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Agenda
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Future outlook
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Why now?
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Big Rooms in Biomedicine

healthpages.org engineering.case.edu

pharmacy.umaryland.edu

openi.nlm.nih.gov

marketingland.com

High-impact & data-intensive.
 Andrew Ng’s rule: impact on 100M+ people.
 Biomedicine is the only industry that will never shrink!

Ripe for innovations fuelled by deep learning 
techniques.
 Major recent advances and low hanging fruits are 

being picked.

Great challenges:
 High volume and high dimensional; 
 Great privacy concerns;
 Need integrated approach to encompass great 

diversities.

It is the right time to join force with 
biomedical scientists!



Machine learning = feature 
engineering = $$$

$3M Prize, 3 years

170K patients, 4 years worth 
of data

Predict length-of-stay next 
year

Not deep learning yet (early 
2013), but strong ensemble 
needed  suggesting 
dropout/batch-norm
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This is me!



Building block: Feature extractor

Integrate-and-fire neuron

andreykurenkov.com

Feature detector

Block representation20/01/2019 6



Building block: Recurrence
Classification

Image captioning

Sentence classification

Neural machine translation

Sequence labelling

Source: http://karpathy.github.io/assets/rnn/diags.jpeg
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Building block: Convolution

adeshpande3.github.io
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renishaw.comcbsnews.com



Building block: Message passing
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Relation graph Stacked learning

Column nets#REF: Pham, Trang, et al. "Column Networks for 
Collective Classification." AAAI. 2017.



Supervised deep learning: steps

Step 0: Collect LOTS of high-quality data
Corollary: Spend LOTS of time, $$ and compute power

Step 1: Specify the computational graph Y = F(X; W)

Step 2: Specify the loss L(W; D) for data D = {(X1,Y1), (X2,Y2), … }
Step 3: Differentiate the loss w.r.t. W (now mostly automated)
Step 4: Optimize the loss (a lot of tools available)
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Generative models
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Many applications:

• Text to speech

• Simulate data that are hard to 
obtain/share in real life (e.g., healthcare)

• Generate meaningful sentences 
conditioned on some input (foreign 
language, image, video)

• Semi-supervised learning

• Planning



Variational Autoencoder
(Kingma & Welling, 2014)

Two separate processes: generative (hidden  visible) versus 
recognition (visible  hidden)

http://kvfrans.com/variational-autoencoders-explained/

Gaussian 
hidden 
variables

Data

Generative 
net

Recognising
net



Generative adversarial networks
(Adapted from Goodfellow’s, NIPS 2014)
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Progressive GAN: Generated images
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Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for improved 
quality, stability, and variation. arXiv preprint arXiv:1710.10196.
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https://qph.ec.quoracdn.net/main-qimg-2c39fede406d71fb534bbae6cc9b8aad-c
https://en.wikipedia.org/wiki/Mitochondrial_DNA

MtDNA ring

https://qph.ec.quoracdn.net/main-qimg-2c39fede406d71fb534bbae6cc9b8aad-c
https://en.wikipedia.org/wiki/Mitochondrial_DNA


Human genome

3 billion base-pairs (characters), 20K genes, 98% non-
coding regions

Any two random persons share 99.9% genome

The 0.1% difference is thought to account for all variations 
between us
 Appearance: Height (80% heritable), BMI, hair, skin colors
 IQ, education levels
 Genetic disorders such as cancers, bipolar, schizophrenia, autism, 

diabetes, etc.

Any two random persons share about 60% variations 
(SNV/SNP)

As we age, there are small mutations within our cells
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https://neuroendoimmune.files.wordpress.com



Sequencing
The first step is to read (sequence) the DNA/MtDNA, and 
represent the information as string of characters (A,C,G,T) in 
computer.

The most popular technique these days read short sequences 
(hundreds of characters), and align.

Each position is read typically at least 30 times to get enough 
confidence  Huge storage!!!

String alignment is then the key to final sequence  Need super-
computer to do this fast.

A DNA sequence is compared against the reference genome. Only 
the difference (0.1%) need to be stored.
 This does not usually apply for MtDNA, as each cell has as many as 500 

MtDNAs, they are slightly different! More different as we age.
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Source: https://www.genome.gov



How does deep learning 
work for biomedicine?

18

Diagnosis PrognosisDiscovery

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal

https://cdn1.iconfinder.com

Efficiency

Biologist
Bioinformatician

Physician
Health informatician AI/ML/DL

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal/
https://cdn1.iconfinder.com/


Nanopore sequencing ( electrical 
signals  A|C|G|T)
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Source: ibtimes.co.uk

Source: technologyreview.com

Continuous segmentation & labelling



Deep architectures for nanopore
sequencing
Aimed at real time recognition

The setting is similar to speech recognition!
 The early days used HMMs. Now LSTMs.

