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" Agrawal, A., & Choudhary, A. (2016).

i 4t paradigm: Perspective: Materials informatics
(Big) data and big data: Realization of the
3" paradigm: driven science “fourth paradigm” of science in
Computational materials science. Apl Materials, 4(5),
2" paradigm: science 053208.
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https://www.kaggle.com/c/trackml-particle-identification

Al Research: dream

Among the most challenging
scientific questions of our time
are the corresponding analytic
and synthetic problems:

* How does the brain function?

* Can we design a machine
which will simulate a brain?

-- Automata Studies, 1956.

tendirectionszen.org
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Al Research: reality

'V'ie'tr_,\ar‘h News
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What makes Al?

Perceiving Acting
Learning Robotics
Reasoning Communicating
Planning Consciousness

Automated discovery

Modern Al is mostly data-driven, as tcine igence
gl odern Approach

Third Edition

opposed to classic Al, which is mostly

expert-driven.
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What you can’t design, learn!

(aka variational method)

Filling the slot

*In-domain (intrapolation), e.g., an alloy
with a given set of characteristics

= Out-domain (extrapolation), e.g.,
weather/stock forecasting

= Classsification, recognition, identification
= Action, e.g., driving

* Mapping space, e.g., translation

- Replacing expensive simulations

23/01/2019

Estimating semantics, e.g.,
concept/relation embedding

Assisting experiment designs

Finding unknown, causal relation, e.g.,
disease-gene

Predicting experiment results, e.g., alloys
- phase diagrams = material
characteristics



Machine learning settings

Supervised leagaiag Llasissy)ised learning

Anywhere in between: semi-

(mostly machin 1an)

supervised learning,

reinforcement learning,

A 9 [ lifelong learning, meta- VvV Pm{:u'fc:f(v)

learning, few-shot learning,

knowledge-based ML %V) ~ Fdata (V)
Will be qwckly solveaTon cady |

problems (Andrew Ng)
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ldea: Over-represent and
select

S3M Prize, 3 years 1 ¥ HERITAGE PROVIDER NETWORK : Feature 2
170K patients, 4 years worth — Engmeenng

of data for Machine Learning

Dashboard Leaderboard - Heritage Health Prize

PRIMCIPLES AND TECHRBQRIES FOR DATA SCIERTISTS

Predict length-of-stay next
year

This cempetition has completed. This leaderboard reflects the final standings. Alice Eheng & Amanda Casari

# Alw  Team Name *inthe money Score Entries Last Submission UTC (Best - Last Submission

Not deep learning yet (early : POWERDOT 1 *
2013), but strong ensemble 2 w0 EXLANalytc
needed - suggesting 3 15 JA Guerrero
dropout/batch-norm 0 4 Widniherun e B

Thu, 04 Apr 2013 05:12:00(-12.3d)

Thu, 04 Apr 2013 00:06:08 {-3.4d)

Thu, 04 Apr 2013 06:03:09

48 4 PookyPANTS 0467387 _ 6 Fri 03Feb20122130:44

r ------------------------------------- \
49 31 Vietlabs M M 0.467543 8  Thu, 28 Mar 2013 22:36:51 I

! This is mel I
-SO--S-TST— ------------------ _?L-"I-S--d-----_--d--




| ldea: Filter stacking

Integrate-and-fire neuron
Lo wo ’

A
axon from a neuron synafjew
deridiife o Feature detector \
cell body f (Z s £ b) 4
- - Zwéxi'i'b f : >
: output axon
activation
Wo Ty function

andreykurenkov.com
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| ldea: Repeated refinement

Sentence classification Sequence labelling

Classification

\ Imqgejptioning Neural machine translation

one to one one to many many to one many to many many to many
IQ Tttt 1 ot 11t
1 t ottt ttt 1ttt

Source: http:/ /karpathy.github.io /assets /rnn /diags.jpeg
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ldea: Convolution & composition
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adeshpande3.github.io
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Galaxy Zoo challenge: Categorization of galaxy

