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Abstract

Collaborative filtering is an effective recommen-
dation technique wherein the preference of an
individual can potentially be predicted based on
preferences of other members. Early algorithms
often relied on the strong locality in the prefer-
ence data, that is, it is enough to predict prefer-
ence of a user on a particular item based on a
small subset of other users with similar tastes or
of other items with similar properties. More re-
cently, dimensionality reduction techniques have
proved to be equally competitive, and these are
based on the co-occurrence patterns rather than
locality. This paper explores and extends a prob-
abilistic model known as Boltzmann Machine for
collaborative filtering tasks. It seamlessly inte-
grates both the similarity and co-occurrence in
a principled manner. In particular, we study
parameterisation options to deal with the ordi-
nal nature of the preferences, and propose a
joint modelling of both the user-based and item-
based processes. Experiments on moderate and
large-scale movie recommendation show that our
framework rivals existing well-known methods.

1 INTRODUCTION

Collaborative filtering is based on the idea that we can pre-
dict preference of an user on unseen items by using prefer-
ences already expressed by the user and others. For exam-
ple, if we want to predict how much the user likes a particu-
lar movie we may look for similar users who have rated the
movie before (Resnick et al., 1994). Alternatively, the rat-
ing for this new movie can be based on ratings of other sim-
ilar movies that the user has watched (Sarwar et al., 2001).
This similarity-based approach relies on the strong locality
in the neighbourhood of highly correlated users or items.
More recent development has suggested that dimensional-
ity reduction techniques like SVD (Salakhutdinov et al.,

2007), PLSA (Hofmann, 2004) and LDA (Marlin, 2004)
are also competitive. The idea is to assume a low dimen-
sional representation of rating data, which, once learnt, can
be used to generate unseen ratings. Unlike the similarity-
based approach, this does not assume any locality in the
data.

In this paper, we take the view that these approaches are
complementary and they address different aspects of the
user’s preferences. Specifically, we explore the application
of an undirected graphical model known as Boltzmann Ma-
chines (BMs) (Ackley et al., 1985) for the problem. The
strength of BMs comes from the capacity to integrate the
latent aspects of user’s preferences as well as the corre-
lation between items and between users. The undirected
nature of the model allows flexible encoding of data, and
at the same time, it supports inference and learning in an
principled manner. For example, the model supports miss-
ing ratings and joint predictions for a set of items and users.
It provides some measure of confidence in each prediction
made, making it easy to assess the nature of recommenda-
tion and rank results. With the hidden variables we can
project user’s preferences and item ratings onto a latent
low dimensional space for further processing. Note that its
probabilistic integration differs from the current practice of
blending multiple independent models (Koren, 2008).

Importantly, we go beyond the standard BMs in a number
of ways. Firstly, we explore various parameterisations to
deal with the ordinal nature of ratings (e.g. if the true rat-
ing is 3 stars in a 5-star scale, then predicting 4 stars is pre-
ferred to predicting 5 stars). The standard discrete graph-
ical models, on the other hand, count both the predictions
as errors. One way to deal with this issue is to approximate
them by continuous variables as done in (Hofmann, 2004)
but this is only meaningful for numerical ratings. Secondly,
previous BMs generally assume that each subset of obser-
vational variables are generated from an hidden process of
the same type, and the data comes with a set of i.i.d in-
stances. In collaborative filtering, on the other hand, it is
much more plausible to assume that observed ratings are
co-generated by both the user-based and item-based pro-
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Figure 1: Plate graphical representation for user-centric
modelling with Boltzmann machine. For a user u, the top
layer represents the Boolean-valued hidden variables, the
bottom layer represents the set of observed ratings for that
user. The parameters are shared among all M users.

cesses. As a result, the data instances are no longer in-
dependently and identically distributed. To deal with this,
we propose to integrate data instances into a single BM,
in which, every rating is associated with both the user-
based and item-based processes. Further, this paper studies
approximate learning strategies for large BMs, including
Contrastive Divergence (Hinton, 2002) (CD), a structural
extension to Pseudo-Likelihood (Besag, 1975) (PL), and
the combination of CD and PL for the joint model.