We will briefly review the latest:
 Chiron (Teng et al., May 2018, UQ, Australia)

Other GRU/LSTM variants
 Nanonet (Oxford Nanopore Technologies, 2016)
 BasecRAWller (Stoiber & Brown, May 2017)
 DeepNano (Boza et al., June 2017, Comenius University in Bratislava, Slovakia)
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Chiron
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#REF: Teng, Haotien, et al. "Chiron: Translating nanopore raw signal directly into nucleotide 
sequence using deep learning”, GigaScience, Volume 7, Issue 5, 1 May 2018, giy037.



Other recent works

Li, Yu, et al. "DeepSimulator: a deep simulator for Nanopore
sequencing." Bioinformatics 1 (2018): 10.

Wick, Ryan R., Louise M. Judd, and Kathryn E. Holt. "Deepbinner: Demultiplexing
barcoded Oxford Nanopore reads with deep convolutional neural networks." PLoS
computational biology 14.11 (2018): e1006583.

Wang, Sheng, et al. "WaveNano: a signal-level nanopore base-caller via 
simultaneous prediction of nucleotide labels and move labels through bi-directional 
WaveNets." Quantitative Biology 6.4 (2018): 359-368.
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https://towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec914fe18c2
https://www.oreilly.com/ideas/deep-learning-meets-genome-biology

Genetic diagnostics

Refining drug targets

Pharmaceutical 
development
Personalized medicine

Better health insurance

Synthetic biology

https://towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec914fe18c2
https://www.oreilly.com/ideas/deep-learning-meets-genome-biology


Some AI problems

DNA is a book, easy to read (costs less than $1K to sequence), extreme difficult to 
comprehend.
 It has 3B characters (A,C,T,G), 46 volumes (chromosomes), 20K chapters.
 The longest book has less than 10M characters, 13 volumes (“A la recherche du temps perdu" (In 

Search of Lost Time), by Marcel Proust, 2012) – as recognized by Guinness World Records.

Short sequences (100 chars) are predictive of protein binding, also gene start/end.

Proteins are big 3D graphs interacting with the 1D-2D strings (DNA, RNA), and other 
proteins & drugs (which are graphs themselves).

Long chains of influence, from SNP to cell, tissue and organ functions.

Viruses can be generated/edited on computer, hence discrete sequence generation 
problem.

20/01/2019 24



Filling the genotypes  phenotypes gap

Ultimate goals:
 Estimating explained variance in inheritability
 Discover risk factors
 Predicting individual phenotypes: Height, Glucose, BMI, IQ, Edu, Mental, Cancers…

Some paths under investigation
 Predicting the bio of the cells, DNA + MtDNA, and more
 Statistical modeling of genetic architectures, e.g., Bayesian, mixed linear models, Gaussian 

Processes. 
 Motif modeling with DNA/RNA/protein, e.g., predict binding sites
 Developing data-efficient techniques for genomics
 Integrating multimodalities



GWAS: Genome-Wide Association Study

Setting:
 For each DNA, only differences from a reference 

genome are recorded.
 The differences are SNPs, one per dimension.

Problems
 Very high dimensional (typically hundreds of 

thousands), low sample size (typically hundreds)
 Missing/unreliable data
 Typically very weak association
 Combating the False Discovery Rate (FDR) due to 

multiple parallel hypotheses: Individual p-value 
must be extremely small, e.g. 5×10e-8

20/01/2019 26Source: http://vignette4.wikia.nocookie.net



Diet networks for GWAS
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Use a “hypernet” to generate the main 
net. 
Features are embedded (not data 
instance).
Unsupervised autoencoder as 
regularizer.
Works well on country prediction on the 
1000 Genomes Project dataset.
 But this is a relatively easy problem. PCA, even 

random subspace can do quite well! 

Images taken from the paper

#REF: Romero, Adriana, et al. "Diet Networks: Thin Parameters 
for Fat Genomic." arXiv preprint arXiv:1611.09340 (2016).



GWAS: Challenges
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We are detecting rare events!!!
Results hard to replicate across studies.
 Model stability?

SNP  phenotypes seem impossible.
If it is (e.g., race prediction), little insights can 
be drawn upon.
The pathway is deep and complex
 Room for deep learning?

Room for structured models
 SNP annotations
 Spatial relationships
 Evolutionary trees



Rooms for deep learning
Bridge the genotype-phenotype gap
 Incorporating HUGE amount of data
 Modelling the multiple layers of complex biological processes in between.
 Starting from the DNA and its immediate functions, e.g., protein binding, gene start, 

alternative splicing, SNP annotations.

Deep learning has shown to work well in cognitive domains, where human 
can perform in less than a second.
 We need to be super-human to bridge the gap.

New models for 2% of coding part, as well as 98% non-coding (probably 
having regulatory functions)
Incorporating biological understanding into model, not the black-box.