Images

@ https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/leaderboard

Overview Data

Discussion |Leaderboard
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# AD Team Name Kernel Team Members Score Entries Last
1 — sedielem 0.07491 43 4
2 — Maxim Milakov & 0.07752 11 A
[ 3 — 6789 ﬂ @ 0.07869 62 4
4 - simon m*q 0.07951 4 4
5 w1  Juliande Wit i 0.07952 19 4
5) — 2numbers 2many "?i 0.07963 11 4
7 — Ryan Keisler ' 0.08072 20 A
8 - Voyager D | 0.08083 7 4
T 13



| ldea: Attention
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Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation

J/
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Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu , J.
Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio 14



| ldea: Message passing

Thin column

/\
V1 V2 V3 Vs
. e, V1 Y2 Vs Ya
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— . plp g
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e g
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® h * /,* - ——
e 1 >t
.-«'/ \ma/ /
X X X X
1 2 3 4 X1 X7 X3 X4
Relation graph Stacked learning

#REF: Pham, Trang, et al. "Column Networks for Column nets

Collective Classification." AAAIl. 2017.
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Generative models

Many applications:

* Text to speech

* Simulate data that are hard to ”“-T'df--f-( )

obtain/share in real life (e.g., healthcare) P;.-,mfgﬂg (’U) ~ P{_fgﬂ_m (’U)

* Generate meaningful sentences

conditioned on some input (foreign
language, image, video)

* Semi-supervised learning
* Planning

23/01/2019 16



Variational Autoencoder
(Kingma & Welling, 2014)

Two separate processes: generative (hidden = visible) versus
recognition (visible = hidden)

mean vector
. sampled
Gaussian latent vector
hidden
a variables P N
/ Encoder — Decoder
R . ! Network Network
ecognls'mg Generative N e d
conv econv
het \ net ( ) ( )
\
\
N Vv
‘ Data standard deviation
vector

http:/ /kvfrans.com /variational-autoencoders-explained /



Generative adversarial networks
(Adapted from Goodfellow’s, NIPS 2014)

pp(data) Data distribution
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Progressive GAN: Generated images

S 8 D\

M female6.png M malel.png MM male2.png MM male3.png

Karras, T., Aila, T, Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.
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Deep learning vs electronics

“Neuron as feature detector 2 SENSOR,
FILTER

“Multiplicative gates = AND gate, Transistor, =g 4
Resistor i ) a1

.'l:h | !

Wmae sHEN N MR &
ol ;3“::*’;.1‘: 'i. .Illi—il i

* Attention mechanism =2 SWITCH gate
*Memory + forgetting = Capacitor + leakage
=Skip-connection = Short circuit
*Computational graph = Circuit
*Compositionality = Modular design

23/01/2019 20



hysics

Condensed Mater?

Al for molecules

e Represent atom/molecular space
 Predict molecular properties

e Estimate chem-chem interaction
 Predict chemical reaction

 Fast search for new molecules A o (e8I o’
 Plan chemical synthesis

https: //pubs.acs.org/doi/full /10.1021 /acscentsci.7b00550

23/01/2019 2



Molecular properties prediction

Traditional techniques:
= Graph kernels (ML)

= Molecular fingerprints (Chemistry)

Modern techniques

* Molecule as graph: atoms as nodes,
chemical bonds as edges

’7 Nortriptyline F319
- B |

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant

mechanism." Nature 503.7474 (201 3): 85-90.

23/01/2019 7



Graph memory networks (GMN)
(D

Task /query Bioactivities
_’l Controller l : Message passing as refining y
/ \ atom representation
Memory
XTS5 o
molecule query

N A7
/\/'M'L q

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
womy - Networks for Molecular Activity Prediction.” ICPR’18. 2




- GMN on molecular bioactivities

FP+5VM
FP+RF
FP+GB
NeuralFP
GraphMem
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Figure 2: Fl-score (%) for NCI datasets. FP = Fingerprint; RF = Random Forests;: GBM = Gradient
Boosting Machine. Best view in color.
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Approximating DFT

DFT = Density Functional Theory

Gilmer, Justin, et al. "Neural message passing for quantum
chemistry." arXiv preprint arXiv:1704.01212 (2017). y

Targets

~

DFET
~ 10% seconds | £ wo, --.

