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Abstract. This paper addresses lexical ambiguity with focus on a par-
ticular problem known as accent prediction, in that given an accentless
sequence, we need to restore correct accents. This can be modelled as
a sequence classification problem for which variants of Markov chains
can be applied. Although the state space is large (about the vocabulary
size), it is highly constrained when conditioned on the data observation.
We investigate the application of several methods, including Powered
Product-of-N-grams, Structured Perceptron and Conditional Random
Fields (CRFs). We empirically show in the Vietnamese case that these
methods are fairly robust and efficient. The second-order CRFs achieve
best results with about 94% term accuracy.

Keywords: constrained sequence classification, lexical disambiguation,
Vietnamese accent restoration, conditional random fields.

1 Introduction

Lexical ambiguity is a common problem in natural language processing because
lexical analysis is often a first step for high level understanding. In this paper, we
focus on a particular problem known as accent prediction1, although the methods
can be similarly adapted to other lexical problems such as case prediction and
spelling correction (e.g. see [5]).

Accent prediction here refers to the situation where accents are removed (e.g.
by some email preprocessing systems), cannot be entered (e.g. by standard En-
glish keyboards), or not explicitly represented in the text (e.g. in Arabic). Here
we deal with languages that use Roman characters in writing together with ad-
ditional accent and diacritical marks. Examples are European languages such as
Spanish and French (see [8] for comprehensive list) and Asian languages such as
Chinese Pinyin and Vietnamese.

The problem often arises because most keyboards today are designed for En-
glish, which means without further help, we can only type the Roman alphabets
and get an ‘approximate’ message that is closed to the intended message. The
1 We use ‘accent’ to refer to either accents or any diacritical marks.
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practice is popular in email communication, instant messaging and mobile SMS.
For example, a Vietnamese sentence: ba. n hãy thǎm Viê. t Nam ngay hôm nay
(‘please visit Vietnam today’) will be written as an accentless sequence as ban
hay tham Viet Nam ngay hom nay. Decoding such a message can be quite hard
for both human and machine. For instance, the accentless term ngay can easily
lead to confusion between the original Vietnamese ngay (‘now’ or ‘straight’) and
the plausible alternative ngày (‘day’).

Thus predicting accents is not only useful to recover lost accents, it also
reduces typing burden when it provides online suggestions as a shortcut for
multiple key combinations. Our approach to this problem is to apply sequence
classification techniques. The approach is expected to be more robust than lo-
cal methods that look only for local context of surrounding words. In addi-
tion, training data is not a problem as it is often readily available without any
cost of manual labeling. In this paper, we investigate the application of Pow-
ered Product-of-N -grams (PPoNs), Structured Perceptron [2] and Conditional
Random Fields [7] (CRFs).

The rest of the paper is organised as follows. Related work and background
are reviewed in Section 2. The statistical modelling and the PPoNs are proposed
in Section 3. Section 4 details the constrained sequence classification methods.
In Section 5, we describe the experiments and results for evaluating the proposed
methods. Finally, Section 6 concludes the paper.

2 Background

2.1 Previous Work

The most popular approach to lexical ambiguity is corpus-based, where rules and
statistical decisions are estimated from the training data. In the case of accent
prediction, this is particularly suitable because training data is often readily
available without any manual annotation.

A wide range of classification techniques have been used for the accent pre-
diction problem. A comparative study of local methods including most frequent
pattern, Bayesian is reported in [14]. These are limited to Spanish and French,
where the ambiguity is not very high. For example, using just most frequent
accent pattern gives 98.7% accuracy for Spanish. The same approach for Viet-
namese, however, achieves only 71.83% accuracy.

Other classification methods include Memory-Based Learning [4], Weighted
Finite-State Transducers [9], Hidden Markov Models [12].

The view of accent prediction as sequence classification was considered in [15].
In this work, the Maximum Entropy (MaxEnt) method [1] is used. This is a local
method that is adapted for sequences by including label history as features. Our
proposal, on the contrary, is to use global methods for classifying sequences.

