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Drug-likeness:

= Solubility in water and fat, e.g., measured by
LogP. Most drugs are admitted orally = pass
through membrance.

* Potency at the bio target = target-specific
binding.

= Ligand efficiency (low energy binding) and
lipophilic efficiency.

= Small molecular weight = affect diffusion
* Rule of Five

" Drug is a small molecule that binds to a bio target (e.g., protein) and
modifies its functions to produce useful physiological or mental effects.

= Proteins are Iarge biomolecules consisting of chains of
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amino acid residues.

= Drug discovery is the process through which potential new medicines

are identified. It involves a wide range of scientific disciplines,
including biology, chemistry and pharmacology (Nature, 2019).
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The three basic questions

Given a molecule, is this drug? Aka properties/targets/effects prediction.

= Drug-likeness
* Targets it can modulate and how much
* Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?
* If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g., using BO.

* If no molecule is found, need to generate from scratch - generative models + BO, or RL.

= How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
= Synthetic tractability
= Reaction planning, or retrosynthesis

3/11/2019
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Graph = vector. Mostly discrete. Substructures
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N OH
[ ] \
Molecule = string Y o
_/ o
.
SMILES = Simplified Molecular-Input Line-Entry <3
System 3
y B N \ 4 O
Ready for encoding/decoding with sequential N _\—Q
models (seg2seq, MANN, RL). VAN ; 7
1 i 2
BUT ...
= String = graphs is not unique! 3
* Lots of string are invalid C <3
. . . . N 0
* Precise 3D information is lost X _\4_‘
= Short range in graph may become long range in string N _/” e
1 » O
F
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-
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Molecule = graphs

No regular, fixed-size structures

Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized over
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space

Agreement with or optimization of multiple “drug-like” objectives



RDMN: A graph processing machine
4 ) N

Query—»[ Controller ]—> Output Unrolling
Read f \ Write Output
XN process
Memory
.
L& Memory
\ . Graph / process \‘ Controller
process
Message
passing
#REF: Pham, T., Tran, T., & Venkatesh, S. (2018).

Relational dynamic memory networks. arXiv Input P ‘
preprint arXiv:1808.04247. process
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Representing proteins

1D sequence (vocab of size 20) — hundreds
to thousands in length

2D contact map — requires prediction

3D structure — requires folding
information, either observed or predicted.
Only a limited number of 3D structures are
known.

NLP-inspired embedding (word2vec,
doc2vec, glove, seq2vec, ELMo, BERT, etc).

3/11/2019

Unsupervised learning

Step 1:Break sequences into k-mers
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Drug-target binding as QA

= Context: Binding targets (e.g., RNA/protein
sequence, or 3D structures), as a set, sequence,
or graph.

*Query: Drug (e.g., SMILES string, or molecular
graph)

= Answer: Affinity, binding sites, modulating
effects

#REF: Nguyen, T,, Le, H., & Venkatesh, S. (2019).
GraphDTA: prediction of drug—target binding affinity
3/11/2019 using graph convolutional networks. BioRxiv, 684662.
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More flexible drug-
disease response
with RDMN
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Model MicroF1  MacroF1 Average AUC
SVM 66.4 67.9 85.1
RF 65.6 66.4 84.7
GB 65.8 66.9 83.7
NeuralFP [19] 68.2 67.6 85.9
MT-NN [51] 75.5 78.6 90.4
RDMN 77.8 80.3 92.1 |
1.0 |
\ = = RDMN train
\ — RDMN validation
s 5 = = RDMN+side train

Cross-entropy

— RDMN+side validation




Drug-target protein

binding as QA (2) _”

- on-going wor

: : part
Random relation unit
* Object-object interaction
" Objects-context interaction part

= Shallow hierarchy

List of fazhira tensors Conditioned
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Drug encoder
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Protein as hierarchical random powerset

Bypassing:

" Protein folding estimation

* Binding site estimation
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Tying param helps multiple diseases

response with RDMN
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GAML: Repurposing as multi-target
prediction
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(a) A input graph with 4 (b) Input node update (c) Label node update
nodes and 3 labels
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Dataset Metrics Fingerprint SMILES Molecular Graph

SVM | HWN GRU WL+SVM | CLN | GAML

m-AUC | 81.94 | 85.95 83.29 86.06 88.35 88.78

Oeancers M-AUC | 81.37 | 85.85 82.74 85.74 88.23 88.50
m-F1 50.63 | 57.44 55.97 54.55 59.48 | 62.03%*

M-F1 50.71 | 57.29 55.99 54.54 59.50 | 62.14%*

m-AUC | 79.85 | 77.46 79.11 81.62 82.08 82.82

50proteins M-AUC | 74.77 | 73.78 75.25 77.60 78.36 | 79.35%*
m-F1 17.21 16.37 16.08 17.04 18.37 | 20.47*

M-F1 18.40 | 15.87 14.96 18.66 17.72 | 19.83%*

Table 4: The performance in the multi-label classification with graph-structured
input (m-X: micro average of X; M-X: macro average). SVM and HWN work
on fingerprint representation; GRU works on string representation of molecule
known as SMILES; WL+BR and CLN work directly on graph representation.