Message Passing Neural Net
N oo N 7\
v—r =% &g —_ =

R\ TN\_4 N\ 4

~ 1072 seconds
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Predict multiple properties

(ylayQa yd) CEIi

9 ~._ @ L
— ~ 2
11 t—1

2 — ::’ Ly
— /
® . - ®
ls ./
V4 3
U3
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing
23/01/2019 approach.” Machine Learning, 2019.
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Dataset Metrics Fingerprint SMILES Molecular Graph

SVM | HWN GRU WL+SVM | CLN | GAML

m-AUC | 81.94 | 85.95 83.29 86.06 88.35 88.78

Ocancers M-AUC | 81.37 | 85.85 82.74 85.74 88.23 88.50
m-F'1 50.63 | 57.44 55.97 54.55 59.48 | 62.03%*
M-F1 50.71 | 57.29 55.99 54.54 59.50 | 62.14%*

m-AUC | 79.85 | 77.46 79.11 81.62 82.08 82.82
50proteins M-AUC | 74.77 | 73.78 75.25 77.60 78.36 | 79.35%*
m-F'1 17.21 16.37 16.08 17.04 18.37 | 20.47*

M-F1 18.40 15.87 14.96 18.66 17.72 | 19.83%*

Table 4: The performance in the multi-label classification with graph-structured
input (m-X: micro average of X; M-X: macro average). SVM and HWN work
on fingerprint representation; GRU works on string representation of molecule
known as SMILES; WL+BR and CLN work directly on graph representation.

Bold indicates better values. (*) p < 0.05.

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing

approach.” Machine Learning 2019.




Chemical-chemical interaction via
Relational Dynamic Memory Networks

2017
Grow

y Marina

SHARE

Drug Interactions Report: A
ing and Deadly Threat

oble MD, M e @ 1810 0™ 0 Comments

23/01/2019

Query

Controller

Output

TN

h; Write

#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational
dynamic memory networks." arXiv preprint arXiv:1808.04247(2018).
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Results on STITCH database

CCI900 CCIR00

AUC  Fl-score AUC  Fl-score
Random Forests 04.3 86.4 0.2 94.1
Highway Networks 04.7 38.4 08.5 94.7
DeepCCI [31] 96.5 02.2 99.1 97.3
RDMN 96.6 92.6 99.1 O7.4
RDMN+multiAtt 07.3 03.4 99.1 07.8
RDMN+FP 97.8 03.3 99.4 98.0
RDMN+4+multiAtt+FP 08.0 04.1 99.5 08.1
RDMN+SMILES 08.1 04.3 99.7 7.8

RDMN+multiAtt+SMILES  98.1 94.6 99.8 98.3

Table 3 The performance on the CCI datasets reported in AUC and Fl-score. FP stands
for fingerprint and multiAtt stands for multiple attentions.
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Chemical reaction product prediction
as reinforcement learning

Input: Molecules <

T s ", 6 :_““\ ON T ﬂc:fc. R Ljs:: %:6
Output: Molecules ] j N: ~ i’_
NP, | Nk e
Model: Graph ¢ N : N
morphism
. Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to
Method: Graph g p p grap

. products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...)
transformation in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are
policy network highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and
(GTPN) C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.

