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Abstract

Inspired by the hierarchical hidden Markov model (HHMM), wepresent thehier-
archical semi-Markov conditional random field(HSCRF), a generalisation of em-
bedded undirected Markov chains to model complex hierarchical, nested Markov
processes. It is parameterised in a discriminative framework and has polynomial
time algorithms for learning and inference. Importantly, we develop efficient al-
gorithms for learning and constrained inference in a partially supervised setting,
which is an important issue in practice where labels can onlybe obtained sparsely.
We demonstrate the HSCRF in two applications: (i) recognising human activities
of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase
chunking. We show that the HSCRF is capable of learning rich hierarchical mod-
els with reasonable accuracy in both fully and partially observed data cases.

1 Introduction

Modelling hierarchical aspects in complex stochastic processes is an important research issue in
many application domains including computer vision, text information extraction, computational
linguistics and bioinformatics. For example, in a syntactic parsing task known as noun-phrase
chunking, noun-phrases (NPs) and part-of-speech (POS) tags are two layers of semantics associ-
ated with words in the sentence. Previous approaches usually first tag the POS and then feed these
tags as input to the chunker. The POS tagger does not take intoaccount information about the NPs.
This may not be optimal, as a noun-phrase is often very informative for inferring the POS tags be-
longing to the phrase. Thus, it is more desirable tojointly model and infer both the NPs and the POS
tags at the same time.

Many graphical models have been proposed to address this challenge, typically extending the flat
hidden Markov models (e.g., hierarchical HMM (HHMM) [2], DBN [6]). These models are, how-
ever,generativein that they are forced to model the joint distributionPr(x, z) for both the ob-
servationz and the labelx. An attractive alternative is to model the distributionPr(x|z) directly,
avoiding the modelling ofz. This line of research has recently attracted much interest, and one
of the significant results was the introduction of theconditional random field(CRF) [4]. Work in
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CRFs was originally limited to flat structures for efficient inference, and subsequently extended to
hierarchical structures, such as the dynamic CRFs (DCRF) [10], and hierarchical CRFs [5]. These
models assume predefined structures; therefore, they are not flexible enough to adapt to many real-
world datasets. For example, in the noun-phrase chunking problem, no prior hierarchical structures
are known. Rather, if such a structure exists, it can be discovered onlyafter the model has been
successfully built and learned.

In addition, most discriminative structured models are trained in a completely supervised fashion
using fully labelled data, and limited research has been devoted to dealing with thepartially labelled
data (e.g., [3, 12]). In several domains, it is possible to obtain some labels with minimal effort.
Such information can be used either for training or for decoding. We term the process of learning
with partial labelspartial supervision, and the process of inference with partial labelsconstrained
inference. Both processes require the construction of appropriate constrained inference algorithms.

We are motivated by the HHMM [2], a directed, generative model parameterised as a standard
Bayesian network. To address the above issues, we propose the Hierarchical Semi-Markov Condi-
tional Random Field(HSCRF), which is a recursive, undirected graphical model that generalises the
undirected Markov chains and allows hierarchical decomposition. The HSCRF is parameterised as
a standard log-linear model, and thus can naturally incorporate discriminative modelling. For exam-
ple, the noun-phrase chunking problem can be modeled as a two-level HSCRF, where the top level
represents the NP process and the bottom level the POS process. The two processes are conditioned
on the sequence of words in the sentence. Each NP generally spans one or more words, each of
which has a POS tag. Rich contextual information such as starting and ending of the phrase, the
phrase length, and the distribution of words falling insidethe phrase can be effectively encoded. At
the same time, like the HHMM, exact inference in the HSCRFs can be performed in polynomial
time in a manner similar to the Asymmetric Inside-Outside algorithm (AIO) [1].

We demonstrate the effectiveness of HSCRFs in two applications: (i) segmenting and labelling
activities of daily living (ADLs) in an indoor environment and (ii) jointly modelling noun-phrases
and parts-of-speech in shallow parsing. Our experimental results in the first application show that
the HSCRFs are capable of learning rich, hierarchical activities with good accuracy and exhibit
better performance when compared to DCRFs and flat CRFs. Results for the partially observable
case also demonstrate that significant reduction of training labels still results in models that perform
reasonably well. We also show that observing a small amount of labels can significantly increase
the accuracy during decoding. In noun-phrase chunking, theHSCRFs can achieve higher accuracy
than standard CRF-based techniques and the recent DCRFs. Our contributions from this paper are
thus: i) the introduction of the novel and Hierarchical Semi-Markov Conditional Random Field
to model nested Markovian processes in a discriminative framework, ii) the development of an
efficient generalised Asymmetric Inside-Outside (AIO) algorithm for partially supervised learning
and constrained inference, and iii) the applications of theproposed HSCRFs in human activities
recognition, and in shallow parsing of natural language.

