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Agenda

Deep learning
= Neural architectures
= Generative models

Genomics
* Nanopore sequencing
= Genomics modelling

Drug design
* Bioactivity prediction
* Drug generation

Future outlook
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Why now?

healthpages.org

pharmacy.umaryland.edu

High-impact & data-intensive. _
* Andrew Ng’s rule: impact on 100M+ people. . L A ToToTeCCsoTTonACAGEaes

= Biomedicine is the only industry that will never shrink! Ly = i
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Ripe for innovations fuelled by deep learning & ¢ B B
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techniques. A I A

* Major recent advances and low hanging fruits are
being picked.

Great challenges:

= High volume and high dimensional; o« N 3K e 5
. N A

- Great prlvacy COncernS; L > % -' it -.\--;_ marketingland.com

PR S AT g
" Need integrated approach to encompass great | P L
diversities. QI[q Pub ed

%

It is the right time to {'oin force with

biomedical scientists Big Rooms in Biomedicine
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Machine learning = feature
engineering = SSS

S 3 M P n ze’ 3 ye ars l:' HERITAGE F'Rﬂlﬁ'l'ﬂ,.“EEn?q fmgg Truyen’ Fe at:l']'re i ﬂ::: !I ..
170K patients, 4 years worth Engmeenng

of data for Machine Learning

Dashboard Leaderboard - Heritage Health Prize

PRIMCIPLES AND TECHRBQRIES FOR DATA SCIERTISTS

Predict length-of-stay next
year

This cempetition has completed. This leaderboard reflects the final standings. Alice Eheng & Amanda Casari

# Alw  Team Name +inthe money Score Entries Last Submission UTC (Best - Last Submission)

Not deep learning yet (early 1 POWERDOT <% s

2013), but strong ensemble w0 EXLAnalytcs
needed = suggesting 3 15 JA Guerrero
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| Building block: Feature extractor

Integrate-and-fire neuron
L0 wo ‘

axon from a F!BUTCJ:H.\@&EES:BD
\ Feature detector

dendrite =
cell body f (Zwm 1 b)
w1 i
> z w;x; + b f

z output axon

activation
function

andreykurenkov.com
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| Building block: Recurrence

Sentence classification Sequence labelling

Classification

\ Imqgejptioning Neural machine translation

one to one one to many many to one many to many many to many
IQ Tttt 1 ot 11t
1 t ottt ttt 1ttt

Source: http:/ /karpathy.github.io /assets /rnn /diags.jpeg
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Building block: Convolution

I =0
ST e - =
% {t X ) L I w
P .. |
—u
— i1 e % (-] =0
E o o
‘ = | o ~o
e — | o o
cbsnews.com [——— o o
[+] +]
[+] 4]
. : [+] {+]
convolution + max pooling vec |, \:
nonlinearity ] o
| |
convolution + pooling layers fully connected layers  Nx binary classification

adeshpande3.github.io
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| Building block: Message passing
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Relation graph

#REF: Pham, Trang, et al. "Column Networks for
Collective Classification." AAA/l. 2017.
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Supervised deep learning: steps

Step 0O: Collect LOTS of high-quality data
*Corollary: Spend LOTS of time, SS and compute power

Step 1: Specify the computational graph Y = F(X; W)
Step 2: Specify the loss L(W; D) for data D = {(X1,Y1), (X2,Y2), ... }
Step 3: Differentiate the loss w.r.t. W (now mostly automated)

Step 4: Optimize the loss (a lot of tools available)

20/01/2019 10



Generative models

Many applications:

* Text to speech

* Simulate data that are hard to ”“-T'df--f-( )

obtain/share in real life (e.g., healthcare) P;.-,mfgﬂg (’U) ~ P{_fgﬂ_m (’U)

* Generate meaningful sentences

conditioned on some input (foreign
language, image, video)

* Semi-supervised learning
* Planning

20/01/2019 1



Variational Autoencoder
(Kingma & Welling, 2014)