Do, Kien, Truyen Tran, and Svetha Venkatesh. "Graph Transformation Policy Network for
Chemical Reaction Prediction.” arXiv preprint arXiv:1812.09441 (2018).
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GTPN results

Model USPTO-15k USPTO
P@] | P@3 | P@3 || P@] | P@3 | P@5
WLDN (Jin et al., 2017) 76.7 | 85.6 | 86.8 796 | 87.7 | 89.2
Seq2Seq (Schwaller et al., 2018) - - - 80.3* | 86.2* | 87.5*

GTPN 72.31 - - 71.26 - -

GTPN? 74.56 | 82.62 | 84.23 || 73.25 | 80.56 | 83.53
GTPN®*® 74.56 | 83.19 | 84.97 || 73.25 | 84.31 | 85.76
GTPNO® 82.39 | 85.60 | 86.68 || 83.20 | 84.97 | 85.90
GTPNO M 82.39 | 85.73 | 86.78 || 83.20 | 86.03 | 86.48

Table 3: Results for reaction prediction. P@k is precision at k. State-of-the-art results from (Jin
et al., 2017) are written in italic. Results from (Schwaller et al., 2018) are marked with * and they are
computed on a slightly different version of USPTO that contains only single-product reactions. Best
results are highlighted in bold. ¢: With beam search (beam width = 20), *: Invalid product removal,
*: Duplicated product removal.

23/01/2019 ]



Molecular generation: Case of drug

The space of drugs is estimated to be 1e+23 to
1le+60

= Only 1e+8 substances synthesized thus far.

It is impossible to model this space fully.

The current technologies are not mature for graph
generations.

But approximate techniques do exist.

Source: pharmafactz.com

23/01/2019 7



Combinatorial chemistry

Generate variations on a template

Returns a list of molecules from this template that
Bind to the pocket with good pharmacodynamics?
Have good pharmacokinetics?
Are synthetically accessible?

#REF: Talk by Chloé-Agathe Azencott titled “Machine learning for therapeutic
research”, 12/10/2017

23/01/2019
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Al approach to molecule design

Representing molecules using ~ Sequences

fingerprints lterative methods
Representing graph as string,  Reinforcement learning
and use sequence VAEs or Discrete objectives
GANSs.

Any combination of these +
Graph VAE & GAN memory.

Model nodes & interactions

Model cliques



Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep
adversarial autoencoders for new molecule development in oncology."

Oncotarget 8.7 (2017): 10883.

| Molecule =
fingerprints . 1
DECODER
EOIO?(IO—» —2Q0-00
/ ENCODER N

|

Input of the encoder : the fingerprint of a molecule

The decoder outputs the predicted fingerprint .

The generative model generates a vector E, which is then discriminated
from the latent vector of the real molecule by the discriminator.




N OH
0 \
Molecule = string AR ,
__/ o
F
Using SMILES representation of molecule, to 3
convert a molecular graph into a string . <s
- SMILES = Simplified Molecular-Input Line-Entry System '*‘_\\.a_{'l
. N N / \ > 4 O
Then using sequence-to-sequence + VAE/GAN to T N=7"%
. 2
model the continuous space that F
encodes/decodes SMILES strings .
= Allow easy optimization on the continuous space <3
C N 4 O
AL By ¢
= — O
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
23/01/2019 Source: whkipedia.org



VAE for molecular space modelling

clceocel

Discrete Structure ENCODER CONTINUGUSMOLECULAR - DECODER Discrete Structure

SMILES Neural Network REPRESENTATION Neural Network SMILES

Latent Space

b

O

Property
f(z)

Most Probable Decoding
argmax p(*lz)

Uses VAE for sequence-to-sequence.

Gomez-Bombarelli, Rafael, et al. "Automatic chemical
design using a data-driven continuous representation of
molecules." ACS Central Science (2016).

23/01/2019

LATENT

MOLECULAR

SPACE

SPACE

Kyeunar Newosk (115°7) = 0 -027 OPTIMIZATION 0-725 0 -824
1 1 1

PRI

koo (us = 0.004 0.080 0.000

CALCULATED
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1 N OH
Drawbacks of string . \
° HN N 0
representation —/ 5
F
String =2 graphs is not unique! 3
3
Lots of string are invalid B <
g N—\\4_<CJ
Precise 3D information is lost N _/‘N 7 N b
. . 1 _2 0
Short range in graph may become long range in F
string .
A better way is to encode/decode graph directly. C <‘”
N @]
4
A
= — O
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CCT)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
23/01/2019 Source: wikipedia.org



Better approach: Generating
molecular graphs directly

No regular, fixed-size structures

Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized over
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space

Agreement with or optimization of multiple design objectives



GraphVAE

Handles irregular structures
Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph
Bounded by the size of the largest graph in training data.