Due to space constraints, in this paper we present only main ideas and empirical evaluations. Com-
plete details and extensions can be found in the technical report [11]. The next section introduces
necessary notations and provides a model description for the HSCRF, followed by the discussion on
learning and inference for fully and partially data cases inSections 3 and 4, respectively. Applica-
tions for recognition of activities and natural language parsing are presented in Section 5. Finally,
discussions on the implications of the HSCRF and conclusions are given in Section 6.

2 Model Definition and Parameterisation

2.1 Hierarchical Semi-Markov Conditional Random Fields

Consider a hierarchically nested Markov process withD levels where, by convention, the top level
is the dummy root level that generates all subsequent Markovchains. Then, as in the generative
process of the hierarchical HMMs [2], the parent state embeds a child Markov chain whose states
may in turn contain grandchild Markov chains. The relation among these nested Markov chains is
defined via themodel topology, which is a state hierarchy of depthD. It specifies a set of statesSd at
each leveld, i.e.,Sd = {1...|Sd|}, where|Sd| is the number of states at leveld and1 ≤ d ≤ D. For
each statesd ∈ Sd whered 6= D, the model also defines a set of children associated with it atthe
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next levelch(sd) ⊂ Sd+1, and thus conversely, each childsd+1 is associated with a set of parental
states at the upper levelpa(sd+1) ⊂ Sd. Unlike the original HHMMs proposed in [2] where tree
structure is explicitly enforced on the state hierarchy, the HSCRFs allow arbitrary sharing of children
among parental states as addressed in [1]. This topology generalization requires a smaller number
of sub-states whenD is large, and thus leads to fewer parameters and possibly less training data and
time complexity [1].

To provide an intuition, the temporal evolution can be informally described as follows. Start with
the root node at the top level; as soon as a new state is createdat leveld 6= D, it initialisesa child
state at leveld + 1. The initialisation continues downward until reaching thebottom level1. This
child process at leveld + 1 continues its execution recursively until itterminates, and when it does,
the control of execution returns to its parent at the upper level d. At this point, the parent makes a
decision either totransit to a new state at the same level or return the control to the grandparent at
the upper leveld − 1.

The key intuition for this hierarchical nesting process is that the life span of a child process is a sub-
segment in the life span of its parent. To be more precise, consider the case in which a parent process
sd

i:j at leveld starts a new state2 at timei and persists until timej. At time i, the parent initialises

a child statesd+1
i that continues until it ends at timek < j, at which the child state transits to a

new child statesd+1
k+1. The child process exits at timej, at which the control from the child level

is returned to the parentsd
i:j . Upon receiving the control, the parent statesd

i:j may transit to a new
parent statesd

j+1:l, or end atj and return the control to the grandparent at leveld − 1.

d = 1

d = 2

e2
2

x2
2

d = D

1 2 T − 1 T

xjxi−1

ej−1 = 0

xi
xj−1

ej = 1ei = 0ei−1 = 1

xd+1

i

xd
i

ed
i−1

= 1

xd+1

i

xd
i

ed
i = 1

ed
i = 1

xd
i

xd−1

i+1

xd
i+1

e
d−1
i

= 0

Figure 1: Graphical presentation for HSCRFs (leftmost). Graph structures for state-persistence
(middle-top), initialisation and ending (middle-bottom), and state-transition (rightmost).

The HSCRF, which is a multi-level temporal graphical model of length T with D levels, can be
described formally as follows (Fig. 1). It starts from the root level indexed as1, runs forT time
slices and at each time slice a hierarchy ofD states is generated. At each leveld and time index
i, there is a node representing a state variablexd

i ∈ Sd = {1, 2, ..., |Sd|}. Associated with each
xd

i is an ending indicatored
i that can be either1 or 0 to signify whether the statexd

i terminates or
continues its execution to the next time slice. The nesting nature of the HSCRFs is formally realised
by imposing the specific constraints on the value assignmentof ending indicators:

• The root state persists during the course of evolution, i.e., e1
1:T−1 = 0, e1

T = 1, and all
states end at the last time-slice, i.e.,e1:D

T = 1.

