AIFOR Moved TERS Molecules and Materials

Truyen Tran Deakin University

Hanoi, Jan 2019

- truyen.tran@deakin.edu.au
- truyentran.github.io
- @truyenoz

goo.gl/3jJ1O0

Agrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. *Apl Materials*, *4*(5), 053208.

Jim Gray, Turing Award 1998 (1944-2007) Honoured as father of *The 4th Paradigm*

Reconstructs particle tracks from 3D points left in the silicon detectors.

Al Research: dream

Among the most challenging scientific questions of our time are the corresponding analytic and synthetic problems:

- How does the brain function?
- Can we design a machine which will simulate a brain?

-- Automata Studies, 1956.

Al Research: reality

What makes AI?

Perceiving	Acting
Learning	Robotics
Reasoning	Communicating
Planning	Consciousness
	Automated discoverv

Modern AI is mostly data-driven, as opposed to classic AI, which is mostly expert-driven.

What you can't design, learn! (aka variational method)

Filling the slot

- In-domain (intrapolation), e.g., an alloy with a given set of characteristics
- Out-domain (extrapolation), e.g., weather/stock forecasting
- Classification, recognition, identification
- Action, e.g., driving
- Mapping space, e.g., translation
- Replacing expensive simulations

Estimating semantics, e.g., concept/relation embedding

Assisting experiment designs

Finding unknown, causal relation, e.g., disease-gene

Predicting experiment results, e.g., alloys
→ phase diagrams → material characteristics

Machine learning settings

Supervised learning

(mostly machin

 \rightarrow

Anywhere in between: semisupervised learning, reinforcement learning, lifelong learning, metalearning, few-shot learning, knowledge-based ML

Will be quickly solved for easy problems (Andrew Ng) Linsupervised learning

nan)

 $\mathbf{v} \sim P_{model}(\mathbf{v})$ $(\mathbf{v}) \approx P_{data}(\mathbf{v})$

Idea: Over-represent and select

\$3M Prize, 3 years

170K patients, 4 years worth of data

Predict length-of-stay next year

Not deep learning yet (early 2013), but strong ensemble needed \rightarrow suggesting dropout/batch-norm

O'REILLY

Block representation

Idea: Repeated refinement

Source: http://karpathy.github.io/assets/rnn/diags.jpeg

Idea: Convolution & composition

adeshpande3.github.io

Galaxy Zoo challenge: Categorization of galaxy images

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/leaderboard								☆		
	Overview	Data	Discussion	Leaderboard	Rules					
	#	∆pub	Team Name		Kernel	Team Members	Score 🕑	Entries	Last	
	1	_	sedielem				0.07491	43	4y	
	2	_	Maxim Milak	ov		.	0.07752	11	4y	
	3	_	6789				0.07869	62	4y	
	4	▲1	simon			Truyen Tran	0.07951	4	4y	
	5	▼ 1	Julian de Wit	t			0.07952	19	4y	
	6	_	2numbers 2	many			0.07963	11	4y	
	7	_	Ryan Keisler				0.08072	20	4y	
	8	_	Voyager				0.08083	7	4y	

Idea: Attention

23/01/2019

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu, J.

Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio

23/01/2019

Generative models

Many applications:

- Text to speech
- Simulate data that are hard to obtain/share in real life (e.g., healthcare)
- Generate meaningful sentences conditioned on some input (foreign language, image, video)
- Semi-supervised learning
- Planning

$$\mathbf{v} \sim P_{model}(\mathbf{v})$$
$$P_{model}(\mathbf{v}) \approx P_{data}(\mathbf{v})$$

Variational Autoencoder (Kingma & Welling, 2014)

Two separate processes: generative (hidden \rightarrow visible) versus recognition (visible \rightarrow hidden)

http://kvfrans.com/variational-autoencoders-explained/

Generative adversarial networks (Adapted from Goodfellow's, NIPS 2014)

Data distribution $p_D(data)$ Model distribution Mixed strategy After updating D After updating G Poorly fit model

equilibrium

Progressive GAN: Generated images

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Deep learning vs electronics

