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Abstract. Recognising daily activity patterns of people from low-level
sensory data is an important problem. Traditional approaches typically
rely on generative models such as the hidden Markov models and
training on fully labelled data. While activity data can be readily
acquired from pervasive sensors, e.g. in smart environments, providing
manual labels to support fully supervised learning is often expensive.
In this paper, we propose a new approach based on partially-supervised
training of discriminative sequence models such as the conditional ran-
dom field (CRF) and the maximum entropy Markov model (MEMM).
We show that the approach can reduce labelling effort, and at the same
time, provides us with the flexibility and accuracy of the discriminative
framework. Our experimental results in the video surveillance domain
illustrate that these models can perform better than their generative
counterpart (i.e. the partially hidden Markov model), even when a
substantial amount of labels are unavailable.

Keywords: activity recognition, discriminative models, partially la-
belled data, indoor video surveillance, conditional random fields, maxi-
mum entropy Markov models.

1 Introduction

An important task in human activity recognition from low-level noisy sensory
data is segmenting the data streams and labeling them with meaningful sub-
activities. The labels can then be used to facilitate data indexing and organ-
isation, to recognise higher levels of semantics, and to provide useful context
for intelligent assistive agents. To handle the uncertainty inherent in the data,
current approaches to activity recognition typically employ probabilistic models
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such as the hidden Markov models (HMMs) and variants [1,2,7]. These models
are essentially generative, i.e. they model the relation between the activity se-
quence x and the observable data stream o via the joint distribution P (x,o).
However, it is often difficult to capture complex dependencies in the observation
sequence o, as typically, simplifying assumptions need to be made so that the
conditional distribution P (o|x) is tractable. This limits the choice of features
that one can use to encode multiple data streams. In addition, as we are often
interested in finding the most probable activity sequence x∗ = arg maxx P (x|o),
it is more natural to model P (x|o) directly.

Thus the discriminative model P (x|o) is more suitable to specify how an
activity x would evolve given that we already observe a sequence of observations
o. With appropriate use of contextual information, the discriminative models
can represent arbitrary, dynamic long-range interdependencies which are highly
desirable for segmentation tasks.

Moreover, whilst capturing unlabeled sensor data for training is cheap, ob-
taining labels in a fully supervised setting often requires expert knowledge and
is time consuming. In many cases we are certain about some particular labels,
for example, in surveillance data, when a person enters a room or steps on a
pressure mat. Other labels (e.g. other activities that occur inside the room) are
left unknown. Therefore, it is more desirable to employ the partially-supervised
approach in that some labels are missing in the training data. Specifically, we
consider two recent discriminative models, namely, the undirected Conditional
Random Fields (CRFs) [3], (Figure 1(b)) and the directed Maximum Entropy
Markov Models (MEMMs) [5] (Figure 1(a)). As the original models require full
labels, we provide a treatment of incomplete data for the CRFs and the MEMMs.
The treatment mainly contributes to the main novelty of this paper despite the
fact that there have been recent attempts to apply discriminative models for
activity recognition, [4,9,10,6,11]. Note that the work in [6] also investigates hid-
den variables in modelling activity, this is for discovering latent aspects rather
than for reducing labelling effort.

We provide experimental results in the video surveillance domain where we
compare the performance of the proposed models and the equivalent partially
hidden Markov models (PHMMs) [8] (Figure 1(c)) in learning and segmenting
human indoor movement patterns. Out of three data sets studied, a common
behaviour is that the HMM is outperformed by the discriminative counterparts
even when a large portion of labels are missing. Providing contextual features
for the models increases the performance significantly.

(a) MEMM (b) CRF (c) PHMM

Fig. 1. (a,b): The partially labelled discriminative models, and (c): partially hidden
Markov models. Filled circles and bars are data observations, empty circles are hidden
labels, shaded circles are the visible labels.
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The remainder of the paper is organised as follows. Section 2 provides back-
ground on CRFs and MEMMs. Section 3 describes learning discriminative mod-
els under missing labels. The paper then describes implementation and exper-
iments and presents results in Section 4. The final section summarises major
findings and further work.

2 Background

This section briefly reviews the MEMMs and the CRFs for sequence modelling.
Given a data sequence o of length T , the MEMMs define the conditional distri-
bution of the activity labelling x as follows

P (x|o) = P (x1|o)
T∏

t=2

P (xt|xt−1,o), where, (1)

P (xt|xt−1,o) =
1

Z(o,xt−1)
exp(w�f(o,xt−1,xt)) , (2)

where Z(o,xt−1) =
∑

xt
exp(w�f(o,xt−1,xt)). The functions f(o,xt−1,xt) are

the features that capture the statistics of the observational data and the activities
and their transition at time t. The parameters w are the weights associated with
the features and are estimated through training.