• When a state finishes, all its descendants must also finish, i.e.,ed
i = 1 impliesed+1:D

i = 1;
when a state persists, all its ancestors must also persist, i.e.,ed

i = 0 impliese1:d−1
i = 0.

• When a state transits, its parent must remain unchanged, i.e., ed
i = 1, ed−1

i = 0, and states
at the bottom level terminate at every single slice, i.e.,eD

i = 1 for all i ∈ [1, T ].

Thus, specific value assignments of ending indicators providecontextsthat realise the evolution of
the model states in both hierarchical (vertical) and temporal (horizontal) directions. Each context at

1In HHMMs, the bottom level is also calledproductionlevel, in which the states emit observational symbols.
In HSCRFs, this generative process is not assumed.

2Our notationsd
i:j is to denote the set of variables from timei to j at leveld, i.e.,sd

i:j = {sd
i , sd

i+1, . . . , s
d
j}.

3



a level and associated state variables form acontextual clique, and here we identify four contextual
clique types (cf. Fig. 1):

• State-persistence: This corresponds to the life time of a state at a given level.Specifically,
given a contextc = (ed

i−1:j = (1, 0, .., 0, 1)), thenσ
persist,d
i:j = (xd

i:j , c), is a contextual
clique that specifies the life span[i, j] of any states = xd

i:j .
• State-transition: This corresponds to a state at leveld ∈ [2, D] at time i transiting to

a new state. Specifically, given a contextc = (ed−1
i = 0, ed

i = 1) thenσ
transit,d
i =

(xd−1
i+1 , xd

i:i+1, c) is a contextual clique that specifies the transition ofxd
i to xd

i+1 at timei

under the same parentxd−1
i+1 .

• State-initialisation: This corresponds to a state at leveld ∈ [1, D − 1] initialising a new
child state at leveld + 1 at time i. Specifically, given a contextc = (ed

i−1 = 1), then

σ
init,d
i = (xd

i , xd+1
i , c) is a contextual clique that specifies the initialisation at time i from

the parentxd
i to the first childxd+1

i .
• State-exiting: This corresponds to a state at leveld ∈ [1, D − 1] to end at timei. Specifi-

cally, given a contextc = (ed
i = 1), thenσ

exit,d
i = (xd

i , xd+1
i , c) is a contextual clique that

specifies the ending ofxd
i at timei with the last childxd+1

i .

In the HSCRF, we are interested in theconditionalsetting, in which the entire state and ending vari-
ables(x1:D

1:T , e1:D
1:T ) are conditioned on an observational sequencez. For example, in computational

linguistics, the observation is often the sequence of words, and the state variables might be the POS
tags and the phrases.

To capture the correlation between variables and such conditioning, we define a nonnegative po-
tential functionφ(σ, z) over each contextual cliqueσ. Figure 2 shows the notations for potentials
that correspond to the four contextual clique types we have identified above. Details of potential
specification are described in Section 2.2.

State persistence potential R
d,s,z
i:j = φ(σpersist,d

i:j , z) wheres = xd
i:j .

State transition potential A
d,s,z
u,v,i = φ(σtransit,d

i , z) wheres = xd−1
i+1 andu = xd

i , v = xd
i+1.

State initialization potential π
d,s,z
u,i = φ(σinit,d

i , z) wheres = xd
i , u = xd+1

i .
State ending potential E

d,s,z
u,i = φ(σexit,d

i , z) wheres = xd
i , u = xd+1

i .

Figure 2: Shorthand for contextual clique potentials.

Let V = (x1:D
1:T , e1:D

1:T ) denote the set of all variables and letτd = {ik}
m
k=1 denote the set of all time

indices whereed
ik

= 1. A configurationζ of the model is a complete assignment of all the states and
ending indicators(x1:D

1:i , e1:D
1:T ) that satisfies the set of hierarchical constraints described earlier in

this section. The joint potential defined for each configuration is the product of all contextual clique
potentials over all ending time indexesi ∈ [1, T ] and all semantic levelsd ∈ [1, D]:

Φ(ζ, z) =
∏

d







[

∏

(ik,ik+1)∈τd

R
d,s,z
ik+1:ik+1

][

∏

ik∈τd,ik /∈τd−1

A
d,s,z
u,v,ik

][

∏

ik∈τd

π
d,s,z
u,ik+1

][

∏

ik∈τd

E
d,s,z
u,ik

]







The conditional distribution is given as

Pr(ζ|z) =
1

Z(z)
Φ(ζ, z) (1)

whereZ(z) =
∑

ζ Φ(ζ, z) is the partition function for normalisation.