Handles permutation invariance
Matching every pair of nodes in 2 graphs

Partially promotes diversity

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.

23/01/2019
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Th h si
Latent vector for e graph size

whole grqph are bounded k>n
Adjacency matrix
P(G|G) by graph match ng
Y
: D
A " €
o
q5(2|G) =
~F gl
po(G|z) o

argmax

y/ y d C\)f

Edge types  Node types

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.

23/01/2019 4]



Junction tree VAE

Junction tree is a way to build
a “thick-tree” out of a graph

Cluster vocab:
" rings

* bonds

= atoms

Jin, W.,, Barzilay, R., & Jaakkola, T. (201 8). Junction Tree
Variational Autoencoder for Molecular Graph
Generation. ICML’18.

23/01/2019

Molecule

Molecular

Tree decomposition

@}qL o O
S

c
Junction
Tree T |

C;
._(/\/
Cj

Encode l (Sec 2.3)
ZT AN .
Decode l (Sec 2.4)

O N — N,
(Sec 2.5)
cl



Algorithm 2 Tree decomposition of molecule G = (V, F)

V1 < the set of bonds (u, v) € F that do not belong to any rings.
V5 < the set of simple rings of GG.
for 1,7 in V5 do
Merge rings 71, r2 into one ring if they share more than two atoms (bridged rings).
end for
Vi < atoms being the intersection of three or more clusters in V7 U V5.
YV« VouUVi UV
E+—{(1,4,¢) e VXV xR||inj| >0}. Setc=oc0ifi € Vyorj e Vp, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, £).

Method Reconstruction Validity

CVAE 44.6% 0.7%

GVAE 53.7% 7.2%
Jin, W., Barzilay, R., & Jaakkola, T. SD-VAE?Z 76.2% 43.5%
(2018). Junction Tree Variational GraphVAE ) 13.59%

Autoencoder for Molecular Graph

Generation. ICML’18. JT-VAE 76.7 % 100.0%

23/01/2019 43



|AI for materials e —
Engineering relationship -

e Characterise the space of
materials

e Represent crystals

e Map alloy composition =2
phase diagram

 |nverse design: Map phase

Structure

Science relationships of cause and effect

Materials informatics can generate “forward models” for predictive analytics

d |a g ram 9 a I |Oy com pOS Itl e.g. Property = f(Processing, Composition, Structure)

* Generate a”OyS Agrawal, A., & Choudhary, A. (2016). Perspective: Materials

° mi i informatics and big data: Realization of the “fourth paradigm” of
Optlmlze processing science in materials science. Apl Materials, 4(5), 053208.

parameters

23/01/2019 44



Bayesian
optimization
for short
polymer fiber

Li, Cheng, David Rubin de Celis
Leal, Santu Rana, Sunil Gupta,
Alessandra Sutti, Stewart
Greenhill, Teo Slezak, Murray
Height, and Svetha Venkatesh.
"Rapid Bayesian optimisation for
synthesis of short polymer fiber
materials." Scientific reports 7,
no. 1 (2017): 5683.

23/01/2019

Step 1
Function modelling
¥e = fibx;)

Build Gaussian
process

'

Step 2
suggest next
experiment setting x,

Optimise acquisition
function

Observations—— =

-

fl-l i
ﬁ‘“‘“r—DhjEctqu Function

o

Unknown objective function (red) is
modelled by a Gaussian distribution
{Eq. 1, 2) with mean (black line)
and uncertainty (grey area).

