard RBM in that the input layer is

also latent – their values are not observed directly. As such,

our RBM is embedded into the data. Through the observed

responses, we can deterministically infer a set of type-

specific constraints to each input variable. This setting gives

rise a new problem of learning a probabilistic graphical

model given only variable constraints. Third, through the

use of (Gaussian) RBM, we show that all most common

response types can be represented naturally – learning and

inference given such a joint complex set of responses can

be made efficient. This is because the bipartite architecture

of the RBM offers a factoring scheme in which decouples

the responses representation from their implied semantics,

at the same time, still maintain long-range and high-order

dependencies.
The eRBM is capable of supporting a variety of survey

inference tasks. In particular, the posteriors of binary fac-

tors given the responses can be used as a homogeneous

vectorial representation, hiding away the complex nature

of the responses. This representation is natural for further

data analysis needs, including visualisation, dimensionality

reduction and clustering. On the other hand, given the binary

factors, we can reconstruct the responses in a generative

way, making eRBM a candidate for data compression.

The eRBM also directly supports predictive analysis – it

can learn to perform classification, regression and ranking

unseen data. These versatile capacities are demonstrated

on one moderate US-based and two large-scale world-wide

surveys by the PewResearch Centre3.

II. EMBEDDED RESTRICTED BOLTZMANN MACHINES

FOR FUSING MIXED RESPONSES

Denote by v = (v1, v2, ..., vN ) the set of observed mixed

responses, each of which is represented by a type-specific

submodel. In this paper, we consider seven data types:

binary, categorical, multicategorical, ordinal, continuous,

count and rank responses. Our modelling goal is to fully

specify the joint distribution P (v). Obviously, the key is to

correctly represent each type (and modality), and at the same

time, capture the correlation among types in an efficient way.

A. Model Structure

We assume that each observed response vi is indepen-

dently generated from a subset of underlying latent utilities

ui ∈ R
Di . The utilities reflect how the user perceives the

3pewresearch.org

  

Figure 1. Model architecture. Filled nodes represent observed responses,
shaded nodes are latent utilities capturing the type-specific nature of data,
and empty nodes represent binary hidden factors. The top two layers form
a bipartite Markov Random Field known as Restricted Boltzmann Machine
[17], [5], [8].

value of the response choices. Here Di is the dimensionality

of the response, and its value depends on the assumption

we make about the response type. For example, in the

case of continuous responses, the utility is typically one

dimensional, i.e., Di = 1. In the categorical responses,

the user needs to consider a set of choices, each of which

may has a different utility to the user, and thus Di equals

the number of categories. The generation of response given

its utility Pi(vi | ui) is response-specific. For example,

in the case of categorical responses, the user will make a

choice whose utility is maximum among those of all possible

choices. Finally, we wish to emphasize that the utilities

are not observed, and we can only make inference about

them conditioned the observed responses, e.g. through the

posterior P (ui | v).
The correlation among responses v = (v1, v2, ..., vN ) is

captured through the correlation among corresponding util-

ities u = (u1, u2, ..., uN ), i.e., by using P (v) =
∑

u
P (v |

u)P (u). However, specifying and estimating P (u) from

data can be highly challenging for large N , which can

be several hundreds. For example, the typical multivariate

Gaussian approach to model P (u) is not scalable with N .

Second, if we can infer P (u | v), this is of limited practical

use since the dimensionality of u is typically large (hundreds

or thousands).
Here we pursue a different approach by factorising the

correlation structure among the utilities. More specifically

we introduce an additional binary factor layer h ∈ {0, 1}K

on top of the utility layer u. This serves double purposes:

one is the data representation – we will have a collection of

2K possible ways to explain the variations between users in

the population using only a compact set of K dimensions.

The other is computational efficiency – we will be able to

make inference faster as described below.
To achieve the second goal, we limit the interaction

between latent variables so that direct within-layer influences

are not allowed. As depicted in Fig. 1, the top two layers

form a bipartite network of Markov random field, also

known as restricted Boltzmann machine (RBM) [17], [5],

[8]. Let Ψ(u,h) ≥ 0 be the model potential function cap-



turing the correlation structure among variables. The RBM

architecture specifies that we can factorise the potential

function as

Ψ(u,h) =

[

∏

i

φi(ui)

][

∏

ik

ψik(ui, hk)

][

∏

k

φk(hk)

]

(1)

where φi, ψik and φk are local potential functions. Finally,

the model distribution is defined as

P (v,u,h) =
1

Z
Ψ(u,h)P (v | u) (2)

where P (v | u) =
∏

i Pi(vi | ui) and Z =
∫

u

∑

h
Ψ(u,h)du is the finite normalising constant4.