Thus, a MEMM is a directed Markov chain conditioned on the observational
data o. In supervised training, all activity labels {xt}T

t=1 are given, so only
local classifiers P (xt|xt−1,o) are learnt. During inference time, however, since
no history labels are given for those local classifiers, Viterbi decoding must be
used for simultaneous labelling. Since learning is conditioned on the previous
labels, if the previous labels allows only limited transition to the current labels,
a phenomenon known as label-bias will occur.

The CRFs, on the other hand, do not suffer from this drawback as they model
the activity sequence entirely

P (x|o) =
1

Z(o)

T∏

t=2

exp(w�f(o,xt−1,xt)) , (3)

where Z(o) =
∑

x

∏T
t=2 exp(w�f(o,xt−1,xt)). Since the computation of Z(o)

has the standard sum-product form, we can use dynamic programming at the
cost of O(T ) time. Thus, a CRF is a undirected Markov chain conditioned on
the observational data o.

Fully supervised learning in the CRFs and MEMMs typically maximises the
conditional log-likelihood1 L(w) = log P (x|o).

1 For multiple iid data instances, we should write L(w) =
∑

x P̃ (o) log P (x|o) where

P̃ (o) is the empirical distribution of training data, but we drop this notation for
clarity.
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3 Learning Discriminative Models from Partially
Labelled Data

In our partially labelled discriminative models, the label sequence x consists of
a visible component v (e.g. labels that are provided manually, or are acquired
automatically by reliable sensors) and a hidden part h (labels that are left un-
specified or those we are unsure), that is x = (v,h). The joint distribution of all
visible variables v is therefore given as

P (v|o) =
∑

h

P (v,h|o) =
∑

h

P (x|o) . (4)

To learn the model parameters that are best explained by the data, we maximise
the penalised log-likelihood

Λ(w) = L(w) − 1
2σ2

‖w‖2 ,

where L(w) = log P (v|o). The regularisation term is needed to avoid over-fitting
when only limited data is available for training. For simplicity, the parameter σ
is shared among all dimensions and is selected experimentally.

As with incomplete data, an alternative to maximise the log-likelihood is
using the EM algorithm whose Expectation (E-step) at step j is to calculate the
quantity

Q(wj ,w) =
∑

h

P (h|v,o;wj) log P (h,v|o) , (5)

and the Maximisation (M-step) maximises the concave lower bound of the log-
likelihood Q(wj ,w)− 1

2σ2 ||w||2 with respect to w. Unlike Bayesian networks, the
log-linear models do not yield closed form solutions in the the M-step. However,
as the function Q(wj ,w) is concave, it is still advantageous to optimise with
efficient Newton-like algorithms.

3.1 Learning MEMMs

Directed models like the MEMMs are important in activity modeling because
they naturally encode the state transitions given the observations. As we are free
to encode arbitrary information exacted from the whole sequence o to the local
distribution, we use a sliding window Ωt of size s centred at the current time t to
capture the local context of the observation. The joint incomplete distribution
is therefore

P (v|o) =
∑

h

P (x1|Ω1)
T∏

t=2

P (xt|Ωt,xt−1) . (6)

Since this is a standard sum-product problem, dynamic programming can be
used to solve in O(T ) time.
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In learning of MEMMs using EM, the E-step is to calculate

Q(wj ,w) =
∑

t

∑

ht−1

P (ht−1|v, Ωj
t )

∑

ht

P (ht|ht−1, Ω
j
t ) log P (ht|ht−1, Ωt) . (7)

and the M-step is to solve the zeroing gradient equation

∇Q(wj ,w) =
∑

t

∑

ht−1

P (ht−1|v, Ωj
t )

{
∑

ht

P (ht|ht−1, Ω
j
t )f(ht−1,ht, Ωt) −

∑

xt

P (xt|ht−1, Ωt)f(ht−1,xt, Ωt)

}
.

Computation of the EM reduces to that of marginals and state transition proba-
bilities, which can be carried out efficiently in the Markov chain framework using
dynamic programming.

3.2 Learning CRFs

From Eq. 3, we have

P (v|o) =
1

Z(o)

∑

h

exp(w�f(o,xt−1,xt)) . (8)

In this case, the complexity of computing P (v|o) is the same as that of computing
the partition function Z(o) up to a constant.