- Neuron as feature detector → SENSOR, FILTER
- Multiplicative gates → AND gate, Transistor, Resistor
- •Attention mechanism \rightarrow SWITCH gate
- •Memory + forgetting \rightarrow Capacitor + leakage
- Skip-connection \rightarrow Short circuit
- Computational graph \rightarrow Circuit
- •Compositionality \rightarrow Modular design

Al for molecules

- Represent atom/molecular space
- Predict molecular properties
- Estimate chem-chem interaction
- Predict chemical reaction
- Fast search for new molecules
- Plan chemical synthesis

https://pubs.acs.org/doi/full/10.1021/acscentsci.7b00550

Molecular properties prediction

Traditional techniques:

- Graph kernels (ML)
- Molecular fingerprints (Chemistry)

Modern techniques

 Molecule as graph: atoms as nodes, chemical bonds as edges

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "Xray structure of dopamine transporter elucidates antidepressant mechanism." *Nature* 503.7474 (2013): 85-90.

Graph memory networks (GMN)

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
 ^{23/01/2019} Networks for Molecular Activity Prediction." *ICPR*'18.

GMN on molecular bioactivities

Figure 2: F1-score (%) for NCI datasets. FP = Fingerprint; RF = Random Forests; GBM = GradientBoosting Machine. Best view in color.

Approximating DFT

DFT = Density Functional Theory

Gilmer, Justin, et al. "Neural message passing for quantum chemistry." *arXiv preprint arXiv:1704.01212* (2017).

Predict multiple properties

(a) A input graph with 4 (b) Input node update (c) Label node update nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing approach." *Machine Learning, 2019*.

Datasot	Motrics	Fingerprint		SMILES	Molecular Graph		
Dataset	Metrics	SVM	HWN	GRU	WL+SVM	CLN	GAML
	m-AUC	81.94	85.95	83.29	86.06	88.35	88.78
9cancers	M-AUC	81.37	85.85	82.74	85.74	88.23	88.50
	m-F1	50.63	57.44	55.97	54.55	59.48	62.03*
	M-F1	50.71	57.29	55.99	54.54	59.50	62.14*
	m-AUC	79.85	77.46	79.11	81.62	82.08	82.82
50 proteins	M-AUC	74.77	73.78	75.25	77.60	78.36	79.35*
	m-F1	17.21	16.37	16.08	17.04	18.37	20.47*
	M-F1	18.40	15.87	14.96	18.66	17.72	19.83*

Table 4: The performance in the multi-label classification with graph-structured input (m-X: micro average of X; M-X: macro average). SVM and HWN work on fingerprint representation; GRU works on string representation of molecule known as SMILES; WL+BR and CLN work directly on graph representation. Bold indicates better values. (*) p < 0.05.

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing approach." Machine Learning 2019.

Chemical-chemical interaction via Relational Dynamic Memory Networks

#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." *arXiv preprint arXiv:1808.04247*(2018).

Results on STITCH database

	CCI900		CCI800	
	AUC	F1-score	AUC	F1-score
Random Forests	94.3	86.4	98.2	94.1
Highway Networks	94.7	88.4	98.5	94.7
DeepCCI [31]	96.5	92.2	99.1	97.3
RDMN	96.6	92.6	99.1	97.4
RDMN+multiAtt	97.3	93.4	99.1	97.8
RDMN+FP	97.8	93.3	99.4	98.0
RDMN+multiAtt+FP	98.0	94.1	99.5	98.1
RDMN+SMILES	98.1	94.3	99.7	97.8
RDMN+multiAtt+SMILES	98.1	94.6	99.8	98.3

Table 3 The performance on the CCI datasets reported in AUC and F1-score. *FP* stands for fingerprint and *multiAtt* stands for multiple attentions.

Chemical reaction product prediction as reinforcement learning

Input: Molecules

Output: Molecules

Model: Graph morphism

Method: Graph transformation policy network (GTPN)

Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...) in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.

Do, Kien, Truyen Tran, and Svetha Venkatesh. "Graph Transformation Policy Network for Chemical Reaction Prediction." *arXiv preprint arXiv:1812.09441* (2018).

