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Abstract

Inspired by the hierarchical hidden Markov model (HHMM), present théier-
archical semi-Markov conditional random figldSCRF), a generalisation of em-
bedded undirected Markov chains to model complex hieraathnested Markov
processes. It is parameterised in a discriminative framlewand has polynomial
time algorithms for learning and inference. Importantlg develop efficient al-
gorithms for learning and constrained inference in a pliytsupervised setting,
which is an importantissue in practice where labels can belgbtained sparsely.
We demonstrate the HSCRF in two applications: (i) recoggisiuman activities
of daily living (ADLs) from indoor surveillance cameras, cafii) noun-phrase
chunking. We show that the HSCRF is capable of learning riehainchical mod-
els with reasonable accuracy in both fully and partiallyeskied data cases.

1 Introduction

Modelling hierarchical aspects in complex stochastic psses is an important research issue in
many application domains including computer vision, teXormation extraction, computational
linguistics and bioinformatics. For example, in a synt@agarsing task known as noun-phrase
chunking, noun-phrases (NPs) and part-of-speech (POS)atagtwo layers of semantics associ-
ated with words in the sentence. Previous approaches ydinsiltag the POS and then feed these
tags as input to the chunker. The POS tagger does not takadotwnt information about the NPs.
This may not be optimal, as a noun-phrase is often very indtiu@ for inferring the POS tags be-
longing to the phrase. Thus, it is more desirablpiotly model and infer both the NPs and the POS
tags at the same time.

Many graphical models have been proposed to address thisrl, typically extending the flat
hidden Markov models (e.g., hierarchical HMM (HHMM) [2], DB[6]). These models are, how-
ever, generativein that they are forced to model the joint distributibm(x, ) for both the ob-
servationz and the labek. An attractive alternative is to model the distributiBn(z|z) directly,
avoiding the modelling of. This line of research has recently attracted much inteeast one
of the significant results was the introduction of twnditional random fiel{CRF) [4]. Work in
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CRFs was originally limited to flat structures for efficienference, and subsequently extended to
hierarchical structures, such as the dynamic CRFs (DCRHJ) §hd hierarchical CRFs [5]. These
models assume predefined structures; therefore, they afiexible enough to adapt to many real-
world datasets. For example, in the noun-phrase chunkiolgigam, no prior hierarchical structures
are known. Rather, if such a structure exists, it can be dé&seal onlyafter the model has been
successfully built and learned.

In addition, most discriminative structured models aréntrd in a completely supervised fashion
using fully labelled data, and limited research has beentéelo dealing with thpartially labelled
data (e.g., [3, 12]). In several domains, it is possible tambsome labels with minimal effort.
Such information can be used either for training or for déagdWe term the process of learning
with partial labelspartial supervisionand the process of inference with partial lab=dsstrained
inference Both processes require the construction of appropriatstcained inference algorithms.

We are motivated by the HHMM [2], a directed, generative niqgu@ameterised as a standard
Bayesian network. To address the above issues, we propobkettarchical Semi-Markov Condi-
tional Random Fiel{HSCRF), which is a recursive, undirected graphical mdus generalises the
undirected Markov chains and allows hierarchical decontipos The HSCRF is parameterised as
a standard log-linear model, and thus can naturally inaaealiscriminative modelling. For exam-
ple, the noun-phrase chunking problem can be modeled as-EewbHSCRF, where the top level
represents the NP process and the bottom level the POS prddestwo processes are conditioned
on the sequence of words in the sentence. Each NP generaltg sme or more words, each of
which has a POS tag. Rich contextual information such asirggaand ending of the phrase, the
phrase length, and the distribution of words falling indilde phrase can be effectively encoded. At
the same time, like the HHMM, exact inference in the HSCRFs lwa performed in polynomial
time in a manner similar to the Asymmetric Inside-Outsidgathm (AIO) [1].