2 USER-CENTRIC MODELLING

Denote by U = {1, 2, . . . ,M} the set of M users, and
I = {1, 2, . . . ,K} the set of K items in the recommen-
dation system of interest. Let us further denote byS the set
of values a user can rate (e.g., S = {1, 2, 3, 4, 5} in the dis-
crete case or S = [0, 1] in the continuous case). We use u
throughout this paper to index the user and i to index the
item. Let I(u) be the set of indices of items rated by user
u. Typically, the size of I(u) is much smaller than the total
number of items in the database (i.e. |I(u)| � K) because
each user usually votes for only a small subset of items.

In this section, we first present probabilistic modelling
from a single user perspective using Boltzmann machines
(BMs). A user-centric BM in our view is an undirected
graphical model representing user information and the set
of associated rated items. A graphical model representation
is shown in Fig. 1. There are two components in the model:

• a hidden layer to capture the latent aspects of a user
modelled by a d-dim binary random vector variable
h = (h1, h2, ..., hd), and

• a visible layer representing ratings on different items
observed for this user, captured by a random vector
r(u) = (ri)i∈I(u) . Each element variable ri receives

values in the set S.

For the sake of understanding, we consider here discrete
ratings where S is a finite discrete set and leave the case of
continuous-valued ratings to the Appendix A.2. For clar-
ity, we will drop explicit mention of user index u and the
membership relation i ∈ I(u) and reinstate them whenever
confusion may arise.

In the extreme view, the user-centric model should have
represented both rated and non-rated items, treating all
non-rated items as hidden variables at the bottom layer.
However, since we do not have the knowledge of which
items the user will rate in the future while the number of
items is typically large (at the scale of millions in real-
world scenarios), it will be impractical to include all the
unknown ratings into the model. Our strategy is to limit
to only known ratings at training time and gradually intro-
duce an additional unknown rating at the prediction time as
an unobserved variable subject to be inferred.

To parameterise our model, we first consider two additional
kinds of features extracted from the set of ratings: for each
rating ri we extract a vector of features {fa(ri)}Aa=1, and
for each rating pair{ri, rj} a feature vector {fb(ri, rj)}Bb=1.
While fa(ri) captures some intrinsic property of the item i
and the rating ri, fb(ri, rj) encodes correlation between the
two item i, j and their corresponding ratings. Four types
of parameters are introduced (c.f. Fig. 1): each hidden
unit hk is parameterised with αk, each feature fa (ri) at
the rating ri with βia, each pair (hk, fa (ri)) with γkia, and
each item-to-item correlation feature fb (ri, rj) with λijb.
For the user u, the model state negative energy is now ready
to be defined as

−E(u)(h, r) =


∑

1≤k≤d αkhk +
∑
i∈I(u),a βiafa(ri)

+
∑
i∈I(u),k,a γikahkfa(ri)

+
∑
i,j∈I(u);i 6=j

∑
b λijbfb(ri, rj)

where αk, βia, γika and λijb are model parameters which
are shared among users as shown to be outside the plate in
Fig.1 . Finally, the user-centric model distribution follows

P (u)(h, r) =
1

Z(u)
exp{−E(u)(h, r)} (1)

where Z(u) =
∑

h,r exp{−E(u)(h, r)} is the normalis-
ing constant. Denote by hk,1 the assignment hk = 1. The
conditional distributions are (again we drop user index u)

P (hk,1 | r) =

[
1 + exp

{
−αk −

∑
ia

γikafa(ri)

}]−1

P (ri|r¬i,h) ∝ exp {I (ri,h) + J (ri, r¬i)}

where r¬i denote the set of ratings by the same user u other
than ri, and



I (ri,h) =
∑
a

βiafa(ri) +
∑
ka

γikafa(ri)hk

J (ri, r¬i) =
∑
j 6=i

∑
b

λijbfb(ri, rj)

For the purpose of dimensionality reduction we can use the
vector {P (hk,1|r)}dk=1 as a continuous representation of
the user’s preference.

2.1 ORDINAL FEATURES

In this paper we consider the case where user preferences
are expressed in term of ordinal ratings, i.e., the set of rat-
ing values S is a set of n ordinal values, and let us denote it
by S = {R1, R2, ...Rn}. A straightforward approach is to
simply ignore the ordinal property and treat the ratings as
categorical variables. In particular, the input bias feature
can simply be an identity function fs(ri) = I[ri ≡ Rs],
and the correlation feature can be treated as the similarity
between the two neighbour ratings fb(ri, rj) = I[ri ≡ rj ].
Another way is to treat them as numerical values, for exam-
ple, as random Gaussian variables (after appropriate pre-
processing, see Appendix A.2 for a detailed treatment).
However the shortcoming is that this treatment is only
meaningful when such a numerical interpretation exists.