GTPN results

Model	USPTO-15k			USPTO		
WIOdel	P@1	<i>P@3</i>	P@5	P@1	<i>P@3</i>	<i>P</i> @5
WLDN (Jin et al., 2017)	76.7	85.6	86.8	79.6	87.7	89.2
Seq2Seq (Schwaller et al., 2018)	-	-	-	80.3*	86.2*	87.5*
GTPN	72.31	-	-	71.26	-	-
GTPN♦	74.56	82.62	84.23	73.25	80.56	83.53
GTPN ^{♦♣}	74.56	83.19	84.97	73.25	84.31	85.76
GTPN ^{♦♠}	82.39	85.60	86.68	83.20	84.97	85.90
GTPN ^{♦♠♣}	82.39	85.73	86.78	83.20	86.03	86.48

Table 3: Results for reaction prediction. P@k is precision at k. State-of-the-art results from (Jin et al., 2017) are written in italic. Results from (Schwaller et al., 2018) are marked with * and they are computed on a slightly different version of USPTO that contains only single-product reactions. Best results are highlighted in bold. \diamond : With beam search (beam width = 20), \clubsuit : Invalid product removal, \clubsuit : Duplicated product removal.

Molecular generation: Case of drug

The space of drugs is estimated to be 1e+23 to 1e+60

• Only 1e+8 substances synthesized thus far.

It is impossible to model this space fully.

The current technologies are not mature for graph generations.

But approximate techniques do exist.

Source: pharmafactz.com

Combinatorial chemistry

Generate variations on a template

Returns a list of molecules from this template that

- Bind to the pocket with good pharmacodynamics?
- Have good pharmacokinetics?
- •Are synthetically accessible?

#REF: Talk by Chloé-Agathe Azencott titled "Machine learning for therapeutic research", 12/10/2017

Al approach to molecule design

Representing molecules using fingerprints

Representing graph as string, and use sequence VAEs or GANs.

Graph VAE & GAN

- Model nodes & interactions
- Model cliques

Sequences

Iterative methods

Reinforcement learning

Discrete objectives

Any combination of these + memory.

Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology." *Oncotarget* 8.7 (2017): 10883.

Input of the encoder : the fingerprint of a molecule

The decoder outputs the predicted fingerprint .

Molecule \rightarrow

The generative model generates a vector E, which is then discriminated from the latent vector of the real molecule by the discriminator.

Molecule \rightarrow string

Using SMILES representation of molecule, to convert a molecular graph into a string • SMILES = Simplified Molecular-Input Line-Entry System

Then using sequence-to-sequence + VAE/GAN to model the continuous space that encodes/decodes SMILES strings

Allow easy optimization on the continuous space

#REF: Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." *arXiv preprint arXiv:1610.02415* (2016).

А OH ΗN В С D N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Source: wikipedia.org

VAE for molecular space modelling

Uses VAE for sequence-to-sequence.

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." *ACS Central Science* (2016).

A better way is to encode/decode graph directly.

string

Lots of string are invalid

#REF: Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." arXiv preprint arXiv:1610.02415 (2016).

Short range in graph may become long range in

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

C

D

Source: wikipedia.org

Better approach: Generating molecular graphs directly

No regular, fixed-size structures

Graphs are *permutation invariant*:

- #permutations are exponential function of #nodes
- The probability of a generated graph G need to be marginalized over all possible permutations

Multiple objectives:

- **Diversity** of generated graphs
- Smoothness of latent space
- Agreement with or optimization of multiple design objectives

GraphVAE

Handles irregular structures

Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph

Bounded by the size of the largest graph in training data.

Handles permutation invariance

• Matching every pair of nodes in 2 graphs

Partially promotes diversity

#REF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. *arXiv preprint arXiv:*1802.03480.

Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.

Junction tree VAE

Junction tree is a way to build a "thick-tree" out of a graph

Cluster vocab:

- rings
- bonds
- atoms

Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction Tree Variational Autoencoder for Molecular Graph Generation. *ICML*'18.

Algorithm 2 Tree decomposition of molecule G = (V, E)

 $V_1 \leftarrow$ the set of bonds $(u, v) \in E$ that do not belong to any rings.