We demonstrate the effectiveness of HSCRFs in two appdicsti (i) segmenting and labelling
activities of daily living (ADLS) in an indoor environmenhd (ii) jointly modelling noun-phrases
and parts-of-speech in shallow parsing. Our experimergallts in the first application show that
the HSCRFs are capable of learning rich, hierarchical gietsswith good accuracy and exhibit
better performance when compared to DCRFs and flat CRFs.ltRésuthe partially observable
case also demonstrate that significant reduction of trgilaibels still results in models that perform
reasonably well. We also show that observing a small amollatbels can significantly increase
the accuracy during decoding. In noun-phrase chunkingfd®€RFs can achieve higher accuracy
than standard CRF-based techniques and the recent DCRFsofttibutions from this paper are
thus: i) the introduction of the novel and Hierarchical Séviarkov Conditional Random Field
to model nested Markovian processes in a discriminativendsgork, ii) the development of an
efficient generalised Asymmetric Inside-Outside (AlO)aalthm for partially supervised learning
and constrained inference, and iii) the applications ofpgheposed HSCRFs in human activities
recognition, and in shallow parsing of natural language.

Due to space constraints, in this paper we present only rdaasiand empirical evaluations. Com-
plete details and extensions can be found in the technipalt@l1]. The next section introduces
necessary notations and provides a model descriptionédd8CRF, followed by the discussion on
learning and inference for fully and partially data caseSéations 3 and 4, respectively. Applica-
tions for recognition of activities and natural languagespay are presented in Section 5. Finally,
discussions on the implications of the HSCRF and conclgsima given in Section 6.

2 Model Definition and Parameterisation

2.1 Hierarchical Semi-Markov Conditional Random Fields

Consider a hierarchically nested Markov process uittevels where, by convention, the top level
is the dummy root level that generates all subsequent Matkains. Then, as in the generative
process of the hierarchical HMMs [2], the parent state erslaechild Markov chain whose states
may in turn contain grandchild Markov chains. The relatiomag these nested Markov chains is
defined via thenodel topologywhich is a state hierarchy of depih It specifies a set of stat&¥ at
each levetl, i.e.,S% = {1...|S%|}, where| S| is the number of states at leveand1 < d < D. For
each stata? ¢ S whered # D, the model also defines a set of children associated withtfiteat



next levelch(s?)  S4+1, and thus conversely, each chiléit! is associated with a set of parental
states at the upper levph(s?*1) c S9. Unlike the original HHMMs proposed in [2] where tree
structure is explicitly enforced on the state hierarchg S CRFs allow arbitrary sharing of children
among parental states as addressed in [1]. This topolograkzation requires a smaller number
of sub-states whep is large, and thus leads to fewer parameters and possilslyr&ring data and
time complexity [1].

To provide an intuition, the temporal evolution can be infatly described as follows. Start with
the root node at the top level; as soon as a new state is craa@eld £ D, it initialisesa child
state at levell + 1. The initialisation continues downward until reaching thaitom levet. This
child process at level + 1 continues its execution recursively untitérminatesand when it does,
the control of execution returns to its parent at the uppezllé. At this point, the parent makes a
decision either tdransitto a new state at the same level or return the control to thedgierent at
the upper levefl — 1.

The key intuition for this hierarchical nesting processsttthe life span of a child process is a sub-
segmentin the life span of its parent. To be more preciseaidenthe case in which a parent process
s‘}:j at leveld starts a new stateat timei and persists until timg. At time i, the parent initialises

a child states{ ™" that continues until it ends at timie < j, at which the child state transits to a
new child stateszﬁ. The child process exits at timye at which the control from the child level

is returned to the pare@ﬁj. Upon receiving the control, the parent staf.g may transit to a new

parent state;ﬂrl:l, or end atj and return the control to the grandparent at leiel 1.

d=1
O O ”””””” O O Ti—1 xT; Tj—1 Zj
o o o) o OO O,
d=2 2 .
®) 0O.2-F----m--- @) @) . ® ® °
o Oeg o o ei—1=1 e =0 ej—1=0 e =1
3 d d
d— b | i i
@) Or=mmm------ Q O 9 O vy
"eiA1:71 eiffl L@
: : [ B ) g
e} o o o) fe P
. ; L €. =
1 2 T-1 T L O 1O ’
at Plag

Figure 1. Graphical presentation for HSCRFs (leftmost).agbr structures for state-persistence
(middle-top), initialisation and ending (middle-bottorajhd state-transition (rightmost).