2.2 Log-linear Parameterisation

In our HSCRF setting, there is a feature vectorf
d
σ(σ, z) associated with each type of contextual

cliqueσ, in thatφ(σd, z) = exp
{

θd
σ • f

d
σ(σ, z)

}

. wherea•b denotes the inner product of two vectors
a andb. Thus, the features are active only in the context in which the corresponding contextual
cliques appear. For the state-persistence contextual clique, the features incorporatestate-duration,
start timei and end timej of the state. Other feature types incorporate the time indexin which the
features are triggered. In what follows, we omitz for clarity, and implicitly use it as part of the
partition functionZ and the potentialΦ(.).
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3 Unconstrained Inference and Fully Supervised Learning

Typical inference tasks in the HSCRF include computing the partition function, MAP assignment
and feature expectations. The key insight is the context-specific independence, which is due to
hierarchical constraints described in Section 2.1. Let us call the set of variable assignmentsΠd,s

i:j =

(xd
i:j = s, ed:D

i−1 = 1, ed:D
j = 1, ed

i:j−1 = 0) thesymmetric Markov blanket. GivenΠd,s
i:j , the set of

variables inside the blanket is independent of those outside it. A similar relation holds with respect
to theasymmetric Markov blanket, which includes the set of variable assignmentsΓd,s

i:j (u) = (xd
i:j =

s, xd+1
j = u, ed:D

i−1 = 1, ed+1:D
j = 1, ed

i:j−1 = 0). Figure 3 depicts an asymmetric Markov blanket
(the covering arrowed line) containing a smaller asymmetric blanket (the left arrowed line) and a
symmetric blanket (the double-arrowed line). Denote by∆d,s

i:j the sum of productsof all clique

dlevel

dlevel   +1

Figure 3: Decomposition with respect to symmetric/asymmetric Markov blankets.

potentials falling inside the symmetric Markov blanketΠd,s
i:j . The sum is taken over all possible

value assignments of the set of variables insideΠd,s
i:j . In the same manner, letαd,s

i:j (u) be the sum

of products of all clique potentials falling inside the asymmetric Markov blanketΓd,s
i:j (u). Let ∆̂d,s

i:j

be a shorthand for∆d,s
i:j R

d,s
i:j . Using the context-specific independence described above and the

decomposition depicted Figure 3, the followingrecursionsarise:

∆d,s
i:j =

X

u∈Sd+1

α
d,s
i:j (u)Ed,s

u,j ; α
d,s
i:j (u) =

j
X

k=i+1

X

v∈Sd+1

α
d,s

i:k−1
(v)∆̂d+1,u

k:j A
d+1,s

v,u,k−1
+ ∆̂d+1,u

i:j π
d+1,s
u,i (2)

As the symmetric Markov blanketΠ1,s
1:T and the setx1

1:T = s covers every state variable, the
partition function can be computed asZ =

∑

s∈S1 ∆̂1,s
1:T .

MAP assignmentis essentially themax-productproblem, which can be solved by turning all sum-
mations in (2) into corresponding maximisations.

Parameter estimationin HSCRFs, as in other log-linear models, requires the computation of fea-
ture expectations as a part of the log-likelihood gradient (e.g., see [4]). The gradient is then fed into
any black-box standard numerical optimisation algorithms. As the feature expectations are rather
involved, we intend to omit the details. Rather, we include here as an example the expectation of the
state-persistence features

∑

i∈[1,T ]

∑

j∈[i,T ]

E[fd,s
σpersist(i, j)δ(Π

d,s
i:j ∈ ζ)] =

1

Z

∑

i∈[1,T ]

∑

j∈[i,T ]

∆d,s
i:j Λd,s

i:j R
d,s
i:j f

d,s
σpersist(i, j)

wheref
d,s
σpersist(i, j) is the state-persistence feature vector for the states = xd

i:j starting ati and

ending atj; Λd,s
i:j is the sum of products of all clique potentials fallingoutsidethe symmetric Markov

blanketΠd,s
i:j ; andδ(Πd,s

i:j ∈ ζ) is the indicator function that the Markov blanketΠd,s
i:j is part of the

random configurationζ.

4 Constrained Inference and Partially Supervised Learning

It may happen that the training data is not completely labelled, possibly due to lack of labelling
resources [12]. In this case, the learning algorithm shouldbe robust enough to handle missing
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labels. On the other hand, during inference, we may partially obtain high quality labels from external
sources [3]. This requires the inference algorithm to be responsive to the available labels which may
help to improve the performance.