 $V_2 \leftarrow$ the set of simple rings of G.

for r_1, r_2 in V_2 do

Merge rings r_1, r_2 into one ring if they share more than two atoms (bridged rings).

end for

 $V_0 \leftarrow$ atoms being the intersection of three or more clusters in $V_1 \cup V_2$.

 $\mathcal{V} \leftarrow V_0 \cup V_1 \cup V_2$

 $\mathcal{E} \leftarrow \{(i, j, c) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \mid |i \cap j| > 0\}$. Set $c = \infty$ if $i \in V_0$ or $j \in V_0$, and c = 1 otherwise. **Return** The maximum spanning tree over cluster graph $(\mathcal{V}, \mathcal{E})$.

	Method	Reconstruction	Validity	
	CVAE	44.6%	0.7%	
	GVAE	53.7%	7.2%	
Jin, W., Barzilay, R., & Jaakkola, T.	SD-VAE ²	76.2%	43.5%	
(2018). Junction Tree Variational Autoencoder for Molecular Graph	GraphVAE	-	13.5%	
Generation. ICML'18.	JT-VAE	76.7%	100.0%	

Al for materials

- Characterise the space of materials
- Represent crystals
- Map alloy composition → phase diagram
- Inverse design: Map phase diagram → alloy compositi
- Generate alloys
- Optimize processing parameters

Materials informatics can generate "inverse models" for optimization and design e.g. Maximize a Property such that Structure follows some constraints

Agrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. *Apl Materials*, *4*(5), 053208.

Bayesian optimization for short polymer fiber

Li, Cheng, David Rubín de Celis Leal, Santu Rana, Sunil Gupta, Alessandra Sutti, Stewart Greenhill, Teo Slezak, Murray Height, and Svetha Venkatesh. "Rapid Bayesian optimisation for synthesis of short polymer fiber materials." *Scientific reports* 7, no. 1 (2017): 5683.

Crystal as a graph neural net

Xie, Tian, and Jeffrey C. Grossman. "Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties." *Physical review letters* 120.14 (2018): 145301.

Computing materials similarity

Strong features are highly but nonlinearly predictive of properties (e.g., formation energy)

The relationship between features & properties can be locally linear

Materials that share the same featureproperty relationship may be functionally similar

#REF: Nguyen, P., Tran, T., Gupta, S., Rana, S., & Venkatesh, S. Incomplete Conditional Density Estimation for Fast Materials Discovery. *SDM'19*

Create dataset offline

Inverse design

- Leverage the existing data and query the simulators in an offline mode
- Avoid the global optimization by learning the inverse design function f⁻¹(y)
- Predict design variables in a single step

Generated Aluminium alloys хΧ х

Full phase specification

	Known-al	loy dataset	BO-search dataset		
Method	Relative (%)	Absolute (%)	Relative (%)	Absolute (%)	
RF	3.21 ± 0.02	0.00 ± 0.00	6.37 ± 2.13	0.01 ± 0.00	
MLP	1.10 ± 0.03	0.00 ± 0.00	3.41 ± 1.48	0.01 ± 0.01	
MDN	0.52 ± 0.00	0.00 ± 0.00	2.95 ± 1.32	0.00 ± 0.01	

50% phase missing

	Known-all	oy dataset	BO-search dataset		
Method	Relative (%)	Absolute (%)	Relative (%)	Absolute (%)	
RF	4.38 ± 0.01	0.00 ± 0.00	8.49 ± 1.34	0.01 ± 0.01	
MLP	3.43 ± 0.07	0.00 ± 0.00	11.91 ± 2.54	0.03 ± 0.02	
MDN	2.28 ± 0.22	0.00 ± 0.00	7.83 ± 1.11	0.01 ± 0.01	
CVAE-MLP	2.50 ± 0.24 (a)	0.00 ± 0.00	7.42 ± 2.03 (e)	0.01 ± 0.01 (i)	
CVAE-MDN	2.08 ± 0.12 (b)	0.00 ± 0.00	4.23 ± 0.67 (f)	0.00 ± 0.00 (j)	
CGAN-MLP	3.18 ± 0.18 (c)	0.00 ± 0.00	8.39 ± 2.33 (g)	0.00 ± 0.00 (k)	
CGAN-MDN	2.30 ± 0.18 (d)	0.00 ± 0.00	7.38 ± 0.70 (h)	0.00 ± 0.00 (1)	