A better way is to exploit the ordering property: if the true
rating by the user u on item i is ri = Rs, then we would
want to predict the rating as close to Rs as possible. De-
note by Rs′ � Rs′+1 the preference of Rs′ to Rs′+1, the
ordering of preferences when the true rating is Rs can be
expressed as

Rs � Rs−1.... � R1

Rs � Rs+1... � Rn

It is essential to design features {fa(ri)}Aa=1 to capture the
information induced from these expressions. As Rs split
the set S into two subsets, we create one set of features
corresponding to s′ < s and another set corresponding to
s” > s, i.e. fdowns′ (Rs) = (s′−s)I[s′ < s] and fups” (Rs) =
(s” − s)I[s” > s], respectively, where I[.] is the indicator
function. For correlation between two items (i, j), we can
measure the distance between two corresponding ratings
ri = Rs and rj = Rs′ by user u, i.e. fb(ri, rj) = |s′ − s|.

2.2 LEARNING

Training data consists of rating values for input variables.
Let us denote these evidences per user u as r̄(u), to dis-
tinguish from the unspecified r(u). Standard maximum
likelihood learning maximises L =

∑
u∈U L(r̄(u)), where

L(r̄(u)) = logP (u)(r̄(u)). Let us drop the index u for clar-
ity and take the gradient with respect to model parameters

yielding

∂L(r̄)
∂αk

= P (hk,1|r̄)− P (hk,1)

∂L(r̄)
∂βia

= fa(r̄i)−
∑
ri

P (ri)fa(ri)

∂L(r̄)
∂γika

= P (hk,1|r̄)fa(r̄i)−
∑
ri

P (ri, hk,1)fa(ri)

∂L(r̄)
∂λijb

= fb(r̄i, r̄j)−
∑
ri,rj

P (ri, rj)fb(ri, rj)

Generally, these gradients cannot be evaluated exactly. One
method is to use Gibbs sampling to approximate the gra-
dients. However, unbiased Gibbs sampling may take too
much time to converge. We follow a sampling strategy
called Contrastive-Divergence (CD) (Hinton, 2002), in that
we start the sampling from the data distribution, and stop
the random walks after a few steps. This certainly intro-
duces bias, but it is enough to relax the distribution toward
the true distribution, and more importantly, it is very effi-
cient.

Another method is to utilise Pseudo-likelihood (PL) (Be-
sag, 1975), and we approximate the model log-likelihood
by

LPL(r̄) =
∑
i∈I(u)

logP (r̄i|r̄¬i)

Note that in the original PL, there are no hidden variables,
thus computing the local conditional distribution P (r̄i|r̄¬i)
is easy. In our case, the pseudo-likelihood and its gradient
can also be computed exactly and efficiently but the deriva-
tions are rather involved, and we leave the details in the
Appendix A.1.

2.3 RATING PREDICTION

Once trained, the BMs can be used for predicting the pref-
erence of a user. Recall that unseen items are not modelled
during training but will be added as an additional, unob-
served node in the visible layer during testing1. The pre-
diction on new item j /∈ I(u) is based on the MAP assign-
ment2

r∗j = arg max
rj

P (rj |r̄)

where P (r∗j |r̄) is the measure of prediction confidence.
Given r̄, the model structure is reduced to a tree with the

1It may appear that adding new item can make the user model
unspecified, but in fact, the item is already in the models of other
users and its related parameters have been learnt.