In general, when we make observations, we observe some states and some ending indicators. Let
Ṽ = {x̃, ẽ} be the set of observed state and end variables respectively.The procedures to compute
the auxiliary variables such as∆d,s

i:j andα
d,s
i:j (u) must be modified to address constraints arisen from

these observations. For example, computing∆d,s
i:j assumesΠd,s

i:j , which implies the constraint that
the states at leveld starting ati and persisting until terminating atj. Then, if any observations (e.g.,
there is añxd

k 6= s for k ∈ [i, j]) are made causing this constraint to be invalid,∆d,s
i:j will be zero.

Therefore, in general, the computation of each auxiliary variable is multiplied by an identity function
that enforces the consistency between the observations andthe required constraints associated with
the computation of that variable.

As an example, we consider the computation of∆d,s
i:j . The sum∆d,s

i:j is consistent only if all the
following conditions are satisfied: (a) if there are observed states at leveld within the interval[i, j]
they must bes, (b) if there is any observed ending indicatorẽd

i−1, thenẽd
i−1 = 1, (c) if the ending

indicatorẽd
k is observed for somek ∈ [i, j − 1], thenẽd

k = 0, and (d) if the ending indicator̃ed
j is

observed, theñed
j = 1. These conditions are captured in the following identity function

I[∆d,s
i:j ] = δ(x̃d

k∈[i,j] = s)δ(ẽd
i−1 = 1)δ(ẽd

k∈[i:j−1] = 0)δ(ẽd
j = 1) (3)

When observations are made, the first equation in (2) is thus replaced by

∆d,s
i:j = I[∆d,s

i:j ]

(

∑

u∈Sd+1

α
d,s
i:j (u)Ed,s

u,j

)

(4)

5 Applications

We describe two applications of the proposed hierarchical semi-Markov CRFs: activity recognition
in Section 5.1 and shallow parsing in Section 5.2.

5.1 Recognising Indoor Activities

In this experiment, we evaluate the HSCRFs with a relativelysmall dataset from the domain of in-
door video surveillance. The task is to recognise trajectories and activities, which a person performs
in a kitchen, from his noisy locations extracted from video.The data, originally described in [7],
has 45 training and 45 test sequences, each of which corresponds to one of three persistent activ-
ities: (1)preparing short-meal, (2) having snack, and (3)preparing normal-meal. The persistent
activities share some of the 12 sub-trajectories. Each sub-trajectory is a sub-sequence of discrete lo-
cations. Thus, naturally, the data has a state hierarchy of depth 3: the dummy root for each location
sequence, the persistent activities, and the sub-trajectories. The input observations to the model are
simply sequences of discrete locations.

At each leveld and timet we count an error if the predicted state is not the same as the ground truth.
First, we examine the fully observed case where the HSCRF is compared against the DCRF [10] at
both data levels, and against the Sequential CRF (SCRF) [4] at the bottom level. Table 1 (the left
half) shows that (a) both the multilevel models significantly outperform the flat model and (b) the
HSCRF outperforms the DCRF.

Alg. d = 2 d = 3 Alg. d = 2 d = 3

HSCRF 100 93.9 PO-HSCRF 80.2 90.4
DCRF 96.5 89.7 PO-SCRF - 83.5
SCRF - 82.6 - - -

Table 1: Accuracy (%) for fully observed data (left), and partially observed (PO) data (right).

Next, we consider partially supervised learning in which about 50% of start/end times of a state and
state labels are observed at the second level. All ending indicators are known at the bottom level.
The results are reported in Table 1 (the right half). As can beseen, although only 50% of the state
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labels and state start/end times are observed, the model learned is still performing well with accuracy
of 80.2% and 90.4% at levels 2 and 3, respectively.

We next consider the issue of partially observing labels during decoding and test the effect using
degraded learned models. Such degraded models (emulating noisy training data or lack of training
time) are extracted from the 10th iteration of the fully observed data case. The labels are provided
at random times. Figure 4a shows the decoding accuracy as a function of available state labels.
It is interesting to observe that a moderate amount of observed labels (e.g.,20 − 40%) causes the
accuracy rate to go up considerably.