The HSCRF, which is a multi-level temporal graphical modelemgth 7" with D levels, can be
described formally as follows (Fig. 1). It starts from thetrdevel indexed ag, runs for7" time
slices and at each time slice a hierarchy/pktates is generated. At each ledehnd time index

i, there is a node representing a state variafles S? = {1,2, ...,|S%}. Associated with each
z¢ is an ending indicatoe! that can be eithet or 0 to signify whether the state{ terminates or
continues its execution to the next time slice. The nestatgne of the HSCRFs is formally realised
by imposing the specific constraints on the value assignofeariding indicators:

e The root state persists during the course of evolution,dse;_; = 0, e>- = 1, and all
states end at the last time-slice, i€:P = 1.

e When a state finishes, all its descendants must also finssh;d.= 1 impliese{ ™" = 1;

when a state persists, all its ancestors must also persistdi= 0 impliese}’”l*1 =0.

e When a state transits, its parent must remain unchangeddi.e 1, ef‘l = 0, and states
at the bottom level terminate at every single slice, ef.~= 1 foralli € [1,7].

Thus, specific value assignments of ending indicators gemantextsthat realise the evolution of
the model states in both hierarchical (vertical) and teraporizontal) directions. Each context at

1In HHMMs, the bottom level is also callemoductionlevel, in which the states emit observational symbols.
In HSCRFs, this generative process is not assumed.
ZOur notationsy.; is to denote the set of variables from tir j at leveld, i.e.,s&; = {sf, s, 1,...,s}}.



a level and associated state variables forootextual cliqueand here we identify four contextual
clique types (cf. Fig. 1):

e State-persistenceThis corresponds to the life time of a state at a given lespekcifically,
given a context = (ef , ; = (1,0,..,0,1)), theno—pe””td = (2, c), is a contextual
clique that specifies the life span j] of any states = z¢

e State-transitiont This corresponds to a state at Ie‘a&ale [2, D] at time+ transiting to
a new state. Specifically, given a context= (!~} = 0,e? = 1) theng!"*"*"? —
(xf!, 2¢,. 1, c) is a contextual clique that specifies the transitionpto z¢,, at timei
under the same parenf .

e State-initialisation: This corresponds to a state at levek [1,D — 1] |n|t|aI|smg a new
child state at levell + 1 at timei. Specifically, given a context = (e, = 1), then

crf"”"i = (x¢, 2T, ¢) is a contextual clique that specifies the initialisationiragt; from

the parent:¢ to the first childz{+,

e State-exiting This corresponds to a state at ledet [1, D — 1] to end at time. Specifi-
cally, given a context = (e = 1), thena?™""? = (z¢, 29+ ¢) is a contextual clique that

specifies the ending of! at timei with the last chlld:cf“.

Inthe HSCRF we are interested in tt@nditionalsetting, in which the entire state and ending vari-
ables(z{2, e1:L) are conditioned on an observational sequencEor example, in computational
linguistics, the observation is often the sequence of wandd the state variables might be the POS
tags and the phrases.

To capture the correlation between variables and such tionitig, we define a nonnegative po-
tential functiong(o, z) over each contextual clique Figure 2 shows the notations for potentials
that correspond to the four contextual clique types we hdeatified above. Details of potential

specification are described in Section 2.2.
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Figure 2: Shorthand for contextual clique potentials.

LetV = (212, eliP) denote the set of all variables and t€t= {i; }7* , denote the set of all time
indices wherezd =1.A configurationg“ of the model is a complete assignment of all the states and
ending mdrcators{gc1 D el:D) that satisfies the set of hierarchical constraints destrézelier in

this section. The joint potential defined for each configoreis the product of all contextual clique
potentials over all ending time indexées [1, 7] and all semantic level$ € [1, D]:

o d,s,z d S,z d,s,z d,s,z
oo =TI I miie|| I ad| T =i IO 2t
d (ikrikq1)ET? ip€TdipgTd—t ipeTd ireTd

The conditional distribution is given as
1
Pr((lz) = m@@,z) 1)

whereZ(z) = 3. ©((, 2) is the partition function for normalisation.