With respect to lexical analysis there are two main levels: the word level and
letter level [8,13]. While the former may be more natural with smoother language
models, the latter is more useful when training data is limited (e.g. for languages
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with little electronic corpora), or when we have to deal with unknown words (e.g.
in medical text [16]).

We are only aware of the published result for Vietnamese in [4], where the
best result is only 75.5% term accuracy, much lower than our result of 94.3%.
Some software packages are also available, such as AMPad2 and VietPad3 but
we have not been able to experimentally compare with our methods using the
same setup.

2.2 Vietnamese Writing System

The Vietnamese writing system utilises a set of Roman alphabets (the characters
‘f’, ‘j’, ‘w’ and ‘z’ are not used) and a small set of new symbols and a set of five
tonal marks. The five tonal marks are associated with vowels to account for
voice stress. Each vowel, and therefore each term, either has zero or one tonal
mark. In combination of consonants and vowels, there are about 104 unique
terms (syllables or unigrams). One or more consecutive terms constitute a word,
which is the smallest meaningful text unit. A typical word, especially those in
formal writing, has two terms. There are about 105 words in the dictionary.
Note that word boundaries are not predefined by white spaces as in English. For
higher level of understanding, we need to do word segmentation [3], and this is
an interesting and important problem of its own right.

3 Problem Modelling

An input sentence s = (s1, s2, ..., sT ) can be considered as a distorted version of
the original (but unknown) sentence v = (v1, v2, ..., vT ), where there is typically a
correspondence between the original term vt and the input term st. An exception
is that the terms are mistakenly swapped during keying, but this is out of scope
of this paper.

In particular, in accent prediction an accentless term is generated by de-
accenting the accented counterpart

st = R(vt) , (1)

where R(vt) is a deterministic function, in that each vt would yield a unique st.
In other lexical problems, however, each vt may correspond to multiple possible
assignments of st.

The prediction is defined as finding the correct sequence v̂ given the distorted
sequence s

v̂|s = arg max
v∈V(s)

P (v|s) (2)

= arg max
v∈V(s)

P (v)P (s|v) , (3)

where V(s) is the space of all possible correct sentences whose distorted form
is s.
2 http://www.echip.com.vn/echiproot/weblh/qcbg/duynghi/ampad/readme.htm
3 http://vietunicode.sourceforge.net/download/vietpad/
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3.1 Powered Product-of-N-Grams

In the case of accent prediction we have P (s|v) = 1 since the de-accenting is
deterministic, and thus

v̂|s = arg max
v∈V(s)

P (v) . (4)

The problem is now to estimate the language model P (v). In this subsection,
we propose to use n-grams as they are still the simplest and effective method. In
general, as n increases, we have better language model but we may need a huge
data set to have reliable estimate. One effective strategy is to combine n-gram
models as follows4

P (v) =
1
Z

∏

n

Pn(v)wn , (5)

where Z =
∑

v

∏
n Pn(v)wn , wn ≥ 0 and Pn(v) are distribution of given by n-

gram model. Let us call this method the Powered Product-of-N -grams (PPoNs).
The beauty of PPoNs is that the computational complexity is the same as its
components, whilst we can adjust the contribution of the components by tuning
the extra parameters wn. The distribution by the PPoNs is often more peaked
than the component parts. For example, if the component models agree on a
particular sentence v, the PPoNs would yield a very high or very low probability.

The main drawback of the PPoNs model is that we cannot evaluate the
normalisation term Z. It prevents estimating the parameters wn using stan-
dard methods such as maximum likelihood. In this work, we manually tune wn

through trials and errors.

4 Constrained Sequence Classification

In standard sequence classification such as part-of-speech tagging we deal with
the full state set, and thus with all possible state paths from the start to the end
of the sequence. However, in word prediction the state set is particularly large
(e.g. in order of 104− 105), it is not practical to perform dynamic programming
because the time complexity is quadratic in the size of the state set. Fortunately,
in lexical analysis, for each input term, there is a quite small number of corre-
sponding alternatives. We call the set of alternatives by proposal set, which can
be estimated from a large enough corpus. For example, in accent prediction, the
size of proposal sets are less than 25 in the case of Vietnamese, and 5 in Chinese
Pinyin. Thus any state path that does not go through those in the proposal set
will be eliminated. In other words, the state space is constrained.

