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 Drug is a small molecule that binds to a bio target (e.g., protein) and 
modifies its functions to produce useful physiological or mental effects.

 Drug discovery is the process through which potential new medicines 
are identified. It involves a wide range of scientific disciplines, 
including biology, chemistry and pharmacology (Nature, 2019).

 Proteins are large biomolecules consisting of chains of 
amino acid residues.

Drug-likeness:
 Solubility in water and fat, e.g., measured by 

LogP. Most drugs are admitted orally  pass 
through membrance.
 Potency at the bio target  target-specific 

binding.
 Ligand efficiency (low energy binding) and 

lipophilic efficiency.
 Small molecular weight  affect diffusion
 Rule of Five
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#REF: Roses, Allen D. "Pharmacogenetics in drug discovery and 
development: a translational perspective." Nature reviews Drug 
discovery 7.10 (2008): 807-817.

$500M - $2B
 thousands of small molecules  a few 
lead-like molecules  one in ten of these 
molecules pass clinical trials in human 
patients.
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The three basic questions

Given a molecule, is this drug? Aka properties/targets/effects prediction.
 Drug-likeness
 Targets it can modulate and how much
 Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?
 If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g., using BO.
 If no molecule is found, need to generate from scratch  generative models + BO, or RL.
 How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
 Synthetic tractability
 Reaction planning, or retrosynthesis
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Molecule  fingerprints
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#REF: Duvenaud, David K., et al. 
"Convolutional networks on graphs for 
learning molecular fingerprints." Advances 
in neural information processing systems. 
2015.

Graph  vector. Mostly discrete. Substructures 
coded.

Vectors are easy to manipulate. Not easy to 
reconstruct the graphs from fingerprints.

Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep adversarial 
autoencoders for new molecule development in oncology." Oncotarget 8.7 (2017): 10883.



Source: wikipedia.org

Molecule  string

SMILES = Simplified Molecular-Input Line-Entry 
System

Ready for encoding/decoding with sequential 
models (seq2seq, MANN, RL).

BUT …
 String  graphs is not unique!
 Lots of string are invalid
 Precise 3D information is lost
 Short range in graph may become long range in string
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#REF: Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a 
data-driven continuous representation of molecules." arXiv preprint 
arXiv:1610.02415 (2016). 



Molecule  graphs

No regular, fixed-size structures
Graphs are permutation invariant:  
#permutations are exponential function of #nodes
The probability of a generated graph G need to be marginalized over 
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space
Agreement with or optimization of multiple “drug-like” objectives



RDMN: A graph processing machine
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#REF: Pham, T., Tran, T., & Venkatesh, S. (2018). 
Relational dynamic memory networks. arXiv
preprint arXiv:1808.04247.
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Representing proteins
1D sequence (vocab of size 20) – hundreds 
to thousands in length

2D contact map – requires prediction

3D structure – requires folding 
information, either observed or predicted. 
Only a limited number of 3D structures are 
known.

NLP-inspired embedding (word2vec, 
doc2vec, glove, seq2vec, ELMo, BERT, etc).
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#REF: Yang, K. K., Wu, Z., Bedbrook, C. N., & Arnold, F. 
H. (2018). Learned protein embeddings for machine 
learning. Bioinformatics, 34(15), 2642-2648.
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Drug-target binding as QA
 Context: Binding targets (e.g., RNA/protein 
sequence, or 3D structures), as a set, sequence, 
or graph.
Query: Drug (e.g., SMILES string, or molecular 
graph)
Answer: Affinity, binding sites, modulating 
effects
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#REF: Nguyen, T., Le, H., & Venkatesh, S. (2019). 
GraphDTA: prediction of drug–target binding affinity 
using graph convolutional networks. BioRxiv, 684662.



More flexible drug-
disease response 
with RDMN
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Drug-target 
binding as QA (2) 
- on-going work

part

part

part

Drug encoder

Global 
context

protein

Local 
context

Local 
context

Local 
context

Protein as hierarchical random powerset

Bypassing:
 Protein folding estimation

 Binding site estimation

Random relation unit
 Object-object interaction
 Objects-context interaction
 Shallow hierarchy
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Tying param helps multiple diseases 
response with RDMN
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GAML: Repurposing as multi-target 
prediction
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#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing 
approach." Machine Learning, 2019.



#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing 
approach." arXiv preprint arXiv:1804.00293(2018).



Drug-drug interaction via RDMN
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#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational 
dynamic memory networks." arXiv preprint arXiv:1808.04247(2018).



Results on STITCH database
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Drug design as structured machine 
translation, aka conditional generation
Can be formulated as structured machine translation:
 Inverse mapping of (knowledge base + binding properties) to 
(query) One to many relationship.

3/11/2019 24

Representing graph as string 
(e.g., SMILES), and use 
sequence VAEs or GANs.
Generative graph models
Model nodes & interactions
Model cliques

Sequences
 Iterative methods

Reinforcement learning
Discrete objectives

Any combination of these + 
memory.



Molecular optimization as machine translation

The molecular space: up to 1060

 It is easier to modify existing 
molecules, aka “molecular 
paraphrases”
Molecular optimization as graph-
to-graph translation
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#REF: Jin, W., Yang, K., Barzilay, R., & Jaakkola, T. (2019). Learning multimodal graph-to-graph 
translation for molecular optimization. ICLR.



VAE for drug space modelling
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Model: SMILES  VAE+RNN
#REF: Gómez-Bombarelli, Rafael, et al. 
"Automatic chemical design using a data-
driven continuous representation of 
molecules." ACS Central Science (2016).
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Junction tree VAE
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Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction Tree 
Variational Autoencoder for Molecular Graph 
Generation. ICML’18.

Junction tree is a way to build 
a “thick-tree” out of a graph
Cluster vocab: 
 rings 
 bonds
 atoms



Graphs + Reinforcement learning
Generative graphs are very hard to get it right: The space is too large!

Reinforcement learning offers step-wise construction: one piece at a time
 A.k.a. Markov decision processes
 As before: Graphs offer properties estimation

3/11/2019 28You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018).



Searching for synthesizable molecules
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#REF: Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H., & Hernández-Lobato, J. M. 
(2019). A Model to Search for Synthesizable Molecules. arXiv preprint 
arXiv:1906.05221.

MoleculeChef

#REF: Do, K., Tran, T., & Venkatesh, S. (2019, July). Graph 
transformation policy network for chemical reaction prediction. 
In Proceedings of the 25th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining (pp. 750-760). ACM.

GTPN – reaction predictor



Play ground: MOSES
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https://medium.com/neuromation-io-blog/moses-a-40-week-journey-to-the-promised-land-of-molecular-generation-78b29453f75c
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