2.2 Log-linear Parameterisation

In our HSCRF setting, there is a feature vedifo, z) associated with each type of contextual
cliques, inthatg(c?, z) = exp {02 o £4(0, z) }. wherezeb denotes the inner product of two vectors
a andb. Thus, the features are active only in the context in whighdbrresponding contextual
cliques appear. For the state-persistence contextualeslihe features incorporagéate-duration
start time; and end timegj of the state. Other feature types incorporate the time imdeich the
features are triggered. In what follows, we omifor clarity, and implicitly use it as part of the
partition functionZ and the potentiad(.).



3 Unconstrained Inference and Fully Supervised Learning

Typical inference tasks in the HSCRF include computing thsifion function, MAP assignment
and feature expectations. The key insight is the contestifip independence, which is due to

hierarchical constraints described in Section 2.1. Letaligle set of variable assignmerﬁg’s =

(zf; = s,eff = 1,ef"” = 1.ef;_, = 0) thesymmetric Markov blankeGivenTI{”, the set of

variables inside the bIanket is independent of those caifsidh similar relation holds with respect
to theasymmetric Markov blankewhich includes the set of variable aSS|gnmé?ft§ = (:v;-i:j =
;a0 = w, e =1,eTP = 1,ed. | = 0). Figure 3 depicts an asymmetric Markov blanket
(the covering arrowed line) containing a smaller asymroditanket (the left arrowed line) and a

symmetric blanket (the double-arrowed line). Denoteﬁbﬁ/jS the sum of product®f all clique

leveld

|eve|d +1il [} ] \ ) ) \

Figure 3: Decomposition with respect to symmetric/asymim®tarkov blankets.

potentials falling inside the symmetric Markov blanliﬁ’S The sum is taken over all possible
value assignments of the set of variables mslkafgs In the same manner, Ie.tf ) be the sum
of products of all clique potentials falling inside the asyetric Markov blankefi:j ( ). Let Afj
be a shorthand forkded °. Using the context-specific independence described abodete

decomposition depicted Figure 3, the followirggursionsarise:
J

M= Y aff@EL o= Y Y el (ALAL AL @)

2:] w,j? 2:]
ueSd+1 k=i+1yecgd+1

As the symmetric Markov blankdt; . and the set:l,,, = s covers every state variable, the
partition function can be computed ds= ) . ALT.

MAP assignmentis essentially thenax-producproblem, which can be solved by turning all sum-
mations in (2) into corresponding maximisations.

Parameter estimationin HSCRFs, as in other log-linear models, requires the caatjon of fea-
ture expectations as a part of the log-likelihood gradierg.( see [4]). The gradient is then fed into
any black-box standard numerical optimisation algorithiAs the feature expectations are rather
involved, we intend to omit the details. Rather, we includestas an example the expectation of the
state-persistence features

ST EES . (6,0 € Q) Z D AN REES L, ])
i€[1,T] je(i,T] 16 [1,7] jeli,T]
Wherefo_pmwt (i,7) is the state-persistence feature vector for the state :c‘»i . starting ati and
ending aty; Ad S the sum of products of all clique potentials falliogtsidethe symmetrlc Markov

bIanketH‘i > and5( * € () is the indicator function that the Markov blanl«léf is part of the
random conﬁguratlorj

4 Constrained Inference and Partially Supervised Learning

It may happen that the training data is not completely l&aglpossibly due to lack of labelling
resources [12]. In this case, the learning algorithm shde@dobust enough to handle missing



labels. On the other hand, during inference, we may partidtain high quality labels from external
sources [3]. This requires the inference algorithm to bpaasive to the available labels which may
help to improve the performance.

In general, when we make observations, we observe soms statesome ending indicators. Let
V = {z, &} be the set of observed state and end variables respectireyprocedures to compute
the auxiliary variables such a‘sﬁf anda‘f;j(u) must be modified to address constraints arisen from
these observations. For example, computkfg? assumezﬂfj, which implies the constraint that
the states at leveld starting at and persisting until terminating gt Then, if any observations (e.g.,

there is ani¢ # s for k € [i, j]) are made causing this constraint to be invadidf;fS will be zero.
Therefore, in general, the computation of each auxilianatde is multiplied by an identity function
that enforces the consistency between the observationthamdquired constraints associated with
the computation of that variable.