4 One reviewer pointed out that PPoNs are similar to smoothing techniques which
approximate n-gram distribution by lower-order distributions. This is interesting
because we are originally motivated by the the ensemble methods from the machine
learning view.



434 T.T. Truyen, D.Q. Phung, and S. Venkatesh

Fig. 1. State paths in constrained first-order Markov chain. Filled circles denotes ad-
missible states, lines denote possible paths, and rounded rectangles denote input terms.

The constraint suggests a better way to model the problem: we do not need to
deal with the full state space, rather, for each input sequence, we limit ourselves
to the constrained space, conditioned on the input sequence. In other words, we
estimate the conditional distribution P (v|s) directly.

Denote by V(st) the proposal set for the input term st, thus V(s) = V(s1)×
V(s1)× ...× V(sT ).

4.1 Conditional Random Fields Modelling

Conditional random fields (CRFs) are particularly suitable for modeling P (v|s).
Assuming the (n+ 1)th order Markov chain, the CRF distribution is given as

P (v|s) =
1

Z(s)
exp(

∑

c

∑

k

λkfk(vc, s)) , (6)

where vc is the (n + 1)-gram occurring in the sentence v, fk(vc, s) are feature
functions, and Z(s) =

∑
v∈V(s) exp(

∑
c

∑
k λkfk(vc, s)).

For example, we can convert the PPoNs into the conditional form by setting

fk(vt−n:t, s) = logPn(vt|vt−n, ..., vt−1) . (7)

In our study of accent prediction, we do not use the accentless input s in the
feature function. The n-grams are used features instead

fk(v1:n, s) = δ(C(v1:n) > τ) , (8)

where τ ≥ 0 is the threshold for the number of occurrences C(.), and δ(.) is
the indicator function. The thresholding is important to reduce overfitting and
to reduce the number of features significantly because the majority of n-grams
appear only once in the corpus.

4.2 Learning CRF Models

Given D training sentences, we learn the parameters of CRF models by max-
imising the regularised likelihood

λ̂ = arg max
λ
L(λ) , (9)



Constrained Sequence Classification for Lexical Disambiguation 435

where

L(λ) =
1
D

D∑

i=1

logP (v(i)|s)− ‖λ‖
2

2σ2
. (10)

In this study we are interested in online-learning in which parameters are
updated after each sentence. This is important in interactive applications where
the system may output several possible alternatives and let the user select the one
which is most appropriate to his context. Letting the user correct the prediction
will allow the system to gradually adapt the model to the domain.

In this study we investigate two online-learning strategies. The first one uses
the stochastic gradient ascent [11] to update the parameter as soon as it see
the ith sentence. We call this strategy by online maximum likelihood (ML). To
smooth the update with fast learning rates and to control the overfitting at the
same time, we add a Gaussian regularisation term with mean 0 and variance σ
to the likelihood:

L̄(λ) = L(λ) − ‖λ‖
2

2σ2
. (11)

This term basically prevents the weight from being too large, and thus it reduces
the tendency of the model to fit the training data too well. It also encourages
small parameter changes after seeing each sentence, which is crucial for the
stability of the algorithm. The parameter update thus becomes

λ← λ+ αi{∇L(λ)} − λ

σ2
. (12)

where αi > 0 is the learning rate. We set σ = 10 and αi = 0.1 through empirical
trials.

The second strategy is based on the Structured Perceptron [2] and is given as

λk ← λk + {fk(vi)− fk(v̂i)} , (13)

where v̂ is from Eq. 2. Note that the Structured Perceptron method does not
estimate the maximum likelihood but minimises the classification errors. In our
implementation, at each step, a sentence is randomly selected from the corpus.
We then compute the final parameter by averaging over the parameters learnt
after each pass through all data points.

The details of computing the log-likelihood, the optimal v̂, and the gradients
required for CRF learning are presented in Appendix for clarity.

5 Evaluations

5.1 Corpus and Processing

We collect data from Vietnamese online news sources, split it into a training set
of 426K sentences and a test set of 28K sentences. The corpus contains a wide
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range of subjects worth reporting5. The writing styles vary since the materials
come from a dozen news sources.