Search time comparisons

Recent context

NIPS Workshop on Molecular and Materials Sciences (2017, 2018) *The International Workshop on Machine Learning for Materials Science 2018* 2018 Workshop on Machine Learning in Materials Science (April 2018) Al-driven Acceleration Platform for Materials (Jan 2018, CIFAR Report) Workshop on Deep Learning for Physical Sciences (Dec 2017) Machine learning for materials research: Bootcamp & workshop (June 2017) International Workshop on Machine Learning for Materials Science (March 2017, Finland)

Understanding Many-Particle Systems with Machine Learning (Sept-Dec 2016)

Remarks

Machine learning a physics theory?

Expressiveness

- Can represent the complexity of the world
- Can compute anything computable
- Learnability
- •Have mechanism to learn from the training signals

Generalizability

Work on unseen data

Al as physics

Intelligence as self-organizing phenomena: reducing ignorance/entropy

Neural networks as a statistical mechanical system

Learning as variational optimization

Inference in probabilistic graphical models as Bethe free-energy minimization

Phase transition may occur in AI systems

Ultimate AI must solve the **consciousness problem**, which may require quantum physics (or a new physics)

Life has low entropy

Physics of Restricted Boltzmann machines

Boltzmann machines as a generalization of Ising model

Restricted Boltzmann machine as a simplified version, but with hidden variables to denote underlying unobserved processes

Stack of RBMs is akin to renormalization trick in physics

Restricted Boltzmann Machine (~1994, 2001)

RBM for n-body problem

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science*355.6325 (2017): 602-606.

Torlai, Giacomo, et al. "Many-body quantum state tomography with neural networks." *arXiv* preprint arXiv:1703.05334 (2017).

Nomura, Yusuke, et al. "Restricted Boltzmann machine learning for solving strongly correlated quantum systems." *Physical Review B* 96.20 (2017): 205152.

Gao, Xun, and Lu-Ming Duan. "Efficient representation of quantum many-body states with deep neural networks." *Nature communications* 8.1 (2017): 662.

Chen, Jing, et al. "On the equivalence of restricted Boltzmann machines and tensor network states." *arXiv preprint arXiv:1701.04831* (2017).

Rao, Wen-Jia, et al. "Identifying product order with restricted Boltzmann machines." *Physical Review B* 97.9 (2018): 094207.

Quantum machine learning

Quantum Machine Learning, Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe and Seth Lloyd, *Nature* 549, 195–202 14 September 2017

Read more at: https://phys.org/news/2017-09quantum-machines.html#jCp

machine learning	quantum machine learning quantum information processing					
simulated annealing	qua	quantum gibbs sampling				
markov chain monte-carlo	quantum BM	quantum topological algorithms				
feed forward neural net neural nets	quantum perceptron	quantum PCA quantum SVM quantum NN classification quantum clustering quantum data fitting	Quantum ODE solvers			
		quantum rejection	sampling / HHL			
reinforcement learning	g quantum control phase estimation hamiltonian learning					

23/01/2019

https://medium.com/@ NicT /quantum-machine-learning-c5ab31f6b4d

Prediction versus understanding

We can predict well without understanding (e.g., planet/star motion Newton).

Guessing the God's many complex behaviours versus knowing his few universal laws.

Some open challenges

Can AI/ML discover a new phase of matter ?

Would AI/ML discover new algorithms for us ?

Would it be possible for us to make progress on fermion sign problem?

Non-stochastic, or better ways for optimizing, renormalizing, and evolving Neural Networks.

Information pattern aware structure learning of neural networks

#REF: Liu, Jin-Guo, Shuo-Hui Li, and Lei Wang. "Lecture Note on Deep Learning and Quantum Many-Body Computation." (2018).