20/01/2019 29#Ref: https://www.oreilly.com/ideas/deep-learning-meets-genome-biology



Use of feedforward nets: Tissue-
regulated splicing code

20/01/2019 30

#REF: Leung, Michael KK, et al. 
"Deep learning of the tissue-
regulated splicing 
code." Bioinformatics 30.12 
(2014): i121-i129.



Use of CNNs: Discovery of DNA motifs

http://www.nature.com/nbt/journal/v33/n8/full/nbt.3300.html

DeepBind (Alipanahi et al, Nature Biotech 2015)
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The restriction enzyme EcoRV (green)
Source: wikipedia.org/wiki/DNA-binding_protein



Use of CNNs: 
FIDDLE
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#REF: Eser, Umut, and L. Stirling 
Churchman. "FIDDLE: An integrative 
deep learning framework for 
functional genomic data 
inference." bioRxiv (2016): 
081380.



Source: https://simons.berkeley.edu/sites/default/files/docs/4575/2016-kundaje-simonsinstitute-
deeplearning.pdf

https://qph.ec.quoracdn.net

Chromatins

https://simons.berkeley.edu/sites/default/files/docs/4575/2016-kundaje-simonsinstitute-deeplearning.pdf
https://qph.ec.quoracdn.net/


User of CNN+RNNs: DanQ
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#REF: Quang, Daniel, and Xiaohui Xie. 
"DanQ: a hybrid convolutional and 
recurrent deep neural network for 
quantifying the function of DNA 
sequences." Nucleic acids research 44.11 
(2016): e107-e107.



More models/frameworks

DragoNN

DeepChrome

DeepSEA

Basset

DeepBound

…

http://kundajelab.github.io/dragonn

http://kundajelab.github.io/dragonn


What make biomedicine hard for 
deep learning?
Great diversity but may be small in size

High uncertainty, low-quality/missing data

Reusable models do not usually exist 

Human doesn’t know how to read biomedicine (Brendan Frey, U of Toronto)

Require deep thinking for a reasonable deep architecture

However, at the end of the day, we need only a few generic things:
 Vector  DNN (e.g., highway net) | Sequence  RNN (e.g., LSTM, GRU)
 Repeated motifs  CNN | Set  Attention
 Graphs  Conv graphs;  Column Networks
 Generative models  VAE; GAN
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https://www.forbes.com/sites/yiannismouratidis/2018/12/16/the-rising-star-companies-in-ai-drug-development

https://www.forbes.com/sites/yiannismouratidis/2018/12/16/the-rising-star-companies-in-ai-drug-development/#2d0605ef51cf


Deep learning for drug discovery

Predicting bioactivities from 
molecules

Drug representation, 
unsupervised learning from 
graphs

Generate from bioactivities to 
molecular graphs

#REF: Roses, Allen D. "Pharmacogenetics in drug discovery 
and development: a translational perspective." Nature 
reviews Drug discovery 7.10 (2008): 807-817.

$500M - $2B



Traditional method: Combinatorial 
chemistry
Generate variations on a template
Returns a list of molecules from this template that
Bind to the pocket with good pharmacodynamics?
Have good pharmacokinetics?
Are synthetically accessible?
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#REF: Talk by Chloé-Agathe Azencott titled “Machine learning for therapeutic 
research”, 12/10/2017



First step: Map molecule → drug 
properties (binding/acting) 
Drugs are small bio-molecules

Traditional techniques:
Graph kernels (ML)
Molecular fingerprints (Chemistry)

Modern techniques
Molecule as graph: atoms as nodes, 
chemical bonds as edges

20/01/2019 40

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant 
mechanism." Nature 503.7474 (2013): 85-90.



3 methods for bioactivity 
prediction
Graph memory networks (GMN) for drug bioactivity 
prediction
Graph attentional multi-label learning (GAML) for drug 
multi-target binding & repurposing
Relational dynamic memory networks (RDMNs) for drug-
drug / drug-protein interaction

20/01/2019 41



Graph memory networks
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Controller

… Memory

Drug 
molecule

Task/query Bioactivities

𝒚𝒚

query

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory 
Networks for Molecular Activity Prediction." ICPR’18.

Message passing as refining 
atom representation
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Graph memory networks: Results



Multi-target binding for drug 
repurposing
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#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing 
approach." Machine Learning, 2019.



#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing 
approach." arXiv preprint arXiv:1804.00293(2018).



Drug-drug interaction via Relational 
Dynamic Memory Networks
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𝑴𝑴1 … 𝑴𝑴𝐶𝐶

𝒓𝒓𝑡𝑡1 …𝒓𝒓𝑡𝑡𝐾𝐾

𝒓𝒓𝑡𝑡∗

Controller

Write𝒉𝒉𝑡𝑡

Memor
y

Graph

Query Output

Read 
heads

#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational 
dynamic memory networks." arXiv preprint arXiv:1808.04247(2018).