In order to effectively deal with foreign words, acronyms and non-alphabets,
we consider only accentless terms which may correspond to some Vietnamese
terms. To obtain the accentless vocabulary, we de-accent the terms in a Viet-
namese dictionary. The accentless vocabulary has 1.4K accentless terms, which is
much smaller than the typical Vietnamese set of terms (around 10K)6. Through
de-accenting we obtain the proposal sets, each of which is a set of Vietnamese
terms corresponding to a particular accentless term. The number of Vietnamese
terms which share the same accentless form ranges from 1 to 24, and is about 4
on average.

For testing, we first perform de-accenting to obtain the accentless form and
then decode back the accented form. The decoded text is compared against the
original. Here we do not distinguish between upper-case and lower-case. The
learning and comparison are done in lower-case.

The performance is measured within the accentless vocabulary. The term
accuracy is the portion of restored terms that are correct. A restored sentence is
considered correct if all of its restored terms (within the accentless vocabulary)
are correct.

From the training data we estimate the unigram, bigram and trigram distri-
butions. There are 7K unique unigrams whose accentless form is in the accentless
dictionary. We count a bigram if it occurs and one of the component unigrams
is in the unigram list. We obtain a bigram list of size 842K. If we remove those
bigrams that happen only once in the corpus, the list is reduced to 465K. Sim-
ilarly, we count a trigram if it occurs and one of the component unigrams is
in the unigram list. This gives 3137K unique trigrams. Removing the trigrams
with a single occurrence we obtain a trigram list of size 1264K. We then apply
Laplace smoothing, where vocabulary sizes for unigrams, bigrams and trigrams
are estimated to be 104, 7× 108, and 7× 1013, respectively. The first estimate is
from the 7K unigrams we obtain from the corpus. To estimate the second, recall
that the bigrams have two components, one of them must be Vietnamese, and
one can be non-Vietnamese. We estimate 105 unique non-Vietnamese unigrams
in the components of the 842K bigrams from the corpus. Multiplying with the
7K Vietnamese unigrams we obtain 7× 108. Similarly, multiplying this with 105

to obtain the estimate for the trigram vocabulary size.

5.2 Results

For the Powered Product-of-N -grams method described in Section 3, we do
not optimise the feature weights λ1, λ2, λ3 corresponding to three component
models of unigram, bigram and trigram, respectively. Rather, we set the weight
manually, and obtain good performance with:
5 They are: politics, social issues, IT, family & life-style, education, science, economics,

legal issues, health, world, sports, arts & culture, and personal opinions.
6 Note that the evaluation is done after restoration, that is, we still use all Vietnamese

terms for evaluation.
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– first-order PPoNs (unigram & bigram): w1 = 1;w2 = 1,
– second-order PPoNs (unigram & bigram & trigram): w1 = 2;w2 = 2;w3 = 1

First we perform a set of experiments with first-order models, which include
the bigrams, the first-order PPoNs and the first-order CRF. One problem with the
bigram model is how it handles the unseen bigrams. As the majority of the Viet-
namese words used in writing are bigrams, this means that a bigram is not simply
random combination of two unigrams. Therefore, most random combinations of
two unigrams should have extremely low probability, or at least their probabilities
are not equal. The popular Laplace smoothing, on the other hand, tries to assign
every unseen bigram an equally small probability under the assumption of prior
uniform distribution. This is unrealistic in Vietnamese. To deal with this we assign
unseen bigrams with a very low probability, which is practically zero, so that any
sequence with unseen bigrams is severely penalised. Although this is not optimal
since some plausible bigrams are cut off, it seems to solve the problem. Luckily,
the PPoNs does not have this problem, probably because the unseen bigrams will
be compensated by the component unigrams.

In the first-order CRF model, we use only the bigram features. For training,
we run the Structured Perceptron for 20 iterations and the online ML for 15 it-
erations over the whole training data set. This is obviously much slower than the
bigram and first-order PPoNs models since we need to estimate the bigram dis-
tribution using only one run through the data. However, such a cost can be well
justified by the higher performance of the CRF model compared with the bigram
and the PPoNs as shown in Table 1. In this study, we use 465K bigram features for
all the first-order models. The simple unigram model works poorly as expected,
and its performance is unacceptable for practical use. The PPoNs, which is just
a product of the unigram and the bigram models, works surprisingly well with
significant improvement over the bigram model. The CRF model is the winner
despite the fact that it uses no more information than that for the PPoNs.