Two separate processes: generative (hidden = visible) versus
recognition (visible = hidden)

mean vector
. sampled
Gaussian latent vector
hidden
a variables P N
/ Encoder — Decoder
R . ! Network Network
ecognls'mg Generative N e d
conv econv
het \ net ( ) ( )
\
\
N Vv
‘ Data standard deviation
vector

http:/ /kvfrans.com /variational-autoencoders-explained /



Generative adversarial networks
(Adapted from Goodfellow’s, NIPS 2014)

pp(data) Data distribution
l / Model distribution
Fa

.
N A
I~rl.I I

IR I

P A

'
v
W s

L] L]
L] [ ] .,
all -
Lo
LI

T L I L

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

-

20/01/2019



Progressive GAN: Generated images

20/01/2019

VTR

female6.png M malel.png MM male2.png MM male3.png

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.



Agenda

Deep learning
* Neural architectures
* Generative models

Genomics
= Nanopore sequencing
* Genomics modelling

Drug design
" Bioactivity prediction
* Drug generation

Future outlook
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DNA double helix

Core histone dimers:
2xH2A/H2B
- 2xH3/H4

‘Beads on a string’
form of chromatin

Chromatin fiber of
packed nucleosomes

Mitochondria

Mitochondrial DNA

MiDNA ring

https: //gph.ec.quoracdn.net/main-qimg-2c39fede406d7 1fb534bbaebcc9b8aad-c

https: / /en.wikipedia.org /wiki/Mitochondrial DNA



https://qph.ec.quoracdn.net/main-qimg-2c39fede406d71fb534bbae6cc9b8aad-c
https://en.wikipedia.org/wiki/Mitochondrial_DNA

Human genome

3 billion base-pairs (characters), 20K genes, 98% non-
coding regions

Any two random persons share 99.9% genome

The 0.1% difference is thought to account for all variations
between us

= Appearance: Height (80% heritable), BMI, hair, skin colors
= 1Q, education levels

= Genetic disorders such as cancers, bipolar, schizophrenia, autism,
diabetes, etc.

Any two random persons share about 60% variations
(SNV/SNP)

As we age, there are small mutations within our cells

20/01/2019
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Sequencing

The first step is to read (sequence) the DNA/MtDNA, and
represent the information as string of characters (A,C,G,T) in
computer.

The most popular technigue these days read short sequences
(hundreds of characters), and align.

Each position is read typically at least 30 times to get enough
confidence = Huge storage!!!

String alignment is then the key to final sequence - Need super-
computer to do this fast.

A DNA sequence is compared against the reference genome. Only
the difference (0.1%) need to be stored.

= This does not usually apply for MtDNA, as each cell has as many as 500
MtDNAs, they are slightly different! More different as we age.

20/01/2019

NHGRI FACT SHEETS

genome.gov

Make Thousands of Copies

Millions
of Genomic DNA Fragments
on a Surface

Source: https://www.genome.gov
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How does deep learning
work for biomedicine?

Y

Discovery Diagnosis Prognosis Efficiency
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http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal/
https://cdn1.iconfinder.com/

Nanopore sequencing ( electrical
signals 2 A|C|G|T)

DNA can be sequenced by threading it through a microscopic pore in a membrane.
Bases are identified by the way they affect ions flowing through the pore from one
side of the membrane to the other.

DNA DOUBLE
HELIX

@ A flow of ions through
the pore creates a current
Each base blocks the

© One protein : tlow to a different degree,
unzips the a altering the current.
DNA, helix into s
two strands. B
o
.
O A second Py

protein creates
a pore in the

-]
o

®
membrane @
and holds - oL
e e Source: ibtimes.co.uk
molecule. e © The adapter molecule

keeps bases in place long
enough for them to be
idendified electronically.

Fe

Continuous segmentation & labelling

20/01/2019 Source: technologyreview.com



Deep architectures for nanopore
seguencing

Aimed at real time recognition

The setting is similar to speech recognition!
- The early days used HMMs. Now LSTMs.

We will briefly review the latest:
Chiron (Teng et al., May 2018, UQ, Australia)

Other GRU/LSTM variants

Nanonet (Oxford Nanopore Technologies, 2016)
BasecRAWIler (Stoiber & Brown, May 2017)
DeepNano (Boza et al., June 2017, Comenius University in Bratislava, Slovakia)

20/01/2019
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Chiron
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1%3 conv, 256, no hias

%-Iu

1x1 conv, 256, no bas

T

Signal

HREF: Teng, Haotien, et al.