2Alternatively, we can take the expected rating as the predic-
tion r∗j =

∑
rj
P (rj |r̄)rj .



root rj and leaves {hk}dk=1. Thus r∗j can be evaluated in
linear time. However, the computation is still expensive
for online deployment. Here we propose to use a cheaper
method, which is based on mean-field approximation:

P (rj ,h|r̄) ≈ Q(rj |r̄)
∏
k

Q(hk|r̄)

For simplicity, we fix Q(hk|r̄) = P (hk|r̄) based on the
idea that previous information is rich enough to shape the
distribution Q(hk|r̄). Minimizing the Kullback-Leibler di-
vergence between P (rj ,h|r̄) and its approximation, we
obtain Q(rj |r̄) ∝ exp(−EQ(rj , r̄)), where

EQ(rj , r̄) =


−∑a βjafa(rj)
−∑k P (hk,1|r̄)

∑
a γjkafa(rj)

−∑i∈I(u),b λijbfb(r̄i, rj)
(2)

This is equivalent to replacing the hard hidden assignment
hk ∈ {0, 1} by a soft values P (hk,1|r̄) ∈ [0, 1]. Finally,
usingQ(rj |r̄) in place of P (rj |r̄), the prediction is simpli-
fied as r∗j = arg minrj EQ(rj , r̄).

Note that this mean-field approximation has the same lin-
ear complexity as the standard MAP, but it is numerically
faster because the mathematical expression is more compu-
tationally primitive.

2.4 ITEM RANKING

In a recommendation system we are often interested in
composing a recommendation list of items for each user.
This is essentially a ranking problem, in that for a given
set of candidate items, we need to provide a numerical
score for each item and choose a top ranked items. In our
BMs framework, adding a new item j to the model will ap-
proximately reduce the model state energy by an amount
of EQ(rj , r̄) (defined in Equation 2). Recall that the user
likelihood in Equation 1 improves if the model state energy
decreases, thus motivating us to use the EQ(rj , r̄) as the
ranking score. Since we do not know exactly the state rj ,
we resort to the (approximate) expected energy decrease
instead ∆Ej =

∑
rj
Q(rj |r̄)EQ(rj , r̄).

3 JOINT MODELLING OF USERS AND
ITEMS

In the previous section, we have assumed that ratings are
generated by some user-centric process. Since users and
items play an equal role in the data, we can alternatively
assume that there exists some item-centric process that gen-
erates ratings. Thus we can alternatively model the ratings
observed for each item instead of user in a manner similar
to Section 2. The more plausible assumption, however, is
that a rating is co-generated by both the user-centric and

item

user

Figure 2: Joint modelling of users and items. Each row of
filled nodes represents ratings per user; each row of empty
nodes represents hidden tastes of an user; and each column
of empty nodes depicts hidden features of an item.

item-centric processes. This can be realised by combining
these two modelling approaches into a single unified BM,
as depicted in Figure 2.

More specifically, every user and item is modelled with its
own hidden layer. Let d′ be the dimensionality of the hid-
den variables associated with items, there are Md + Kd′

hidden nodes in the joint model (every rating is associated
with two hidden layers, one per the user and one per the
item). The number of input nodes is the number of ratings
in the whole database. Each input node corresponding to
user u and item i is possibly connected to |I(u)|+|U (i)|−2
other input nodes, where U (i) denotes the set of all users
who rate item i. Thus, the resulting BM is a probabilistic
database that supports various inference tasks.

Denote by r and h respectively the set of all input variables
(i.e., observed ratings) and all hidden variables of the entire
model. The energy of the entire system is

E(r,h) =
∑
u∈U

E(u)(r(u),h(u)) +
∑
i∈I

E(i)(r(i),h(i))

where

−E(i)(r(i),h(i)) =


∑
k θkhk +

∑
u∈U(i),a ηuafa(ru)

+
∑
u∈U(i),k,a νukahkfa(ru)

+
∑
u,v∈U(i);u6=v

∑
b ωuvbfb(ru, rv)

where θ, η, ν, ω are respective item-centric model parame-
ters that play similar roles to α, β, γ, λ in user-centric mod-
els.

Let r̄ denote all assigned rating values in the training data.
Since the model structure is complex, we look for decom-
position to simplify computation. As ratings can be decom-
posed by either user indices or item indices, we appeal to
structured pseudo-likelihood learning where we try to max-



imise the log pseudo-likelihood instead3:

LPL(r̄) =
1
2

(∑
u∈U

logP (r̄(u)|r̄¬u)+
∑
i∈I

logP (r̄(i)|r̄¬i)
)