The second set of experiments is performed on second-order models. For the
moment, only the second-order PPoNs is used with 7K unigram features, 465K
bigram features, and 1264K trigram features. We run the Structured Perceptron

Table 1. Term and sentence accuracy (%) of first/second-order models compared with
the baseline unigram model

Model Term accuracy Sentence accuracy

Baseline 71.8 6.3

Bigram 90.7 30.9

1st-order PPoNs 92.4 37.6

1st-order CRF (Structured Perceptron) 93.2 38.4

1st-order CRF (Online ML) 93.7 42.0

2st-order PPoNs 93.5 42.7

2st-order CRF (Structured Perceptron) 93.5 41.8

2st-order CRF (Online ML) 94.3 44.8
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for 10 iterations and the online ML for 5 iterations. The last rows in Table 1 show
the accuracy of the PPoNs and the CRF. The trigram model is not used since
it performs fairly poorly, possibly due to the limited corpus. Interestingly, the
PPoNs can compensate the poor estimate of the trigrams by using the unigram
and bigram components.

Overall for both experiment sets, the CRF trained by online ML performs best.
We observe that the Structured Perceptron minimises the error over training data
quickly since it is specifically designed for this task. The PPoNs, although not as
good as the CRF, provides a simple and fast method for model estimation.

A online prototype is available for evaluation at [http://vietlabs.com].

6 Discussion

This paper evaluates a set of constrained sequence classification methods with a
particular application in accent prediction. The idea of constrained inference in
the context of sequence classification has been proposed earlier [6] in which in the
prediction phase some of the labels in the sequence (e.g. accents in our case) are
deterministically known. Our work can be considered as an extension to this be-
cause we consider a subset of labels as constraints, and use the constraints in both
learning and prediction phases. We conjecture that the constraints used in learning
can produce better a conditional language model for the given restoration task.

Although experimental results on Vietnamese so far indicate that the ap-
proach is suitable and can achieve high quality in online news domains, there are
open rooms for further improvement. First, there are different genres and writ-
ing styles, and it is likely that a sequence of accentless terms can correspond to
several plausible Vietnamese sequences, depending on the context of use. A very
challenging domain is creative writing, especially in poetry, where the authors
make deliberate use of word reordering and repetition to achieve stylistic and
artistic effect. The most challenging form is perhaps spoken language, especially
in the online environments such as chatting and SMS, where the use of language
is largely distorted due to the constraints of writing space and personal interests.

An issue not addressed in this work is the analysis of syntax and semantics. It
is likely that the analysis will provide more consistent and grammatical results
as well as coherence within and between sentences in the document. Through
the CRF framework, for example, it is possible to incorporate a richer set of
features to address the correlation between sentences in the same paragraph.
Also, we can create different models to address different linguistic aspects and
then combine them together in the PPoNs approach.
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A Constrained Inference

In this appendix, we provide a general account for inference in first and second-
order models with constrained state spaces.

Inference in the n-gram models is mostly Viterbi decoding (as in Eq. 2) since
maximum likelihood learning of such models is done through frequency counting.
This also applies for the PPoNs method since we do not perform further learn-
ing after estimating the n-gram components. However, inference in the CRF
is needed for estimating the partition function (as in Eq. 6) and the feature
expectation as shown in Section 4.2.
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A.1 First-Order Models

Associated with each node t in the first-order Markov chain is a positive potential
φ(vt, s) to account for the statistics of the distorted term vt given the input
s. Similarly, associated with each edge is a positive potential ψ(vt−1, vt, s) to
account for the statistics of the transition from vt−1 to vt. The correspondence
between these potentials and the proposed models are as follows

– In the unigram model, φ(vt, s) = P (vt),
– In the bigram model, φ(v1, s) = P (v1), φ(vt) = 1 for t > 1, and ψ(vt−1, vt, s)

= P (vt|vt−1),
– In the bigram PPoNs model, φ(vt, s) = P (vt)λ1 , ψ(vt−1, vt, s)=P (vt|vt−1)λ2 ,

and
– In the first-order CRF model, φ(vt, s) = exp(λkfk(vt, s)), and ψ(vt−1, vt, s)

= exp(λkfk(vt−1, vt, s)).