1x1 conv, 256

Dataset Basecaller Identity Rate
Metrichor 0.8650 (-0.0246)
Albacore 0.8896
Lambda BasecRAWIller | 0.8154 (-0.0742)
Chiron 0.8776 (-0.012)
Metrichor 0.8864 (-0.0193)
Albacore 0.901 (-0.0047)
L. coli BasecRAWIller | 0.8254 (-0.0803)
Chiron 0.9057
Metrichor 0.8802 -0.0117)
Albacore 0.8919
M. tuberculosis | BasecRAWIller | 0.8241 (-0.0678)
Chiron 0.8851 (-0.0068)
Metrichor 0.794 (-0.0446)
Albacore 0.8386
Human BasecRAWIller | 0.8149 (-0.0237)
Chiron 0.8154 (-0.0232)

"Chiron: Translating nanopore raw signal directly into nucleotide

sequence using deep learning”, GigaScience, Volume 7, Issue 5, 1 May 2018, giy037.

21




Other recent works

Li, Yu, et al. "DeepSimulator: a deep simulator for Nanopore
sequencing." Bioinformatics 1 (2018): 10.

Wick, Ryan R., Louise M. Judd, and Kathryn E. Holt. "Deepbinner: Demultiplexing
barcoded Oxford Nanopore reads with deep convolutional neural networks." PLoS

computational biology 14.11 (2018): e1006583.

Wang, Sheng, et al. "WaveNano: a signal-level nanopore base-caller via
simultaneous prediction of nucleotide labels and move labels through bi-directional

WaveNets." Quantitative Biology 6.4 (2018): 359-368.

20/01/2019 7



Opportunities for Deep Learning in Genomics

4
. I}

==
A %%
=y I
ey
o S : Functional F ;
o S : Acceleration of
Fy = annotation of the .
= [ Drug Discovery
g = human genome k
— - ]
é 1\\2 Bas Prediction of
S - 8 @ ’ i - disease-associated ‘ Disease Diagnosis
1 b8 & Learning :
B ST S mutations
NS L Oy
§ 2R @cr.(‘ .
T |
5 Liquid biopsy ‘ Early cancer
& b |
decomposition Detection

https: / /towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec914fe 1 8c2

https: //www.oreilly.com/ideas/deep-learning-meets-genome-biology

Genetic diagnostics
Refining drug targets

Pharmaceutical
development

Personalized medicine
Better health insurance

Synthetic biology
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https://towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec914fe18c2
https://www.oreilly.com/ideas/deep-learning-meets-genome-biology

Some Al problems

DNA is a book, easy to read (costs less than S1K to sequence), extreme difficult to
comprehend.
It has 3B characters (A,C,T,G), 46 volumes (chromosomes), 20K chapters.

The longest book has less than 10M characters, 13 volumes (“A la recherche du temps perdu" (In
Search of Lost Time), by Marcel Proust, 2012) — as recognized by Guinness World Records.

Short sequences (100 chars) are predictive of protein binding, also gene start/end.

Proteins are big 3D graphs interacting with the 1D-2D strings (DNA, RNA), and other
proteins & drugs (which are graphs themselves).

Long chains of influence, from SNP to cell, tissue and organ functions.

Viruses can be generated/edited on computer, hence discrete sequence generation
problem.

20/01/2019 24



Filling the genotypes =2 phenotypes gap

Ultimate goals:
Estimating explained variance in inheritability
Discover risk factors

Predicting individual phenotypes: Height, Glucose, BMI, 1Q, Edu, Mental, Cancers...

Some paths under investigation
Predicting the bio of the cells, DNA + MtDNA, and more

Statistical modeling of genetic architectures, e.g., Bayesian, mixed linear models, Gaussian
Processes.