This objective function has a nice property that parame-
ters associated with users and items are separated in cor-
responding components. Naturally, it suggests an alternat-
ing parameter updating strategy. Let us consider P (r̄(u) |
r̄¬u). Using the Markov property, r̄¬u reduces to ratings by
all neighbours of user u. Since each item rated by user u
has its own hidden variables and integrating out these vari-
ables in standard likelihood learning may be expensive (al-
though feasible), we further propose a mean-field approxi-
mation approach, similar to that described in Section 2.3.
More specifically, when we update parameter associated
with user u, we considered the hidden layer for item i ob-
served with value {P (h(i)

k′,1|r̄(i))}d′

k′=1. The learning now
reduces to that described in Section 2.2. The overall algo-
rithm can be summarised as follows

• Loop until stopping criteria met:

– Use {P (h(i)
k′,1|r̄(i))}d′

k′=1 as hidden values per
item i, for all i ∈ I. Fix item models parame-
ters, update user model parameters by maximis-
ing
∑
u∈U logP (r̄(u)|r̄¬u).

– Use {P (h(u)
k,1|r̄(u))}dk=1 as hidden values per

user u, for all u ∈ U . Fix user model parame-
ters, update item model parameters by maximis-
ing
∑
i∈I logP (r̄(i)|r̄¬i).

In the testing phase, we introduce a single node ruj
to the model and compute r∗uj = arg maxruj

P (ruj |r̄),
which can be simplified further by noting that P (ruj |r̄) =
P (ruj |r̄(u), r̄(j)). We can also make use of the mean-field
approximation similar to that in Section 2.3. More specif-
ically, we make use of all the conditional distributions of
hidden variables {P (h(i)

k′,1|r̄(i))}d′

k′=1 for each item i and

{P (h(u)
k,1|r̄(u))}dk=1 for each user u, then compute the en-

ergy decrease as

EQ(ruj , r̄) =



−∑a βjafa(ruj)−
∑
a ηuafa(ru)

−∑k P (h(u)
k,1|r̄(u))

∑
a γjkafa(ruj)

−∑i∈I(u),b λijbfb(r̄i, rj)
−∑k P (h(j)

k,1|r̄(j))
∑
a νukafa(ru)

−∑v∈U(j)

∑
b ωuvbfb(r̄u, rv)

4 EVALUATION

4.1 SETTING

We evaluate the proposed Ordinal BMs on two movie rat-
ing datasets. The first moderate dataset comes from the

3Note that there is a single distribution P (r,h) for the whole
data.
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Figure 3: Rate prediction performance of Ordinal BM vari-
ants (MovieLens dataset). All model hidden sizes are fixed
at 20. ORD-USER stands for an Ordinal BM per user,
ORD-USER-ITEM for joint modelling without correlation
at the input layer. ORD-USER-ITEM-CORR adds the
correlation to ORD-USER-ITEM.

MovieLens project4, consisting of 6040 users, 3043 items
and approximately 1 million ratings. The second larger
dataset is extracted from the Netflix challenge5 in that the
first 3000 items are used, resulting in 208, 332 users, and
13.6 million ratings6. Ratings are integers in the 5-star
scale. The two datasets include only those users who have
rated more than 20 movies, and those movies rated by more
than 20 users. For each user, roughly 80% of ratings is used
for training and the rest is for evaluation.

We implement three variants of the BMs: the categorical,
the ordinal and the Gaussian. For the Gaussian BMs, we
need to normalise the ratings to obtain random numbers
following the standard normal distribution N (0; 1). To de-
termine the connectivity at the input layers, we first com-
pute the Pearson correlation between user pairs and item
pairs as in standard similarity-based methods (e.g. see (Sar-
war et al., 2001)), and keep only positively correlated pairs.
Then, for each user/item we choose the top 100 similar
users/items to be his/its neighbourhood, ranked by the Pea-
son correlation. The BMs results reported here are based
on one-step CD learning as it is empirically faster than the
pseudo-likelihood method without much difference in per-
formance. Models are trained in an online fashion with
block size of 100, learning rate of 0.1. Parameters asso-
ciated with hidden variables are initialised by a random
Gaussian N (0; 0.01).

4.2 RATING PREDICTION

In the first set of experiments, we measure the performance
of BM models on the rating prediction task (Section 2.3).