For the partially labelled CRFs, the gradient of incomplete likelihood reads

∂L(w)
∂wk

=
∑

t

⎛

⎝
∑

ht−1,ht

P (ht−1,ht|v,o)fk(ht−1,ht,v,o)−

∑

xt−1,xt

P (xt−1,xt|o)fk(xt−1,xt,o)

⎞

⎠ . (9)

Zeroing the gradient does not yield an analytical solution, so typically iterative
numerical methods such as conjugate gradient and Newton methods are needed.
The gradient of the lower bound in the EM framework of (5) is similar to (9),
except that the pairwise marginals P (ht−1,ht|v,o) are now replaced by the
marginals of the previous EM iteration P (ht−1,ht|v,oj). The pairwise marginals
P (xt−1,xt|o) can be computed easily using a forward pass and a backward pass
in the standard message passing scheme on the chain.

3.3 Comparison with the PHMMs

The main difference between the models described in this section (Figure 1(a,b))
and the PHMMs [8] (Figure 1(c)) is the conditional distribution P (x|o) in dis-
criminative models compared to the joint distribution P (x,o) in the PHMMs.
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The data distribution of P (o) and how o is generated are not of concern in the
discriminative models. In the PHMMs, on the contrary, the observation point
ot is presumably generated by the parent label node xt, so care must be taken
to ensure proper conditional independence among {ot}T

t=1. This difference has
an implication that, while the discriminative models may be good to encode
the output labels directly with arbitrary information extracted from the whole
observation sequence o, the PHMMs better represent o when little information
is associated with x. For example, when x is totally missing, P (o) =

∑
x P (x,o)

is still modeled in the PHMMs and provides useful information.

4 Experiments and Results

Our task is to infer the activity patterns of a person (the actor) in a video
surveillance scene. The observation data is provided by static cameras while the
labels, which are activities such as ‘go-from-A-to-B’ during the time interval
[ta, tb] (see Table 1), are recognised by the trained models.

4.1 Setup and Data

The surveillance environment is a 4 × 6m2 dining room and kitchen (Figure 2).
Two static cameras are installed to capture the video of the actor making some
meals. There are six landmarks which the person can visit during the meals:
door, TV chair, fridge, stove, cupboard, and dining chair.

We study three scenarios corresponding to the person making a short meal (de-
noted by SHORT MEAL), having a snack (HAVE SNACK), and making a nor-
mal meal (NORMAL MEAL). Each scenario comprises of a number of primitive
activities as listed in Table 1. The association between scenarios and their primi-
tive activities are: SHORT MEAL = {1,2,3,4,11}, HAVE SNACK = {2,5,6,7,8},
and NORMAL MEAL = {1,2,4,9,10,11,12}. The SHORT MEAL data set has
12 training and 22 testing video sequences; and each of the HAVE SNACK

Camera 1

Camera 2
Door

Cupboard

Stove

Fridge

TV chair

Dining chair

Fridge

Dinning chair

TV chair
Door

Fig. 2. The environment and scene viewed from one of the two cameras
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Table 1. The primitive activities (the labels)

Activity Landmarks Activity Landmarks

1 Door→Cupboard 7 Fridge→TV chair

2 Cupboard→Fridge 8 TV chair→Door

3 Fridge→Dining chair 9 Fridge→Stove

4 Dining chair→Door 10 Stove→Dining chair

5 Door→TV chair 11 Fridge→Door

6 TV chair→Cupboard 12 Dining chair→Fridge

and NORMAL MEAL data sets consists of 15 training and 11 testing video
sequences. For each raw video sequence captured, we use a background subtrac-
tion algorithm to extract a corresponding discrete sequence of coordinates of
the person based on the person’s bounding box. The training sequences are par-
tially labeled, indicated by the portion of missing labels ρ. The testing sequences
provide the ground-truth for the algorithms. The sequence length ranges from
T = 20−60 and the number of labels per sequence is allowed to vary as T ∗(1−ρ)
where ρ ∈ [0, 100%].

We apply standard evaluation metrics such as precision P , recall R, and the
F1 score given as F1 = 2 ∗ P ∗ R/(P + R) on a per-token basis.

4.2 Feature Design and Contextual Extraction

Features are crucial components of the model as they tie raw observation data
with semantic outputs (i.e. the labels). The features need to be discriminative
enough to be useful, and at the same time, they should be as simple and intu-
itive as possible to reduce manual labour. The current raw data extracted from
the video contains only (X, Y ) coordinates. From each coordinate sequences,
at each time slice t, we extract a vector of five elements from the observation
sequence g(o, t) = (Xt, Yt, uXt , uYt , st =

√
u2

Xt
+ u2

Yt
), which correspond to the

(X, Y ) coordinates, the X & Y velocities, and the speed, respectively. Since the
extracted coordinates are fairly noisy, we use the average velocity measurement
within a time interval of small width w, i.e. uXt = (Xt+w/2 − Xt−w/2)/w. Typ-
ically, these observation-based features are real numbers and are normalised so
that they have a similar scale.