As an example, we consider the computatiorﬂfj’ij. The sumA‘i’j is consistent only if all the
following conditions are satisfied: (a) if there are obsdrstates at level within the interval[i, j]
they must bes, (b) if there is any observed ending indicaér ,, thené? , = 1, (c) if the ending
indicatoré¢ is observed for some € [i, j — 1], thené{ = 0, and (d) if the ending indicatcﬂ? is
observed, theég = 1. These conditions are captured in the following identitydiion

H[Azd_]s] = 5(55%6[1',]'] =s5)d(& = D)d(Cepij—) = 0)5@? =1) )
When observations are made, the first equation in (2) is #placed by
A = H[Aiﬂ( > aii(u)Eff:?) @)
ue S+l

5 Applications

We describe two applications of the proposed hierarchaai-darkov CRFs: activity recognition
in Section 5.1 and shallow parsing in Section 5.2.

5.1 Recognising Indoor Activities

In this experiment, we evaluate the HSCRFs with a relatigahall dataset from the domain of in-
door video surveillance. The task is to recognise trajéesand activities, which a person performs
in a kitchen, from his noisy locations extracted from viddde data, originally described in [7],
has 45 training and 45 test sequences, each of which condspo one of three persistent activ-
ities: (1) preparing short-meal(2) having snack and (3)preparing normal-meal The persistent
activities share some of the 12 sub-trajectories. Eachrajdetory is a sub-sequence of discrete lo-
cations. Thus, naturally, the data has a state hierarchgmhd3: the dummy root for each location
sequence, the persistent activities, and the sub-trajestd he input observations to the model are
simply sequences of discrete locations.

At each levell and timet we count an error if the predicted state is not the same agthed truth.
First, we examine the fully observed case where the HSCRéngpared against the DCRF [10] at
both data levels, and against the Sequential CRF (SCRF} fiebottom level. Table 1 (the left
half) shows that (a) both the multilevel models significamtitperform the flat model and (b) the
HSCRF outperforms the DCRF.

[Alg.  [d=2]d=3 ] Alg. [d=2[d=3|
HSCRF| 100 93.9 PO-HSCRF| 80.2 | 90.4
DCRF | 965 | 89.7 || PO-SCRF | - | 835
SCRF | - | 826 || - . -

Table 1: Accuracy (%) for fully observed data (left), andtly observed (PO) data (right).

Next, we consider partially supervised learning in which@tb0% of start/end times of a state and
state labels are observed at the second level. All endingatats are known at the bottom level.
The results are reported in Table 1 (the right half). As casd®n, although only 50% of the state



labels and state start/end times are observed, the modettbis still performing well with accuracy
of 80.2% and 90.4% at levels 2 and 3, respectively.

We next consider the issue of partially observing labelsndudecoding and test the effect using
degraded learned models. Such degraded models (emulaiggtraining data or lack of training
time) are extracted from the 10th iteration of the fully olveel data case. The labels are provided
at random times. Figure 4a shows the decoding accuracy asctidu of available state labels.
It is interesting to observe that a moderate amount of oleselabels (e.g.20 — 40%) causes the
accuracy rate to go up considerably.

5.2 POS Tagging and Noun-Phrase Chunking

In this experiment, we apply the HSCRF to the task of nourapdchunking. The data is from the
CoNLL-2000 shared task in which 8926 English sentences from the Wall Street Jdaoraus are
used for training and 2012 sentences are for testing. Eaath wa preprocessed sentence is given
two labels: the part-of-speech (POS) and the noun-phraBg [Tthere are 48 POS labels and 3 NP
labels (B-NP for beginning of a noun-phrase, I-NP for insideoun-phrase or O for others). Each
noun-phrase generally has more than one word. To reducethputational burden, we reduce the
POS tag-set to five groupaoun, verb, adjective, adverbndothers Since in our HSCRFs we do
not have to explicitly indicate which node is the beginnifgasegment, the NP label set can be
reduced further into NP for noun-phrase, and O for anythisg.e
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Figure 4: (a) Decoding accuracy of indoor activities as acfiam of available information on
label/start/end time. (b) Performance of various modelsCanll2000 noun phrase chunking.
HSCRF+POS and DCRF+POS mean HSCRF and DCRF with POS givest ¢éite, respectively.