Motif modeling with DNA/RNA/protein, e.g., predict binding sites
Developing data-efficient techniques for genomics
Integrating multimodalities



GWAS: Genome-Wide Association Study

Patients \

Sc ;{ - Non-patients
—
#= >3
Patient DNA Non-patient DNA

¥ N

Compare
differences e
to discover :Ei sisiis
SNPs associated + %
with diseases

Disease-specific SNPS

Non-disease SNPS

20/01/2019 Source: http:/ /vignetted.wikia.nocookie.net

Setting:

= For each DNA, only differences from a reference
genome are recorded.

= The differences are SNPs, one per dimension.

Problems

= Very high dimensional (typically hundreds of
thousands), low sample size (typically hundreds)

= Missing/unreliable data
= Typically very weak association

= Combating the False Discovery Rate (FDR) due to
multiple parallel hypotheses: Individual p-value
must be extremely small, e.g. 5x10e-8

26




1.00
0.75

0.50

Diet networks for GWAS

H#REF: Romero, Adriana, et al. "Diet Networks: Thin Parameters
for Fat Genomic." arXiv preprint arXiv:1611.09340 (2016).

0.25

0.00

Use a “hypernet” to generate the main

net. ¥ X W, W,
Features are embedded (not data ‘ ! I
instance). !
, MLP | MLP MLP

Unsupervised autoencoder as | ;
regularizer. ‘L ----- . W
Works well on country prediction on the MLP Emb. Emb
1000 Genomes Project dataset. W [ I
* But this is a relatively easy problem. PCA, even

random subspace can do quite well! X X' X'

(a) (b) (¢)

20/01/2019 Images taken from the paper



GWAS: Challenges

We are detecting rare events!!!

Results hard to replicate across studies.
* Model stability?

SNP = phenotypes seem impossible.

If it is (e.g., race prediction), little insights can
be drawn upon.

The pathway is deep and complex
* Room for deep learning?

Room for structured models
= SNP annotations

* Spatial relationships
* Evolutionary trees

20/01/2019

(NP PRI OB O

& C O | ® www.nat

THE GENOME-WIDE TIDE

Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their
sample sizes are increasing.

Sample sizes: W More than 200,000 100,000-199,999
H 50,000-99,999 W 10,000-49,999

Cumulative study number
]
o
(=]

2008 2009 2010 2011 2012 2013 2014 2015 2016

New concerns raised over value of genome-wide

disease studies

Large analyses dredge up 'peripheral’ genetic associations that offer little biological insight,

researchers say.

Ewen Callaway

15 June 2017

3 poF | & Rights & Permissions

‘ = Quinnl6.pdf ~

x CB-Insights_Health...pdf Show all X




Rooms for deep learning

Bridge the genotype-phenotype gap
Incorporating HUGE amount of data
Modelling the multiple layers of complex biological processes in between.

Starting from the DNA and its immediate functions, e.g., protein binding, gene start,
alternative splicing, SNP annotations.

Deep learning has shown to work well in cognitive domains, where human
can perform in less than a second.

We need to be super-human to bridge the gap.

New models for 2% of coding part, as well as 98% non-coding (probably
having regulatory functions)

Incorporating biological understanding into model, not the black-box.

20/01/2019 #Ref: https:/ /www.oreilly.com/ideas/deep-learning-meets-genome-biology 29



Use of feedforward nets: Tissue-
regulated splicing code

#REF: Leung, Michael KK, et al.
"Deep learning of the tissue-
regulated splicing

code." Bioinformatics 30.12
(2014):i121-i129.
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Use of CNNs: Discovery of DNA motifs

The restriction enzyme EcoRV (green)
Source: wikipedia.org/wiki/DNA-binding_protein

20/01/2019

[(Train

DeepBind (Alipanahi et al, Nature Biotech 2015)

a Current batch Motif scans Features %
of inputs %er e%ﬁ
5
== — = wmﬂ Meural netwaork ! i
Antaelii ;_,gg;_ Thresholds Weights i
Current model = - 4
parameters | ; :
Parameter = ’
updates
b 1. Calibrate 2. Train candidates 3. Test final model
Test
g P o8 ¥ (TN A
Evaluate . Use best . - 1 =
random o calibration gs I_" 0.50 oo m 0.93
calibrations | 1 (3 attempts) | 0@ { dalal) 4 b W
r . i Use alltraining data Use parameters
i et Average | : AUC ;
i 3-fold cross ualutuon o ualidalﬁgnn Y TR -~ 097 of best candidate