Results on STITCH database

20/01/2019 47



Drug generation

We now have methods for compute bioactivties of 
a drug molecule

We need a reverse method to generate drug 
molecules from desirable bioactivities

The space of drugs is estimated to be 1e+23 to 
1e+60
 Only 1e+8 substances synthesized thus far.

It is impossible to model this space fully.

The current technologies are not mature for graph 
generations.

But approximate techniques do exist.
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Source: pharmafactz.com



Old and new methods

Existing methods:
 Exhausted search through a fixed library
Discrete local search: genetic algorithms, 
similar discrete interpolation
 The search space is still large.

Deep learning methods:
 Faster, more efficient to find new drugs
Able of generate molecules that are likely the 
good candidates



Deep learning methods

Representing molecules using 
fingerprints
Representing graph as string, 
and use sequence VAEs or 
GANs.
Graph VAE & GAN
Model nodes & interactions
Model cliques

Sequences
 Iterative methods

Reinforcement learning
Discrete objectives

Any combination of these + 
memory.



Molecule 
fingerprints

Input of the encoder : the fingerprint of a molecule

The decoder outputs the predicted fingerprint .

The generative model generates a vector E, which is then discriminated 
from the latent vector of the real molecule by the discriminator.

Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep 
adversarial autoencoders for new molecule development in oncology." 
Oncotarget 8.7 (2017): 10883.



Source: wikipedia.org

Molecule  string

Using SMILES representation of drug, to convert a 
molecular graph into a string
 SMILES = Simplified Molecular-Input Line-Entry System

Then using sequence-to-sequence + VAE/GAN to 
model the continuous space that 
encodes/decodes SMILES strings
 Allow easy optimization on the continuous space
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#REF: Gómez-Bombarelli, Rafael, et al. "Automatic chemical 
design using a data-driven continuous representation of 
molecules." arXiv preprint arXiv:1610.02415 (2016). 



VAE for drug space modelling
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Uses VAE for sequence-to-sequence.
#REF: Bowman, Samuel R., et al. "Generating sentences 
from a continuous space." arXiv preprint 
arXiv:1511.06349 (2015).

Gómez-Bombarelli, Rafael, et al. "Automatic chemical 
design using a data-driven continuous representation of 
molecules." ACS Central Science (2016).



Source: wikipedia.org

Drawbacks of string 
representation
String  graphs is not unique!

Lots of string are invalid

Precise 3D information is lost

Short range in graph may become long range in 
string

A better way is to encode/decode graph directly.
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#REF: Gómez-Bombarelli, Rafael, et al. "Automatic chemical 
design using a data-driven continuous representation of 
molecules." arXiv preprint arXiv:1610.02415 (2016). 



Better approach: Generating 
molecular graphs directly
No regular, fixed-size structures
Graphs are permutation invariant:  
#permutations are exponential function of #nodes
The probability of a generated graph G need to be marginalized over 
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space
Agreement with or optimization of multiple “drug-like” objectives



GraphVAE
Handles irregular structures
Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph
Bounded by the size of the largest graph in training data.

Handles permutation invariance
Matching every pair of nodes in 2 graphs

Partially promotes diversity
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#REF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of 
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.
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Adjacency matrix

Edge types Node types

k>n
The graph size 
are boundedLatent vector for 

whole graph

#REF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of 
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.



Junction tree VAE
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Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction Tree 
Variational Autoencoder for Molecular Graph 
Generation. ICML’18.

Junction tree is a way to build 
a “thick-tree” out of a graph
Cluster vocab: 
 rings 
 bonds
 atoms
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Jin, W., Barzilay, R., & Jaakkola, T. 
(2018). Junction Tree Variational 
Autoencoder for Molecular Graph 
Generation. ICML’18.



Graphs + Reinforcement learning
Generative graphs are very hard to get it right: The space is too large!

Reinforcement learning offers step-wise construction: one piece at a time
 A.k.a. Markov decision processes
 As before: Graphs offer properties estimation

20/01/2019 60You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018).



Play ground: MOSES
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https://medium.com/neuromation-io-blog/moses-a-40-week-journey-to-the-promised-land-of-molecular-generation-78b29453f75c



The outlook

Read an extremely long book of DNA and answer any queries 
about it 
 Memory-augmented neural networks (MANN), and
 Multiple hierarchical attentions and grammars

Instead of read, write (DNA/viruses/RNA/proteins)

Supper-rich genome SNP annotation

The society of things (DNA/RNA/protein)

Transfer learning between cell types, tissues and diseases

Biology-driven deep nets (e.g., knowledge as memory)

Handling rare events (e.g., the role of memory)

(LeCun, 2015)
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