5.2 POS Tagging and Noun-Phrase Chunking

In this experiment, we apply the HSCRF to the task of noun-phrase chunking. The data is from the
CoNLL-2000 shared task3, in which 8926 English sentences from the Wall Street Journal corpus are
used for training and 2012 sentences are for testing. Each word in a preprocessed sentence is given
two labels: the part-of-speech (POS) and the noun-phrase (NP). There are 48 POS labels and 3 NP
labels (B-NP for beginning of a noun-phrase, I-NP for insidea noun-phrase or O for others). Each
noun-phrase generally has more than one word. To reduce the computational burden, we reduce the
POS tag-set to five groups:noun, verb, adjective, adverb, andothers. Since in our HSCRFs we do
not have to explicitly indicate which node is the beginning of a segment, the NP label set can be
reduced further into NP for noun-phrase, and O for anything else.
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Figure 4: (a) Decoding accuracy of indoor activities as a function of available information on
label/start/end time. (b) Performance of various models onConll2000 noun phrase chunking.
HSCRF+POS and DCRF+POS mean HSCRF and DCRF with POS given at test time, respectively.

We build an HSCRF topology of three levels, where the root is just a dummy node, the second level
has two NP states, and the bottom level has five POS states. Forcomparison, we implement a DCRF,
an SCRF, and a semi-Markov CRF (Semi-CRF) [8]. The DCRF has grid structure of depth 2, one
for modelling the NP process and another for the POS process.Since the state spaces are relatively
small, we are able to run exact inference in the DCRF by collapsing both the NP and POS state
spaces to a combined state space of size3 × 5 = 15. The SCRF and Semi-CRF model only the NP
process, taking the POS tags and words as input.

We extract raw features from the text in a similar way to [10].The features for SCRF and the Semi-
CRF also include the POS tags. Words with fewer than three occurrences are not used. This reduces
the vocabulary and the feature size significantly. We also make use of bi-grams with similar selection
criteria. Furthermore, we use the contextual window of 5 instead of 7 as in [10]. This setting gives
rise to about 32K raw features. The model feature is factorised asf(xc, z) = I(xc)gc(z), where
I(xc) is a binary function on the assignment of the clique variablesxc, andgc(z) are the raw features.

Although both the HSCRF and the Semi-CRF are capable of modelling arbitrary segment durations,
we use a simple exponential distribution (i.e., weighted features activated at each time step are added

3http://www.cnts.ua.ac.be/conll2000/chunking/
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up) since it can be processed sequentially and thus is very efficient. For learning, we use a simple
online stochastic gradient ascent method. At test time, since the SCRF and the Semi-CRF are able
to use the POS tags as input, it is not fair for the DCRF and HSCRF to predict those labels during
inference. Instead, we also give the POS tags to the DCRF and HSCRF and perform constrained
inference to predictonly the NP labels. This significantly boosts the performance of the two multi-
level models.

Let us look at the difference between the flat setting of SCRF and Semi-CRF and the multi-level set-
ting of DCRF and HSCRF. Letx = (xnp, xpos). Essentially, we are about to model the distribution
Pr(x|z) = Pr(xnp|xpos, z) Pr(xpos|z) in the multi-level models while we ignore thePr(xpos|z) in
the flat models. During test time of the multi-level models, we predict only thexnp by finding the
maximiser ofPr(xnp|xpos, z). ThePr(xpos|z) seems to be a waste because we do not make use of
it at test time. However,Pr(xpos|z) does give extra information about the joint distributionPr(x|z),
that is, modelling the POS process may help to get a smoother estimate of the NP distribution.

The performance of these models is depicted in Figure 4b and we are interested in only the prediction
of the noun-phrases since this data has POS tags. Without POStags given at test time, both the
HSCRF and the DCRF perform worse than the SCRF. This is not surprising because the POS tags
are always given in the case of SCRF. However, with POS tags, the HSCRF consistently works
better than all other models.

6 Discussion and Conclusions

The HSCRFs presented here are not a standard graphical modelsince the clique structures are not
predefined. The potentials are defined on-the-fly depending on the assignments of the ending indica-
tors. Although the model topology is identical to that of shared structure HHMMs [1], the unrolled
temporal representation is an undirected graph, and the model distribution is formulated in a dis-
criminative way. Furthermore, the state persistence potentials capture duration information that is
not available in the DBN representation of the HHMMs in [6]. Thus, the segmental nature of the
HSCRF incorporates the recent semi-Markov CRF [8] as a special case [11].

Our HSCRF is related to the conditional probabilistic context-free grammar (C-PCFG) [9] in the
same way that the HHMM is to the PCFG. However, the context-free grammar does not limit the
depth of semantic hierarchy, thus making it unnecessarily complicated to map hierarchical structures
into its form. Further, it lacks a graphical model representation, and thus cannot utilize the rich set
of approximate inference techniques available for standard graphical models.
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