AUC

—- i Test data never seen :
Tlg;;:‘lg - during calibraticn or training

http://www.nature.com/nbt /journal /v33/n8 /full /nbt.3300.html
31



Use of CNNs:

FIDDLE

H#REF: Eser, Umut, and L. Stirling
Churchman. "FIDDLE: An integrative
deep learning framework for

functional genomic data
inference." bioRxiv (2016):
081380.

20/01/2019

Convolution Module

Connnected

'
e e gy, S i, e -

—
SoftMax

N
Output

DNA -5eq

NET-52q

MMase-seq
RMA-seq ‘

ChiP-seq

[ TARGET
== PREDICTIOMN U
- = e T - -

Ccnvalutlon Modules

Combined representation

0 OOmmmn O OOooon 0o

B
S

Prediction

ATS1

ﬁ CCR4

S
S

o

Crick

J TSS-seq (normalized)

Probabilitty density
o
o

Crick ‘ NET-seq

Watson

Crick

Watson

IR " N T

MNase-seq

A J, ol

ChiP-seq (TFIIB)

m

RNA-seq

—|OG)>

o

(11
i

“100bp

\

pla

WI

|
H I

NI\II/II

e

DNA sequence

yw

1394vL

SLNdNI



THE CHROMPUTER Chromatins

Integrating multiple inputs (1D, 2D signals, sequence) A doue et
to simulatenously predict multiple outputs
H2K2Tme3 H3K4mel H3IK4me3
H3ESme TF Binding
HZAZ Chromatin Mu“:i_t’aSk gi’ﬁ;ﬁ?ﬁg"éd'mem:
H3K36me3 State learning
Class Probabilities
| Fnd FCILﬂ'\."Ef | ‘Beads on a string’
[ ] form of chromatin
I I | 1= FC Layer | | |
| 2nd Combined FC Layer | [ 2ndcombined FClayer | | 2nd Combined FC Layer - .
| Hmnbi:adl’t:l.a'll!l | mcnnﬁnlachu-,-er | | mmﬂil:ﬂlmlﬂvﬂ | wil CONED CRC B I
| 3rd smoathing | | 3rd Smoothing | | 3rd smoathing | § HEES i ety
2nd set of Convolutional 2nd set of Convohrtional 2nd set of Convolutional é“j—l i e
e s s 1 m
| 2nd smoothing | | 2nd smoathing | | 2nd smoothing [ _—
| 25t set of convolutional Maps | | ist set of Convolutional Maps | | 1st set of Convolutional Maps | ;!:%i%iﬁfEi%EEEﬁ%EEHEEi
. + (O00000CN 00000 ORI
| o | i reig | | Sty | + NN OCCONC NN 00ND
‘ B | . _A T S0 o

Source: https://simons.berkeley.edu/sites/default /files/docs /4575 /201 6-kundaje-simonsinstitute- https://qph.ec.quoracdn.net
deeplearning.pdf



https://simons.berkeley.edu/sites/default/files/docs/4575/2016-kundaje-simonsinstitute-deeplearning.pdf
https://qph.ec.quoracdn.net/

User of CNN+RNNs: DanQ

One hot coding Convolution Max pooling Recurrent Dense Multi-task output

H#REF: Quang, Daniel, and Xiaohui Xie.
"DanQ: a hybrid convolutional and

recurrent deep neural network for

quantifying the function of DNA

sequences.” Nucleic acids research 44.11

(2016): e107-e107.