The factorisation in Eq. (1) indeed offers nice decompo-

sition of conditional distributions

P (u | h) =
∏

i

P (ui | h) (3)

P (u | v,h) =
∏

i

P (ui|vi,h) (4)

P (h | u,v) = P (h | u) =
∏

k

P (hk | u) (5)

following the standard theory of Markov blankets (MBs)5

in Markov random fields (MRF). The theory says that a

variable is conditionally independent of all other variables

given its MB. For example, the binary factor layer acts as

the MB for each utility, and conversely the utility layer plays

the role of the MB for each binary factor.
As the RBM is fully unobserved and embedded into our

architecture, we term the proposed model as embedded RBM

(eRBM).

B. Bernoulli-Gaussian RBMs

We now specify the distribution of the top layers (h,u).
For simplicity, we assume that the latent layer u follows the

multivariate Gaussian distribution6. The choice of Gaussian

is for convenient of computation only and in fact we can use

any distributions in the exponential family. More precisely,

let ui = (ui1, ui2, ..., uiDi
), the local potentials are specified

as

φi(ui) = exp

{

Di
∑

d=1

(

−
u2id
2σ2

i

+ αiduid

)

}

(6)

ψik(ui, hk) = exp

{

Di
∑

d=1

widkuidhk

}

(7)

φk(hk) = exp {βkhk} (8)

where σi is the standard deviation of the i-th variable,

{αid, βk, widk} are free parameters. The two upper layers

now form a Bernoulli-Gaussian RBM [8].

4That is, we assume the integration over u exists.
5A Markov blanket of a node in a MRF is a set of neighbour nodes.
6In standard multivariate Gaussian models, we need to specify both the

mean and covariance structure. This is not a trivial task both in term of
modelling and computation. In our treatment, the covariance is factored
into simpler components involving hidden units {hk}

K

k=1
.

We can derive from Eq. (2) that, the distribution of utilities
conditioned on all binary factors are indeed Gaussian

P (ui | h) ∝ φi(ui)
∏

k

ψik(ui, hk)

= exp

{

Di
∑

d=1

(

−
u2

id

2σ2

i

+ αiduid +
∑

k

widkuidhk

)}

∝

Di
∏

d=1

N (uid;µid(h), σi) (9)

i.e., P (uid | h) is a Gaussian with mean µid(h) and standard

deviation σi, where

µid(h) = σ2
i

(

αid +

K
∑

k=1

widkhk

)

(10)

The binary posterior given utilities, on the other hand,

assumes the form of a logistic regression model

P (hk | u) ∝ φk(hk)
∏

i

ψik(ui, hk)

= exp

(

βk +
∑

id

wikduid

)hk

(11)

which gives rise to the sigmoid form of P (hk = 1 | u) =
1/
(

1 + e−s(u)
)

where s(u) = βk +
∑

id wikduid.

C. Conditional Bernoulli-Gaussian RBMs

Now when v are observed, we need to take it into

account when computing the conditional distributions as in

Eqs. (9,11). Eq. (9) now becomes

P (ui|vi,h) ∝ Pi(vi|ui)P (ui|h)

= Pi(vi|ui)
Di
∏

d=1

N (uid;µid(h), σi) (12)

Clearly the exact form of P (ui|vi,h) depends critically on

the type-specific distribution Pi(vi|ui), which we will detail

in Section II-E.

D. MCMC Inference

At this point all our local conditional distributions have

been specified in Eqs. (9,11,12). Given the factorisation

property in Eqs. (3–5), we can run a layer-wise Gibbs

chain updating all elements at each layer in parallel.