Bold indicates better values. (*) p < 0.05.




Drug-drug interaction via RDMN
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Results on STITCH database

CCI900 CCIR00

AUC  Fl-score AUC  Fl-score
Random Forests 04.3 86.4 0.2 94.1
Highway Networks 94.7 88.4 98.5 94.7
DeepCCI [31] 96.5 92.2 99.1 97.3
RDMN 96.6 92.6 99.1 O7.4
RDMN-+multiAtt 97.3 03.4 99.1 07.8
RDMN+FP 97.8 03.3 99 .4 95.0
RDMN+4+multiAtt+FP 08.0 94.1 99.5 08.1
RDMN+SMILES 08.1 04.3 99.7 97.8

RDMN+multiAtt+SMILES  98.1 94.6 99.8 98.3

Table 3 The performance on the CCI datasets reported in AUC and Fl-score. FP stands
for fingerprint and multiAtt stands for multiple attentions.
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Drug design as structured machine
translation, aka conditional generation

Can be formulated as structured machine translation:

"Inverse mapping of (knowledge base + binding properties) to
(query) = One to many relationship.

Representing graph as string Sequences

(e.g., SMILES), and use “Iterative methods

sequence VAEs or GANS. Reinforcement learning
Generative graph models *Discrete objectives

“Model nodes & interactions Any combination of these +

*Model cliques memory.

3/11/2019 24



Molecular optimization as machine translation
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translation for molecular optimization. ICLR.
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Gaussian

VAE for drug space modelling (@i
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Junction tree VAE

Molecule

|

Junction tree is a way to build
a “thick-tree” out of a graph

Molecular

Cluster vocab:
* rings

* bonds

= atoms

Cl
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Graphs + Reinforcement learning

Generative graphs are very hard to get it right: The space is too large!

Reinforcement learning offers step-wise construction: one piece at a time
= A.k.a. Markov decision processes

= As before: Graphs offer properties estimation

{5)

|0 |NodelD Act
® Is|NodelD 25 Env 0.1 | Step reward
EdgeType update 0 | Final reward
(1) NodelD 0 |Stop
@ Node
— Edge
N 4 [NodelD y
— ;ﬂaesssﬁgge Sgple 5 [NodelD Act | Eny rger G 0.1 | Step reward
Noxd EdgeType update 1 |Final reward
e
embedding Stop
(d) Dynamics

(a) State— G, Scaffold —C  (b) GCPN —my(a;|G;uC) (c)Action—a,~mg  p(Gpy1|Grar) (e) State — Gryy  (f) Reward —r,
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Searching for synthesizable molecules

MoleculeChef

GTPN — reaction predictor

optimization in
latent space

generate
reactants
[ R ]
I reaction |
|memcmf|

generate
products

- . g,

OH

selected
¢ Mmaolecule!

‘-------

H#REF: Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H., & Herndndez-Lobato, J. M.
(2019). A Model to Search for Synthesizable Molecules. arXiv preprint

arXiv:1906.05221.
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H#REF: Do, K., Tran, T., & Venkatesh, S. (2019, July). Graph
transformation policy network for chemical reaction prediction.

In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (pp. 750-760). ACM.
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Play ground: MOSES

ZINC
Clean Leads

4 591 276
molecules

* Macrocycles
* Atom types

*« MCF
* PAINS

Contributions

Contributions

MOSES
dataset

1936 962
molecules

ol

Training

Test with new
scaffolds

MODELS
Language model

VAE
AAE

ORGAN

Junction Tree VAE

METRICS
FCD

Diversity

Uniqueness

Validity

LEADERBOARD
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https: / /medium.com /neuromation-io-blog /moses-a-40-week-journey-to-the-promised-land-of-molecular-generation-78b29453f75¢
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Thank you

Truyen Tran
truyen.tran@deakin.edu.au
@ truyentran.github.io
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a letdataspeak.blogspot.com

m goo.gl/3j1100
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