We build an HSCRF topology of three levels, where the roaiss § dummy node, the second level
has two NP states, and the bottom level has five POS statesoffarison, we implement a DCRF,
an SCRF, and a semi-Markov CRF (Semi-CRF) [8]. The DCRF hisstyucture of depth 2, one
for modelling the NP process and another for the POS pro&asse the state spaces are relatively
small, we are able to run exact inference in the DCRF by csitepboth the NP and POS state
spaces to a combined state space of 3ize5 = 15. The SCRF and Semi-CRF model only the NP
process, taking the POS tags and words as input.

We extract raw features from the text in a similar way to [Ije features for SCRF and the Semi-
CRF also include the POS tags. Words with fewer than threeroeeces are not used. This reduces
the vocabulary and the feature size significantly. We alskenae of bi-grams with similar selection
criteria. Furthermore, we use the contextual window of feiad of 7 as in [10]. This setting gives
rise to about 32K raw features. The model feature is facdrasf(z., z) = I(x.)g.(z), where
I(z.) is abinary function on the assignment of the clique varigbleandg.(z) are the raw features.

Although both the HSCRF and the Semi-CRF are capable of rtioglarbitrary segment durations,
we use a simple exponential distribution (i.e., weighteddees activated at each time step are added

3http://www.cnts.ua.ac.be/conll2000/chunking/



up) since it can be processed sequentially and thus is vécieet. For learning, we use a simple
online stochastic gradient ascent method. At test timeesine SCRF and the Semi-CRF are able
to use the POS tags as input, it is not fair for the DCRF and HS@Rpredict those labels during
inference. Instead, we also give the POS tags to the DCRF &&RHF and perform constrained
inference to prediabnly the NP labels. This significantly boosts the performancéeftwo multi-
level models.

Let us look at the difference between the flat setting of SCRFZEmMI-CRF and the multi-level set-
ting of DCRF and HSCRF. Let = (z,,,,, zp0s). Essentially, we are about to model the distribution
Pr(z|2z) = Pr(znp|Tpos, 2) Pr(xpos|2) in the multi-level models while we ignore th&(x,,5|2) in

the flat models. During test time of the multi-level modelg, predict only ther,,, by finding the
maximiser ofPr(z,.p|xpos, 2). ThePr(z,05|2) Seems to be a waste because we do not make use of
it at test time. HoweveBr(z,,s|2) does give extra information about the joint distributier{x|z),

that is, modelling the POS process may help to get a smoattierate of the NP distribution.

The performance of these models is depicted in Figure 4b arat@interested in only the prediction
of the noun-phrases since this data has POS tags. Withoutt®§3Sjiven at test time, both the
HSCRF and the DCRF perform worse than the SCRF. This is nptisimg because the POS tags
are always given in the case of SCRF. However, with POS tagsHSCRF consistently works

better than all other models.

6 Discussion and Conclusions

The HSCRFs presented here are not a standard graphical sindelthe clique structures are not
predefined. The potentials are defined on-the-fly dependitigeoassignments of the ending indica-
tors. Although the model topology is identical to that of gthstructure HHMMs [1], the unrolled
temporal representation is an undirected graph, and thehaistribution is formulated in a dis-
criminative way. Furthermore, the state persistence pialsrcapture duration information that is
not available in the DBN representation of the HHMMs in [6]nuB, the segmental nature of the
HSCREF incorporates the recent semi-Markov CRF [8] as a apease [11].

Our HSCREF is related to the conditional probabilistic catfeee grammar (C-PCFG) [9] in the
same way that the HHMM is to the PCFG. However, the conteee-firammar does not limit the
depth of semantic hierarchy, thus making it unnecessasityicated to map hierarchical structures
into its form. Further, it lacks a graphical model repreaénh, and thus cannot utilize the rich set
of approximate inference techniques available for stathdeaphical models.
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