Given the sampling scheme, homogeneous data represen-

tation can be derived from the posterior vector ĥ =
(P (h1|v), P (h2|v), ..., P (hK |v)). This can be estimated by

collecting samples of {hk} from a chain where v is kept

fixed to the observed responses. The new representation

can be used for a number of tasks including visualisation,

clustering, prediction and likelihood estimation.
Prediction of an unseen response (e.g., as in data imputa-

tion or predictive modelling) can be made using Pj(vj |v),
where vj /∈ v. Although this can be achieved by collect-

ing samples as usual, we propose here a more efficient

approximation based on mean-field techniques [14]. First,

we estimate the data representation ĥ from P (h | v), then



integrating over the utilities (if the integration has closed

form solution) as follows

P (vj |v) ≈ P (vj |ĥ) =

∫

uj

P (vj , uj |ĥ)duj (13)

Data likelihood can be estimated in the same way, i.e.,

P (vi) ≈ P (vi|ĥ), where vi is now the seen response.

E. Type-specific Submodels

There is no doubt that the usefulness of the eRBM
lies in the correct specification of type-specific submodels

Pi(vi | ui). For space limit we present here the cases for

binary, categorical, ordinal and count responses. Continuous

responses are assumed to follow Gaussian distributions,

and thus the utility can be simply fixed to the response

value itself. A multicategorical response is treated as mul-

tiple binary responses. A rank response is an ordering of

categories, and thus is a generalisation of the categorical

response7. Before describing the models, let us denote by

Si = (ci1, ci2, ..., ciMi
) the set of categories in the case of

discrete variables.
1) Binary Responses.: A binary response outputs one of

the two possible options, e.g., {yes/no}. In many ways it

resembles the decision making process in which we evaluate

the utility of the choice against some threshold. The decision

can be formalised as

Pi(vi = 1 | ui) = I [ui1 > θi]

i.e., we maintain one utility variable per response.
This leads to

P (ui|vi = 1,h) = N (µi1(h), σi) I [ui1 > θi]

i.e., the utility conditional distribution is a Gaussian trun-

cated from below. Likewise, when vi = 0, the distribution

is truncated from above. Finally, given an estimate of the

hidden layerĥ, we can estimate the probability of the binary

output as

P (vi = 1|ĥ) =

∫ ∞

θi1

N
(

µi1(ĥ), σi

)

= 1− Φ(θ∗i )

where θ∗i = θi−µi1(ĥ)
σi

, and Φ(·) is the cumulative distribu-

tion function (CDF).
2) Categorical Responses.: This refers to choosing a

single element from a categorical set, e.g., the status of a

person is one of {married, living-with-a-partner, widowed,

divorced, separated, never-been-married}. We maintain a

latent element per category, i.e., ui = (ui1, ui2, ..., uiMi
)

where Di = Mi. A categorical choice is assumed to be

made by selecting the one with the maximum latent utility,

that is, vi = cdmax
where dmax = argmaxd uid. This choice

model can be captured by:

Pi(vi = cd | ui) = I

[

uid > max
m 6=d

{uim}

]

The maximisation suggests that the utility variables for

the ith observable are correlated, and thus the joint dis-

tribution P (ui1, ui2, ..., uiMi
| vi,h) is not factorisable.

7For full description of all the types please consult our full technical
report.

Denote by ui¬m = ui\uim, the conditional distribution

P (uim|vi,h, ui¬m) can be expressed explicitly as follows

P (uim|vi = cd,h, ui¬m) ∝ N (µim(h), σi) τi(ui,m, d)

where the function τi(ui,m, d) truncates the domain of the

normal distribution N (µim(h), σi), i.e.,

τi(ui,m, d) =

{

I [uim ≥ maxj 6=m{uij}] m = d

I [uim < uid] m 6= d

In words, given the observed category cd, the conditional

distribution of the dth element is truncated from below,

where the truncation value is the maximum over all other

utilities. On the other hand, the conditional distributions of

other categories are truncated from above at uid.
3) Ordinal Responses.: An ordinal variable receives in-

dividual values from an ordered set Si = {ci1 ≺ ci2 ≺
...,≺ ciMi

} where ≺ denotes the order in some sense.