LU LOLYLLILLYILIVELO WY

20/01/2019 34



More models/frameworks

DragoNN
DeepChrome
DeepSEA
Basset

DeepBound

kmonmnd

one_filter dragonn parameters

seqg length': 1000,
num filters': [1],
conv_width': [10],
pool_width': 35}

ity localization simulation_parameters = {

{

SequanceDNN_learning curve(one filter dragonn) interpret data with SequencedW|mlti filter dragoss, simnlation data

: ﬁer*gﬁﬁqélﬂﬁ

Tutorials

IPython Notebook

Command Line
Interface

DragoNN

| TensorFlow ||

Theano

| CPU

GPU

Locally or on the cloud

|~ usage: dragonn [-h] {train,test,predict,interpret}
main script for DragoNN modeling of sequence data.
positional arguments:

{train, test,predict,interpret}
dragonn command help

train model training help

test model testing help
predict model prediction help
interpret model interpretation help

http: //kundajelab.github.io /dragonn



http://kundajelab.github.io/dragonn

What make biomedicine hard for
deep learning?

Great diversity but may be small in size

High uncertainty, low-quality/missing data

Reusable models do not usually exist

Human doesn’t know how to read biomedicine (Brendan Frey, U of Toronto)
Require deep thinking for a reasonable deep architecture

However, at the end of the day, we need only a few generic things:

= Vector 2 DNN (e.g., highway net) | Sequence = RNN (e.g., LSTM, GRU)
Repeated motifs = CNN | Set = Attention

Graphs = Conv graphs; Column Networks
Generative models =2 VAE; GAN

20/01/2019
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Agenda

Deep learning
* Neural architectures
* Generative models

Genomics
* Nanopore sequencing
= Genomics modelling

Drug design
" Bioactivity prediction
* Drug generation

Future outlook
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Advanced Al in Healthcare and Drug Discovery
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https: / /www.forbes.com/sites /yiannismouratidis /2018 /12 /16 /the-rising-star-companies-in-ai-drug-development
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Deep learning for drug discovery

12-15 years

$500M - $2B

Predicting bioactivities from |
m O I e C U I e S [ | "'Ilr.Target validation, |

' | Targetassay | i Cioleads | Phasel:

| Phasell: | Phaselll FDA review

”ag:;cicaﬁml construction | 4. oo et | efficacy, | efficacy, i) el :;
Drug representation, | and g | By | S| e | s l L
unsupervised learning from ” WT . T = ——
ki 2 years 1
ra hS | s-:reenl | " ;
o R L e —
Generate from bioactivities to
Nature Reviews | Drug Discovery

molecular graphs

#REF: Roses, Allen D. "Pharmacogenetics in drug discovery
and development: a translational perspective." Nature

reviews Drug discovery 7.10 (2008): 807-817.



Traditional method: Combinatorial
chemistry

Generate variations on a template

Returns a list of molecules from this template that
Bind to the pocket with good pharmacodynamics?
Have good pharmacokinetics?
Are synthetically accessible?

H#REF: Talk by Chloé-Agathe Azencott titled “Machine learning for therapeutic
research”, 12/10/2017
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First step: Map molecule - drug
properties (binding/acting)

Drugs are small bio-molecules

Traditional techniques:
= Graph kernels (ML)

* Molecular fingerprints (Chemistry)

C
%
-
ﬁ"

s ———Leu(LeuT)

TM3 } - Y24 ",
I\ 7 F253(LeﬁT}$' T™M6
’7 Nortriptyline F319

|

Modern techniques

= Molecule as graph: atoms as nodes,
chemical bonds as edges

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant

mechanism." Nature 503.7474 (201 3): 85-90.
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3 methods for bioactivity
prediction

Graph memory networks (GMN) for drug bioactivity
prediction

Graph attentional multi-label learning (GAML) for drug
multi-target binding & repurposing

Relational dynamic memory networks (RDMNs) for drug-
drug / drug-protein interaction

20/01/2019



Graph memory networks
(N

Task /query Bioactivities
_’l Controller l : Message passing as refining y
/" N atom representation
Memory
XTS5 o
molecule query

N A7
/\/'M'L q

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
womy - Networks for Molecular Activity Prediction.” ICPR’18. 42




- Graph memory networks: Results

FP+5VM
FP+RF
FP+GB
NeuralFP
GraphMem
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Figure 2: Fl-score (%) for NCI datasets. FP = Fingerprint; RF = Random Forests;: GBM = Gradient
Boosting Machine. Best view in color.
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Multi-target binding for drug
repurposing