4http://www.grouplens.org
5http://netflixprize.com
6This subset, although smaller than the original 100 millions

set, is still larger than the largest non-commercial dataset current
available from the MovieLens project.
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Figure 4: Rate prediction performance of Ordinal BM
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For comparison, we implement the Singular Value De-
composition (SVD) for incomplete data (see, for exam-
ple, (Salakhutdinov et al., 2007) for a description). The
SVD is currently one of the best methods for movie pre-
diction7. The evaluation criterion is based on the pop-
ular Mean Absolute Error (MAE) measure, i.e. MAE=∑J
j=1 |r∗j − r̄j |/J .

Figure 3 shows the learning curves of BMs variants in com-
parison with the SVD, all evaluated on the 1M MovieLens
dataset. The size of BM hidden layers and the rank of SVD
are fixed at 20. The figure clearly demonstrates the positive
effect of joint modelling, as well as of the integration of
the dimensionality reduction and correlation. More impor-
tantly, the resultant model outperforms the SVD.

To investigate the role of hidden variables, we fix the num-
ber of iterations to 20 and run BMs variants under different
hidden sizes without the correlation in the input layer, and
the results are reported in Figure 4. Generally the perfor-
mance (except for the categorical BMs) increases as more
hidden units are introduced, but at a slow rate after 30 units.

The Netflix subset is characteristically different from the
MovieLens dataset, in that there are far more users than
items, thus it is not practical to include correlations be-
tween users (the number of correlation parameters is M2,
where M is number of users). The results are reported in
Table 1, which once again demonstrate the advantage of the
proposed Ordinal BMs.

4.3 ITEM RANKING

In the second set of experiments, we evaluate the Ordi-
nal BMs for the item ranking task (Section 2.4). Recall
that we first need a set of candidate items for each user.
Here we use the Pearson similarity between users, that is,

7It appears that all leaders in the Netflix competition use some
forms of SVD.

K =5 K =20 K =50

SVD 0.690 0.684 0.685
CAT-USER 0.766 0.693 0.682
GAUSS-USER 0.722 0.694 0.694
ORD-USER 0.707 0.663 0.649
ORD-USER-ITEM 0.678 0.649 0.645
CAT-USER-CORR 0.697 0.675 0.669
GAUSS-USER-CORR 0.687 0.687 0.689
ORD-USER-CORR 0.660 0.636 0.642
ORD-USER-CORR-ITEM 0.648 0.635 0.635

Table 1: Rating prediction on Netflix subset, measured in
MAE. CAT-USER-CORR stands for Categorical BMs for indi-
vidual users with input correlations, and ORD-USER-CORR-
ITEM for joint modelling of users and items but considering only
correlations in the user-based models.

for each user u, we select 50 most similar users and then
collect the items those users have previously rated. These
items, except for those previously rated by user u, are the
candidates. For comparison, we evaluate the Ordinal BMs
against a baseline popularity method, in which importance
of a candidate is based on the number of times it is rated
by the neighbour users. Methods are tested on the Movie-
Lens dataset only since the Netflix data is not suitable for
computing user-based correlations. The evaluation crite-
ria includes the standard recall/precision measures, and the
ranking utility adapted from (Breese et al., 1998). The util-
ity is based on the assumption that the value of a recom-
mendation, if it interests a user, is reduced exponentially
with its position down the list. More specifically, for all
recommended items that appear in the test set for user u,
the ranking utility is computed as πu =

∑
p 2−(p−1)/(α−1),

where p is the position of the item in the recommendation
list, and α > 0 is the interest ‘half-life’. The overall rank-
ing utility is then computed as

π = 100
∑
u πu∑

u π
max
u

where πmax
u =

∑Tu

p′=1 2−(p′−1)/(α−1) with Tu be the size
of the test set for user u. As suggested in (Breese et al.,
1998), we choose α = 5. Figure 5 depicts the performance
of the joint Ordinal BM, which clearly shows its competi-
tiveness against the baseline. Hidden variables seem to play
little role in this kind of inference, hence we report only re-
sult of model with input correlations and leave the issue for
future investigation.

5 RELATED WORK

The Boltzmann Machines explored in this paper are more
general that the original proposal in (Ackley et al., 1985)
due to the use of general exponential family instead of
binary variables, in the same way that the Harmoniums
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Figure 5: Ranking performance of the Ordinal BMs (ORD-USER-ITEM-CORR) against the baseline popularity-based
(POPULARITY), on the 1M MovieLens data.