For instance, one can describe their present day as one

of {particularly bad ≺ typical ≺ particularly good}. We

assume that there exists an underlying latent utility whose

value intervals determine the ordinal categories [11]. Trans-

lated into the generative distribution Pi(vi | ui1), we have

Pi(vi = cd | ui1) =










I [ui1 < θi1] d = 1

I
[

θi(d−1) < ui1 ≤ θid
]

d ≤Mi − 1

I
[

θi(Mi−1) < ui1
]

d =Mi

where θi1 < θi2 < ... < θi(Mi−1) are threshold parameters.

Substituting this into Eq. (12) yields

P (ui1|vi = cd,h) ∝ N (µi1(h), σi)Pi(vi = cd | ui1)

In other words, the utility distribution is the normal distri-

bution truncated from above if the first category is chosen,

from below if the last category is chosen, and from both

sides otherwise.
Given an estimate of hidden factors ĥ, we can efficiently

compute the probability that a particular ordinal level is

selected. This is equivalent to computing the probability that

the utility belongs to the corresponding interval.

P (vi = cd|ĥ) =















Φ(θ∗i1) d = 1

Φ (θ∗id)− Φ
(

θ∗
i(d−1)

)

d ≤Mi − 1

1− Φ(θ∗
i(Mi−1)) d =Mi

where θ∗id = θid−µi1(ĥ)
σi

, and Φ(·) is the CDF.
4) Count Responses.: We assume counts are distributed

as Poisson variables, i.e., they obey the following form

P (vi = r | λi) =
1

r!
exp (r log λi − λi)

where λi > 0 is the rate. We maintain one latent utility per

Poisson variable, i.e., ui = (ui1), and the rate is assumed to

be λi = ecui for some positive constant c > 0.
The joint distribution between the Poisson response and

its underlying utility is then P (vi = r, ui | h) ∝
1
r! exp

(

− 1
2σ2

i

u2i + (wi +
∑

k wikhk + cr)ui − ecui

)



Now we want to simplify this complex distribution by

some approximation. Let f(ui) be the expression inside the

bracket of the exp. The idea is to approximate f(ui) by a

quadratic function of ui: first we find the mode ui = µi and

build a quadratic surrogate around that point. We can verify

that f ′′(ui) < 0, i.e., the function f has a global maximum.

Finally, we have a Taylor’s expansion around the mode µi

f(ui) ≈ f(µi)+ f ′′(µi)
(ui−µi)

2

2 , leading to the distribution

approximation:

P (vi, ui | h) ∝
1

k!
ef(µi) exp

(

−
(ui − µi)

2

2κ2i

)

(14)

where κ2i = −1/f ′′(µi). The method is often referred to as

the Laplace’s approximation.
Given the approximation above, the response marginal

P (vi | h) =
∫

P (vi, ui | h)dui can be estimated as

P (vi = r | h) ∝
1

r!
ef(µi)

∫

exp

(

−
(ui − µi)

2

2κ2i

)

dui

=
1

r!
ef(µi)

√

2πκ2i (15)

Finally, using Eqs. (14,15) the utility posterior becomes:

P (ui | vi = r,h) =
P (vi, ui | h)

P (vi = r | h)
≈ N

(

µi, κ
2
i

)

F. Learning with Persistent Markov Chains

We are interested in two learning problems. One is the

estimation of the model distribution P (v) given the sub-

sampled empirical distribution P̃ (v). The other is predictive

modelling in that we want to predict unseen responses

given a set of seen responses. This is often translated to

estimating the conditional distribution P (vc|v¬c) for the

output responses vc. The latter is somewhat easier than the

former since we already know v¬c.
Due to space limit, we omit the details here – interested

readers may consult the technical report version of this

paper. For the case of learning P (v), the general strategy

is to iteratively maximising the data likelihood P (ṽ) =
∑

h

∫

u
P (ṽ,u,h). Since computing the likelihood and its

gradient is clearly intractable, we pursue MCMC techniques

to approximate the likelihood’s gradient – this results in

a stochastic gradient ascent method. For each data point

(e.g., a respondent), we maintain two Markov chains, one for

the pair (u,h) constrained by observed ṽ and another one

for same pair without constraints. Parameters are updated

after every several MCMC steps. This technique bears some

similarity with the Persistent Contrastive Divergence [21],

but our case is more complicated due to the constraints.