We decompose the feature set {fk(xt−1,xt,o)} into two subsets: the state-
observation features fl,m,ε(o,xt) := I[xt = l]hm(o, t, ε) and the state-transition
features fl1,l2(xt−1,xt) := I[xt−1 = l1]I[xt = l2], where m = 1..5 and
hm(o, t, ε) = gm(o, t + ε) with ε = −s1, ..0, ..s2 for some positive integers s1,
s2. The state-observation features in thus incorporate neighbouring observation
points within a sliding window of width s = s1 + s2 + 1.

To have a rough idea of how the observation context influences the performance
of the models, we try different window sizes s (see Equation (1)). The experiments
show that incorporating the context of observation sequences does help to improve
the performance significantly (see Figure 3). We did not try exhaustive searches
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Fig. 3. The role of context (SHORT MEAL), s: the window size to extract observation
data. (a) CRFs, (b) MEMMs. In all figures, the x-axis: the portion of missing labels
(%) and the y-axis: the averaged F-score (%) over all states and over 10 repetitions.

for the best context size, nor did we implement any feature selection mechanisms.
As the number of features scales linearly with the context size as K = 5s|Y | +
|Y |2, where s can be any integer between 1 and T , where T is the sequence length,
clearly a feature selection algorithm is needed when we want to capture long range
correlation. For the practical purposes of this paper, we choose s = 5 for both
CRFs and MEMMs. Thus in our experiments, CRFs and MEMMs share the same
feature set, making the comparison between the two models consistent.

4.3 Performance of Models

To evaluate the performance of discriminative models against the equivalent
generative counterparts, we implement the PHMMs (Figure 1(c)). The features
extracted from the sensor data for the PHMMs include the discretised position
and velocity. These features are different from those used in discriminative mod-
els in that discriminative features can be continuous. Thus the feature set used
by PHMMs is different from those shared by CRFs and MEMMs. Although the
difference may raise the concern about the compatibility of these models, it is
precisely where discriminative models are more flexible as they have no difficulty
selecting features.

To train discriminative models, we implement the non-linear conjugate gradi-
ent (CG) of Polak-Ribière and the limited memory quasi-Newton L-BFGS. After
several pilot runs, we select the L-BFGS to optimise the objective function in
(5) directly. In the case of MEMMs, the regularised EM algorithm is chosen
together with the CG. The algorithms stop when the rate of convergence is less
than 10−5. The regularisation constants are empirically selected as σ = 5 in the
case of CRFs, and σ = 20 in the case of MEMMs.

For the PHMMs, it is observed that the initial parameter initialisation is
critical to learn the correct model. Random initialisations often result in very
poor performance. This is unlike the discriminative counterparts in which all
initial parameters can be trivially set to zeros (equally important).
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Fig. 4. Average performance of models (a: SHORT MEAL, b: NORMAL MEAL). x-
axis: portion of missing labels (%) and y-axis: the averaged F-score (%) over all states
and 10 repetitions.

Overall in our experiments (Figure 4) the generative PHMMs are outper-
formed by the discriminative counterparts in all cases given sufficient labels. This
clearly matches the theoretical differences between these models in that when
there are enough labels, richer information can be extracted in the discriminative
framework, i.e. modeling P (x|o) is more suitable. On the other hand, when only
a few labels are available, the unlabeled data is important so it makes sense to
model and optimise P (o,x) as in the generative framework. On all data sets, the
CRFs outperform the other models. These behaviours are consistent with the
results reported in [3] in the fully observed setting. MEMMs are known to suffer
from the label-bias problem [3], thus their performance does not match that of
CRFs, although MEMMs are better than HMMs given enough training labels. In
the HAVE SNACK data set, the performance of MEMMs is surprisingly good.

A striking fact about the globally normalised CRFs is that the performance
persists until most labels are missing. This is clearly a big time and effort saving
for the labeling task.

5 Conclusions and Further Work

In this work, we have presented a partially-supervised framework for activity
recognition on low-level noisy data from sensors using discriminative models.
We illustrated the appropriateness of the discriminative models for segmenta-
tion of surveillance video into sub-activities. As more flexible information can be
encoded using feature functions, the discriminative models can perform signifi-
cantly better than the equivalent generative HMMs even when a large portion
of the labels are missing. CRFs appear to be a promising model as the exper-
iments show that they consistently outperform other models in all three data
sets. Although less expressive than CRFs, MEMMs are still an important class of
models as they enjoy the flexibility of the discriminative framework and enable
online recognition as in directed graphical models.
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Our study shows that primitive and intuitive contextual features work well
in the area of video surveillance. However, to obtain the optimal context and to
make use of the all information embedded in the whole observation sequence,
a feature selection mechanism remains to be designed in conjunction with the
models and training algorithms presented in this paper.
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