For the first-order Markov chains, inference can be done using the forward-
backward procedure.The forward αt is defined recursively as

αt(vt ∈ V(st)|s) ∝
∑

vt−1∈V(st−1)

αt−1(vt−1|s)φ(vt−1, s)ψ(vt−1, vt, s) , (14)

where α1(v1 ∈ V(s1)|s) = 1; Similarly, the backward βt is

βt(vt ∈ V(st)|s) ∝
∑

vt+1∈V(st+1)

βt+1(vt+1|s)φ(vt+1, s)ψ(vt, vt+1, s) . (15)

For the feature expectations in CRFs (as in Eq. 12), we need to compute the
marginal

P (vt|s) ∝ αt(vt|s)βt(vt|s)φ(vt, s) , (16)

and the joint marginals

P (vt, vt+1|s) ∝ αt(vt|s)βt(vt+1|s)φ(vt, s)φ(vt+1, s)ψ(vt, vt+1, s) . (17)

The complexity of these procedures is therefore O(T |S|2) where |S| =
maxt |V(st)|.

To do restoration we can use the Viterbi decoding [10], paying attention to
the constraints. Alternatively, we can use the equivalent Pearl’s max-product
algorithm where the summations in Eqs. 14 and 15 are replaced by the max-
imisations. Similar to the forward-backward, this max-product algorithm takes
O(T |S|2) time.

A.2 Second-Order Model

Now we need to take the trigrams into account by using the extension of the
edge potential ψ(vt−1, vt, s) to incorporate the state vt−2. With a slight abuse
of notation, denote by ψ(vt−2, vt−1, vt, s) the trigram potentials.
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– In the trigram model, ψ(vt−2, vt−1, vt, s) = P (vt|vt−1, vt−2),
– In the bigram PPoNs model, ψ(vt−2, vt−1, vt, s) = P (vt|vt−1, vt−2)λ3 , and
– In the second-order CRF model, ψ(vt−2, vt−1, vt, s) = exp(λkfk(vt−2,
vt−1, vt, s)).

Efficient inference in the second-order Markov chains is a bit more tricky
since we do not have the chains. First, we need to convert the second-order
Markov chains into the first-order equivalence. The conversion is done by join-
ing two successive nodes {vt−1, vt} into a composite-node Vt−1 = {vt−1, vt}.
Let the composite-node potential be φ(Vt−1, s) = φ(vt−1)ψ(vt−1, vt, s) and the
composite-edge potential be and ψ(Vt−1, Vt, s) = ψ(vt−1, vt, vt+1, s). Given these
potentials, it can be seen that we now have a new first-order Markov chain with
the combined state space:

Vt−1 ∈ V(st−1, st) = V(st−1)× V(st) . (18)

The näıve implementation of this Markov chain takes O((T − 1)|S|4) time in
this combined state space. However, by paying attention to the fact that the two
composite-states Vt−1 = {vt−1, vt} and Vt = {vt, vt+1} share the same term vt,
we can implement the forward-backward procedure in O((T −1)|S|3) time using

αt(Vt|s) =
∑

xt−1∈V(xt−1)

αt−1(Vt−1|s)φ(Vt−1, s)ψ(Vt−1, Vt, s) ,

βt(Vt|s) =
∑

xt+2∈V(xt+2)

βt+1(Vt+1|s)φ(Vt+1, s)ψ(Vt, Vt+1, s) ,

and the joint marginals are computed as

P (Vt|s) ∝ αt(Vt|s)βt(Vt|s)φ(Vt, s) ,
P (Vt, Vt+1|s) ∝ αt(Vt|s)βt(Vt+1|s)φ(Vt, s)φ(Vt+1, s)ψ(Vt, Vt+1, s) .
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