Suggestions x, are at maxima of the
acquisition function (Eq. 4), which
expresses the chance that a better
result may lie in an unexplored
area, or close to a known maximum.

i
.-"-_- -"\-.\__..
— |\/
e
A Em_fﬁ:qulsitlnn Function |

y

Step 3
Perform experiment

using suggestion x;

Measure output
characteristics L, O, I,

¢L:, Dy, I

Step 4
Evaluate “goodness”
of output v,

Fibres are synthesized using
suggested x, (position, constriction
angle, channel width, palymer flow,
and solvent speed).

Images |, of product fibres are
measured for the median length L,
diameter D, and quality of fibres

Compute cost
Add {x. v} to model

'

Mo

Step 5
Check if L, Dy, |,
meet target

L'I'ES

Complete

Ly

t
O

Dy

: \
E_*O_" fol,) —..O—-. fix,) i

Il.‘il /
_..O_.. fol)

Target score combines deviation
of measured fibre length L, and
diameter D, from their targets
Ly and Dy (Eq. S, 6, 10)

Quality fg (Eq. 9) is assessed
using the preference of the
current fibre image I; with the
previous images |y,
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Crystal as a graph neural net

Xie, Tian, and Jeffrey C. Grossman.
"Crystal Graph Convolutional Neural
Networks for an Accurate and
Interpretable Prediction of Material
Properties." Physical review

letters 120.14 (2018): 145301.

R Conv L, hidden Pooling L, hidden

23/01/2019 46



Computing materials | -

similarity =

Strong features are highly but

nonlinearly predictive of properties N
( e * g *) fo r m at i O n e n e rgy) Ho, Truyen Tran, Keisuke Takahashi and Hieu-Chi Dam

Committee machine that votes for similarity between
materials

IUCr] (2018). 5, 830-840

The relationship between features &
properties can be locally linear

Materials that share the same feature-
property relationship may be PR

HE CRYSTALLOGRAPHY JOURNALS ONLINE

. . .
This open-access article is distributed under the terms of the Creative Commons Attribution Licence
|||||| «//creativecommaons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and source are cited.
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#REF: Nguyen, P., Tran, T., Gupta, S., Rana, S., & Venkatesh, S. Incomplete
Conditional Density Estimation for Fast Materials Discovery. SDM’19

Parameters
Set design variables

Alloy space exploration "~

Output properties(y)

. Scientific innovations are expensive =0
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Inverse design

Leverage the existing data
and query the simulators in
an offline mode

Avoid the global optimization
by learning the inverse design
function f1(y)

Predict design variables in a
single step

Create dataset offline

Parameters
Randomly sample : o Output
. design variables (x) - > properties(y)
, : Training
Machine learning + +
Test/predict y*—®» x=g(y) - 19t
plarget ( target)
= gy
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Full phase specification

Known-alloy dataset BO-search dataset
Method | Relative (%) | Absolute (%) | Relative (%) | Absolute (%)
RF 3.21=0.02 | 0.00x0.00 | 637=2.13 | 0.01=0.00
MLP 1.10=0.03 | 0.00x0.00 | 3.41=1.48 | 0.01=x0.01
MDN | 0.52=0.00 | 0.00x£0.00 | 295x1.32 | 0.00=x0.01
50% phase missing
Known-alloy dataset BO-search dataset
Method Relative (%) | Absolute (%) | Relative (%) Absolute (%)
RF 4.38 £0.01 0.00 £ 0.00 8.49 +£1.34 0.01 £0.01
MLP 3.43 £ 0.07 0.00 £ 0.00 11.91 £ 2.54 0.03 £0.02
MDN 2.28 4+ 0.22 0.00 £ 0.00 7.83 £ 1.11 0.01 £0.01
CVAE-MLP | 250+£0.24(a) | 0.00£0.00 | 7.42+£2.03(e) | 0.01 £0.01 (3)
CVAE-MDN | 2.084+0.12(b) | 0.00£0.00 | 4.23 4+ 0.67 (f) | 0.00 £ 0.00 (3)
CGAN-MLP | 3.18 £ 0.18 (¢) | 0.004+0.00 | 8.39+2.33(g) | 0.00 £ 0.00 (k)
CGAN-MDN | 2.30£0.18 (d) | 0.00£0.00 | 7.38 £0.70 (h) | 0.00 £ 0.00 (1)