(Welling et al., 2005) generalises the Restricted BMs (e.g.
see (Salakhutdinov et al., 2007)). The work in (Salakhutdi-
nov et al., 2007) applies Restricted BMs for collaborative
filtering but it is limited to individual modelling of users
and categorical variables.

Other graphical models have been employed for collabo-
rative filtering in a number of places, including Bayesian
networks (Breese et al., 1998) and dependency net-
works (Heckerman et al., 2001). The BMs differ from
Bayesian networks in that BMs are undirected models
which Bayesian networks are directed. Our method resem-
bles dependency networks when pseudo-likelihood (Besag,
1975) learning is employed and no hidden variables are
modelled, but dependency networks are generally incon-
sistent.

The dimensionality reduction capacity of the BMs is shared
by other probabilistic models, including mixture models,
probabilistic latent semantic analysis (PLSA) (Hofmann,
2004) and latent Dirichlet allocation (LDA) (Marlin, 2004).
These are all directed graphical models while the BMs
are undirected. Machine learning (Billsus and Pazzani,
1998; Basu et al., 1998; Basilico and Hofmann, 2004) has
also been successfully applied to the collaborative filter-
ing problem. The method maps the recommendation into
a classification problem that existing classifiers can solve.
The map typically considers each user or each item as an
independent problem, and ratings are training instances.

6 CONCLUSION

We have presented Boltzmann machines for collaborative
filtering tasks. BMs are an expressive framework to incor-
porate various aspects of the data, including the low dimen-
sional representation of item/user profiles and the correla-
tion between items/users. We study parameterisations for
handling the ordinal nature of ratings, and propose the inte-
gration of multiple BMs for joint modelling of user-based
and item-based processes. We empirically shown that BMs
are competitive in the movie recommendation problem.

This work can be furthered in a number of ways. First we
need to handle incremental parameter updating when new
users or items are available. The second issue is learning
the structure of the BMs, including determining the num-
ber of hidden units, and and connectivity in the input layer.
And third, the model should be extended to incorporate ex-
ternal information like user profiles and item contents.

A APPENDIX

A.1 PSEUDO-LIKELIHOOD FOR THE
DISCRETE BMs

Denote by

φk(hk) = exp{αkhk}
φi(ri) = exp{

∑
a

βiafa(ri)}

ψik(hk, ri) = exp{
∑
a

γikahkfa(ri)}

ψij(ri, rj) = exp{
∑
b

λijbfb(ri, rj)}

Let us define the joint potential of the system Φ(h, r) as[∏
k

φk(hk)

][∏
i

φi(ri)

][∏
i,k

ψik(hk, ri)

][∏
i,j

ψij(ri, rj)

]

In pseudo-likelihood (PL) learning we need to optimise the
following objective function

LPL(r̄) =
∑
i

logP (r̄i|r̄¬i)

where

P (r̄i|r̄¬i) =
∑

h Φ(r̄i, r̄¬i,h)∑
ri

∑
h Φ(ri, r̄¬i,h)

=
Z(r̄i|r̄¬i)
Z(r̄¬i)

where Z(ri|r̄¬i) =
∑

h Φ(ri, r̄¬i,h) and Z(r̄¬i) =∑
ri
Z(ri|r̄¬i). Expanding Z(ri|r̄¬i) and note that all po-



tentials associated with hk = 0 become 1, we obtain

Z(ri|r̄¬i) = φi(ri)
∏
j 6=i

ψij(ri, r̄j)×

×

[∏
k

(
1 + φk(hk,1)

ψik(hk,1, ri)

ψik(hk,1, r̄i)

∏
j

ψjk(hk,1, r̄j)

)]

Thus we can compute all the Z(ri|r̄¬i) in O(|S|dNu2)
time for all items rated by the user u.

Now we come to the gradient of the pseudo-likelihood

∂LPL(r̄) =
∑
i

(
∂ logZ(r̄i|r̄¬i)− ∂ logZ(r̄¬i)

)
(3)

Recall that Z(r̄¬i) =
∑
ri
Z(ri|r̄¬i), we have

∂ logZ(r̄¬i) =
1

Z(r̄¬i)

∑
ri

∂Z(ri|r̄¬i)

=
1

Z(r̄¬i)

∑
ri

Z(ri|r̄¬i)∂ logZ(ri|r̄¬i)

=
∑
ri

P (ri|r̄¬i)∂ logZ(ri|r̄¬i)

Thus Eq.3 reduces to ∂LPL(r̄) =∑
i

(∑
ri

{I[ri = r̄i]− P (ri|r̄¬i)}∂ logZ(ri|r̄¬i)

)

=
∑
i

(∑
ri

D(ri|r̄¬i)∂ logZ(ri|r̄¬i)

)

where I[.] is an identity function and D(ri|r̄¬i) = I[ri =
r̄i]− P (ri|r̄¬i).