III. APPLICATION: SOCIAL MEASUREMENTS ANALYSIS

In this section, we apply our proposed eRBM for fusing

complex social measurements and perform a number of

analysis tasks, including discovering and visualising hidden

profile of users, handling missing data and predicting re-

sponses.

Data Bin Cat Mcat Cont Ord Count Rank

GA02 43 12 3 3 125 0 2
GA08 52 124 0 3 165 0 0

HEH11 53 32 6 6 4 3 0

Table I
NUMBER OF RESPONSES PER TYPE FOR THE THREE DATASETS. Mcat:

MULTICATEGORICAL.
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Figure 2. Learning curve on GA02.

A. Data and Settings

Three public survey datasets collected by PewResearch

Centre8 are used as input for our model. The first is the

Global Attitude (GA02) survey, which interviewed 38, 263
people in 44 countries in 2001–2002. The second is the

Global Attitude (GA08) survey conducted in 24 countries

on March 17 – April 21, 2008. The data contains answers

from 24, 717 respondents. The third dataset is the Higher

Education/Housing (HEH11) survey of 2, 142 adults living

in the continental United States on March 15-29, 2011. See

Appendix for more information on these datasets.

Each questionnaire contains hundreds of questions, whose

responses vary greatly in types. Response types are sum-

marised in Table I. For all datasets, continuous responses

are pre-normalised across samples.

As specified in Section II-F, the eRBM parameters are

estimated from each dataset using our method of persistent

Markov chains. Start from small but random parameters, the

method gradually improves the data likelihood until a local

maximum is reached. Figure 2 shows the learning curve for

the GA02, where the data log-likelihood is monitored.

The eRBM is evaluated against the baseline, which is

essentially the eRBM without the binary hidden layer, i.e.,

by assuming that variables are independent. Performance

metrics are type-specific normalised error rates. In particu-

lar, let y be the user index, v̂i be the predicted value of the

i-th variable, and Nt is the number of variables of type t in

the test data, we compute the prediction errors as follows:

8The datasets are publicly available from http://pewresearch.org/



Baseline K = 20 K = 50 K = 100

Bin. 0.285 0.174 0.149 0.128

Cat. 0.499 0.306 0.232 0.195

Multicat. 0.363 0.245 0.182 0.146

Cont.(*) 1.002 0.749 0.606 0.585

Ord. 0.264 0.170 0.139 0.133

Count 0.382 0.338 0.317 0.305

Table II
ERROR RATES WHEN RECONSTRUCTING HEH11 FROM POSTERIORS.

THE BASELINE IS ESSENTIALLY THE eRBM WITHOUT HIDDEN LAYER

(I.E., ASSUMING RESPONSES ARE INDEPENDENT). (*) THE ERROR IS

RELATIVE TO THE EMPIRICAL STANDARD DEVIATION.

–Binary : 1
Nbin

∑

y

∑

i I

[

v
(y)
i 6= v̂

(y)
i

]

–Categorical : 1
Ncat

∑

y

∑

i I

[

v
(y)
i 6= v̂

(y)
i

]

–Multicategorical : 1− 2RP/(R+P),

–Continuous :

√

1
Dcont

∑

y

∑

i

(

v
(y)
i − v̂

(y)
i

)2

–Ordinal : 1
Nord

∑

y

∑

i
1

Mi−1

∣

∣

∣
v
(y)
i − v̂

(y)
i

∣

∣

∣

–Category-ranking :

1
Drank

∑

y

∑

i
2

Mi(Mi−1)

∑

l,m>lElm

where Elm = I

[

(π
(y)
il − π

(y)
im )(π̂

(y)
il − π̂

(y)
im ) < 0

]

–Count : 1
Ncount

∑

y

∑

i
1
v̄i

∣

∣

∣
v
(y)
i − v̂

(y)
i

∣

∣

∣

where I [·] is the identity function, πim ∈ {1, 2, ...,Mi} is

the rank of the m-th category of the i-th variable, v̄i is the

mean of the i-th variable, R is the recall rate and P is the

precision. The recall and precision are defined as:
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where aim ∈ {0, 1} is the m-th component of the i-th
multicategorical variable. Note that the summation over i
for each type only consists of relevant variables.