Search time comparisons

Relative error (%)
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Recent context

NIPS Workshop on Molecular and Materials Sciences (2017, 2018)

The International Workshop on Machine Learning for Materials Science 2018
2018 Workshop on Machine Learning in Materials Science (April 2018)
Al-driven Acceleration Platform for Materials (Jan 2018, CIFAR Report)
Workshop on Deep Learning for Physical Sciences (Dec 2017)

Machine learning for materials research: Bootcamp & workshop (June 2017)

International Workshop on Machine Learning for Materials Science (March 2017,
Finland)

Understanding Many-Particle Systems with Machine Learning (Sept-Dec 2016)
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Remarks

23/01/2019

Information, Physics,
and Computation

OXFORD GRADUATE TEXTS
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Machine learning a physics theory?

Expressiveness
*Can represent the complexity of the world

“Can compute anything computable

Learnability
*Have mechanism to learn from the training signals

Generalizability

*Work on unseen data
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Phase Transitions in

' Machine [ s
Al as physics O [

Intelligence as self-organizing phenomena: reducing
ignorance/entropy

Neural networks as a statistical mechanical system

Learning as variational optimization Nelg r(:")dinger

Inference in probabilistic graphical models as Bethe What is Life?
free-energy minimization

Phase transition may occur in Al systems P

Ultimate Al must solve the consciousness problem,
which may require guantum physics (or a new physics)

Life has low entropy
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Physics of Restricted Boltzmann machines

p(v,h;¢)) o< exp [—E (v, h;7)]
Boltzmann machines as a generalization of Ising

model energy

Restricted Boltzmann machine as a simplified
version, but with hidden variables to denote
underlying unobserved processes

Stack of RBMs is akin to renormalization trick in

physics Restricted Boltzmann Machine
(~1994, 2001)
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RBM for n-body problem

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with
artificial neural networks." Science355.6325 (2017): 602-606.

Torlai, Giacomo, et al. "Many-body quantum state tomography with neural networks." arXiv
preprint arXiv:1703.05334 (2017).

Nomura, Yusuke, et al. "Restricted Boltzmann machine learning for solving strongly
correlated quantum systems." Physical Review B 96.20 (2017): 205152.

Gao, Xun, and Lu-Ming Duan. "Efficient representation of qguantum many-body states with
deep neural networks." Nature communications 8.1 (2017): 662.

Chen, Jing, et al. "On the equivalence of restricted Boltzmann machines and tensor network
states." arXiv preprint arXiv:1701.04831 (2017).

Rao, Wen-Jia, et al. "Identifying product order with restricted Boltzmann
machines." Physical Review B 97.9 (2018): 094207.
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Quantum
machine
learning

Quantum Machine Learning, Jacob
Biamonte, Peter Wittek, Nicola Pancotti,
Patrick Rebentrost, Nathan Wiebe and
Seth Lloyd, Nature 549, 195-202 14
September 2017

Read more at:
https: / /phys.org/news/2017-09-
quantum-machines.html#{Cp
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https://phys.org/news/2017-09-quantum-machines.html#jCp

quantum information

processing
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medium.com i vantum-machine-learning-c5ab31fé6b4d


https://medium.com/@_NicT_/quantum-machine-learning-c5ab31f6b4d

Prediction versus understanding

We can predict well without understanding (e.g.,
planet/star motion Newton).

Guessing the God’s many complex behaviours versus
knowing his few universal laws.
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Some open challenges

Can Al/ML discover a new phase of matter ?
Would Al/ML discover new algorithms for us ?
Would it be possible for us to make progress on fermion sign problem?

Non-stochastic, or better ways for optimizing, renormalizing, and evolving
Neural Networks.

Information pattern aware structure learning of neural networks

#REF: Liu, Jin-Guo, Shuo-Hui Li, and Lei Wang. "Lecture Note on Deep
Learning and Quantum Many-Body Computation." (2018).
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