Let us consider ∂ logZ(ri|r̄¬i). It is known that

∂ logZ(ri|r̄¬i)
∂αk

= P (hk,1|ri, r̄¬i)

∂ logZ(ri|r̄¬i)
∂βja

= fa(ri)I[i = j]

∂ logZ(ri|r̄¬i)
∂γjka

=

{
P (hk,1|ri, r̄¬i)fa(ri) for i = j

P (hk,1|ri, r̄¬i)fa(r̄j) for i 6= j

where P (hk,1|ri, r̄¬i) is

φk(hk,1)ψik(hk,1, ri)
∏
j ψjk(hk,1, r̄j)

ψik(hk,1, r̄i) + φk(hk,1)ψik(hk,1, ri)
∏
j ψjk(hk,1, r̄j)

Finally, we need to sum over all the visible nodes as in Eq.3

∂LPL(r̄)

∂αk
=

∑
i

∑
ri

D(ri|r̄¬i)P (hk,1|ri, r̄¬i)

∂LPL(r̄)

∂βja
=

∑
rj

D(rj |r̄¬j)fa(rj)

∂LPL(r̄)

∂γjka
=

{∑
rj
D(rj |r̄¬j)P (hk|rj , r̄¬j)∆fa(rj)

+fa(r̄j)
∂L(r̄)
∂αk

where ∆fa(rj) = fa(rj)− fa(r̄j).

A.2 BMs WITH GAUSSIAN RATINGS

Since ratings are sometimes provided in a numerical scale,
they can be approximated by continuous variables, as sug-
gested in (Hofmann, 2004). The energy of the system is
given as

E(h, r) =

{
−∑k αkhk −

∑
i,k γikrihk

+
∑
i
r2i
2 −

∑
i βiri −

∑
i,j 6=i λijrirj

Here we assume that P (ri|r¬i, h) = N (µi; 1), where
µi = βi +

∑
k γikhk +

∑
j 6=i λijrj . Again, Gibbs sam-

pling can be used for evaluating log-likelihood gradients in
learning. In predicting new ratings, we can apply the mean-
field approximation strategy described in Section 2.3, and
compute the mode of the normal distribution P (rj |r̄,h),
which is simply µj

µj = βj +
∑
k

γjkP (hk,1|r̄) +
∑
i

λij r̄i

Mean-field approximation to PL learning:

Recall that the PL learning requires the conditional distri-
bution P (ri|r̄¬i), which is not Gaussian, making evalua-
tion difficult. To turn it into a Gaussian, we can apply the
mean-field approximation

P (ri|r̄¬i) =
∑
h

P (ri,h|r̄¬i)

≈ Q(ri|r̄¬i)
∑
h

∏
k

Q(hk|r̄¬i)

Further approximation Q(hk|r̄¬i) ≈ P (hk|r̄) gives
Q(ri|r̄¬i) ∝

exp
(
− r2i

2
+ βiri +

∑
k

P (hk,1|r̄)γikri +
∑
j 6=i

λijrir̄j

)

Thus Q(ri|r̄¬i) is a Gaussian with mean µi = βi +∑
k P (hk|r̄)γik +

∑
j 6=i λij r̄j .

Since the mean of a Gaussian is also its mode, PL learning
can be approximately carried out by minimising the recon-
struction error

E =
1
2

∑
i

(r̄i − µi)2



Let εi = r̄i − µi. The gradients are

∂E
∂βi

= −εi
∂E
∂αk

= −P (hk,1|r̄)
∑
i

εiγik

∂E
∂γik

= −P (hk,1|r̄)
(
εi + P (hk,1|r̄)ri

∑
j

εjγjk

)

= −P (hk,1|r̄)
(
εi − ri

∂E
∂hk,1

)
∂E
∂λij

= −εir̄j − εj r̄i
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