B. Factor Extraction and Visualisation

Our eRBM transforms a multimodal input v into a

real-valued posterior vector ĥ =
(

ĥ1, ĥ2, ..., ĥK

)

, where

ĥk = P (hk = 1 | v). To quantify the representation faith-

fulness, we reconstruct the original data using v̂i =

argmaxvi
P
(

vi | ĥ
)

as in Eq. (13). The reconstruction

errors for the HEH11 dataset are reported in Table II,

where it is clear that with more hidden units, the model

approximate the data better.
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Figure 3. t-SNE projection of GA02 posteriors (K = 50) with country
information removed. Each point is a person from one of the 21 selected
countries. Each colour represents a country. Best viewed in colour.

The resulting representation can be used for other tasks

such as clustering, prediction and visualisation. Here we first

learn the eRBM from a subset of the GA02 dataset with

K = 50 hidden units. The obtained representation is further

projected onto a 2D plane using a recent visualisation tool

known as t-SNE [20]. t-SNE estimates the XY coordinates

of each data point so that the relative distances between

points are probabilistically preserved.
The opinions from 21 countries are presented in Figure 3.

This clearly shows the nation-wise clustering property, and

how cultures may be related in their views in the context

of 2002, shortly after the world-shaking September 11th

attack in 2011. We can see there are groups of Islam-

dominant nations (Pakistan, Turkey and Indonesia), and

their distance from the US at the time9. Although being an

Islam-dominant nation, Egypt stands out, possibly due to its

different historical heritages. It is not surprising that the US

and its European fellows join a big group but the US slightly

stays separated. Although sitting next to the US, Canada is

not as close to it as Germany. Instead, it is more close to

France, suggesting that the culture link may play the role

here. China, Russia and Vietnam claim a group each, but it

is interesting to see how they depart from the US.

C. Response Imputation

Missing answers occur frequently in real survey data,

and thus it may be beneficial to make a best guess10. For

evaluation, we randomly remove a portion ρ ∈ (0, 1) of

9Note that here we refer to how citizens of nations think, not the choice
of their political leaders.

10We note in passing that this subsumes the standard collaborative
filtering problem as a special case.



Baseline K = 10 K = 20 K = 50

Bin. 0.327 0.260 0.243 0.240

Cat. 0.565 0.499 0.477 0.459

Cont.(*) 1.024 0.930 0.921 0.910

Ord. 0.393 0.225 0.216 0.211

Table III
IMPUTATION ERROR RATES ON GA08. ON AVERAGE, THERE ARE

ρ = 0.2 ANSWERS MISSING AT RANDOM. (*) SEE TABLE II.

Baseline K = 10 K = 20 K = 50

Bin. 0.274 0.238 0.222 0.249

Cat. 0.920 0.670 0.563 0.395

Multicat. 0.484 0.487 0.446 0.448

Cont.(*) 1.060 0.922 0.907 0.873

Ord. 0.178 0.155 0.162 0.162

Rank 0.312 0.272 0.265 0.266

Table IV
PREDICTIVE ERROR RATES ON GA02 WITH 80/20 TRAIN/TEST SPLIT.
TYPE-SPECIFIC RESPONSES ARE: satisfaction (BIN.), country (CAT.),

problems (MULTICAT.), age (CONT.), life ladder (ORD.) AND

world-dangers (RANK). (*) SEE TABLE II.

answers for each person11, then train the eRBM on the

remaining answers. Using Eq. (13), the missing answers are

then predicted and evaluated against known answers (see

Table II).

D. Learning Predictive Models

Predictive models attempt to uncover the functional re-

lationship between a set of input responses and output

responses. Table IV reports the results for six representative

data types on the GA02 dataset: (i) satisfaction with the

country (binary), (ii) country of origin (categorical, size of

44), (iii) problems facing the country (multicategorical, size

of 11), (iv) age of the person (continuous), (v) ladder of life

(ordinal, size of 11), and (vi) rank of dangers of the world

(category-ranking, size of 5). The models are trained on

answers by 80% randomly selected respondents and tested

on the rest.

IV. RELATED WORK

The survey analysis literature offers a rich set of tools to

model and infer about complex data [7]. However, most ex-

isting methods are limited to understanding univariate data,

or correlation between a few variables. In statistics, there has

been a moderate amount of work addressing mixed data [2],

[3], [4], [10], [12], [13], [16], [18]. There are two general

approaches to this problem: one is to specify conditional

distribution of one type given another, and another is to

assume underlying latent variables for each type. Our work

adopts the latter. However, compared to existing work, ours

is more extensive as it addresses seven most common types,

as opposed to existing combinations of two or three types.

Second, the of use RBM, a machinery from the area of AI,

for factorising the correlation structure is novel.

11This simulates the so-called “missing at random” assumption since we
do not known the missingness mechanism.

The use of RBMs for data processing has been popular

in recent years, possibly due to the recent advances in

efficient learning and inference. However, most work is

limited to single types such as binary [5] and continuous [8],

categorical [15], ordinal [19] and count [6]. The only known

RBM-based work addressing the mixed data type is [18]

but like all previous RBM-based models, it does not model

the underlying utilities that generate the observed responses.

Thus their models are hardly interpretable in social analysis.

V. CONCLUSION

We have introduced a probabilistic framework called Em-

bedded Restricted Boltzmann Machines (eRBM) for fusing

multiple data types, which can be any combination of binary,

categorical, multicategorical, ordinal, continuous, count and

category-ranking types. The key feature is the uniform use of

latent variables to model the utilities which the user perceive

certain choices. Thus the correlation structure among utilities

reflects that among responses. The correlation structure is

further factorised by introducing an additional hidden binary

layer on top of the utility layer, creating a bipartite embedded

network. The model is efficient to support a variety of

large-scale data analysis tasks including distribution estima-

tion, data completion, prediction and data visualisation. The

model is highly suitable for analysing social measurements

such as those in surveys, most of which are of qualitative and

subjective nature. We have demonstrated the effectiveness of

our eRBM on large surveys in the US and world-wide.
We have applied our model for multiple responses but

from a single source. Future work will include applications

from multiple, diverse sources, e.g., information collected

from multiple social networks.

APPENDIX

A. Global Attitude 2002 (GA02)

Topics covered: ”[...] rapid pace of change in modern life;

global interconnectedness through trade, foreign investment

and immigration; [...] democracy and governance, [...] eco-

nomic globalization, the reach of multinational corporations

to terrorism, and the U.S. response”. Sample questions and

their corresponding data types:

• Q1 (Ordinal): How would you describe your day to-

day—{bad, typical, good}?

• Q7 (Binary): [...] Are you satisfied or dissatisfied with

the way things are going in our country today?

• Q10,11 (Category-ranking): In your opinion, which one

of these poses the greatest/second greatest threat to the

world: {a list of threats}?

• Q74 (Continuous): How old were you at your last

birthday?

• Q91 (Categorical): Are you currently married or living

with a partner, widowed, divorced, separated, or have

you never been married?



• Q5 (Multicategorical): What do you think is the most

important problem facing you and your family today

{a list of problems}?.

B. Global Attitude (GA08)

The goal is similar to that of GA02, but carried out 6 year

later. Sample questions and their corresponding data types:

• Q4 (Ordinal): [...] how would you describe the current

economic situation in (survey country) – {very good,

somewhat good, somewhat bad, or very bad}?

• Q11a (Binary): How do you think people in other coun-

tries of the world feel about China? – {like, disliked}?

• Q35,35a (Category-ranking): Which one of the fol-

lowing, if any, is hurting the world’s environment

the most/second-most {India, Germany, China, Brazil,

Japan, United States, Russia, Other}?

• Q76 (Continuous): How old were you at your last

birthday?

• Q85 (Categorical): What is your current employment

situation {A list of employment categories}?

C. Higher Education/Housing (HEH11)

Sample questions and their types:

• Q12 (Ordinal): [...] how important you think [a college

education] is in helping a young person succeed in

the world today {Extremely important, Very important,

Somewhat important, Not too important}?

• RSCHL (Binary): Do you ever plan to return to school?

• AGE (Continuous): What is your age?

• PARTY (Categorical): In politics today, do you con-

sider yourself a Republican, Democrat, or Independent?

• Q.34a (Multicategorical): What was your major field

of study in college? {more than one answers}
• HH1 (Count): How many people, including yourself,

live in your household?
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