(ylayQ: yd) CL'i

_—>® '
® .7
~1
V4 lg /
U3
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing
2/01/2019 approach.” Machine Learning, 2019. u



Dataset Metrics Fingerprint SMILES Molecular Graph

SVM | HWN GRU WL+SVM | CLN | GAML

m-AUC | 81.94 | 85.95 83.29 86.06 88.35 88.78

Ocancers M-AUC | 81.37 | 85.85 82.74 85.74 88.23 88.50
m-F'1 50.63 | 57.44 55.97 54.55 59.48 | 62.03%*
M-F1 50.71 | 57.29 55.99 54.54 59.50 | 62.14%*

m-AUC | 79.85 | 77.46 79.11 81.62 82.08 82.82
50proteins M-AUC | 74.77 | 73.78 75.25 77.60 78.36 | 79.35%*
m-F'1 17.21 16.37 16.08 17.04 18.37 | 20.47*

M-F1 18.40 15.87 14.96 18.66 17.72 | 19.83%*

Table 4: The performance in the multi-label classification with graph-structured
input (m-X: micro average of X; M-X: macro average). SVM and HWN work
on fingerprint representation; GRU works on string representation of molecule
known as SMILES; WL+BR and CLN work directly on graph representation.

Bold indicates better values. (*) p < 0.05.

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing

approach.” arXiv preprint arXiv:1804.00293(2018).




Drug-drug interaction via Relational
Dynam/c Memory Networks

2017 Drug Interactions Report: A
Growmg and Deadly Threat

20/01/2019
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#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational
dynamic memory networks." arXiv preprint arXiv:1808.04247(2018).
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Results on STITCH database

CCI900 CCIR00

AUC  Fl-score AUC  Fl-score
Random Forests 04.3 86.4 0.2 94.1
Highway Networks 04.7 38.4 08.5 94.7
DeepCCI [31] 96.5 02.2 99.1 97.3
RDMN 96.6 92.6 99.1 O7.4
RDMN+multiAtt 07.3 03.4 99.1 07.8
RDMN+FP 97.8 03.3 99.4 98.0
RDMN+4+multiAtt+FP 08.0 04.1 99.5 08.1
RDMN+SMILES 08.1 04.3 99.7 7.8

RDMN+multiAtt+SMILES  98.1 94.6 99.8 98.3

Table 3 The performance on the CCI datasets reported in AUC and Fl-score. FP stands
for fingerprint and multiAtt stands for multiple attentions.
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Drug generation

We now have methods for compute bioactivties of
a drug molecule

We need a reverse method to generate drug
molecules from desirable bioactivities

The space of drugs is estimated to be 1e+23 to
1le+60

= Only 1e+8 substances synthesized thus far.

It is impossible to model this space fully.

The current technologies are not mature for graph
generations.

Source: pharmafactz.com

But approximate techniques do exist.
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Old and new methods

Existing methods:
- Exhausted search through a fixed library

*Discrete local search: genetic algorithms,
similar discrete interpolation

*The search space is still large.

Deep learning methods:
* Faster, more efficient to find new drugs

= Able of generate molecules that are likely the
good candidates




Deep learning methods

Representing molecules using ~ Sequences

fingerprints *lterative methods
Representing graph as string, ~ Reinforcement learning
and use sequence VAEs or “Discrete objectives
GANSs.

Any combination of these +
Graph VAE & GAN memory.

*Model nodes & interactions

*Model cliques



Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep
adversarial autoencoders for new molecule development in oncology."

Oncotarget 8.7 (2017): 10883.

| Molecule =
fingerprints . 1
DECODER
EOIO?(IO—» —2Q0-00
/ ENCODER N

|

Input of the encoder : the fingerprint of a molecule

The decoder outputs the predicted fingerprint .

The generative model generates a vector E, which is then discriminated
from the latent vector of the real molecule by the discriminator.




N OH
. \
Molecule = string AR ,
__/ o
F
Using SMILES representation of drug, to convert a 3
molecular graph into a string . <3
- SMILES = Simplified Molecular-Input Line-Entry System '*‘_\\.a_{'l
. N N / \ > 4 O
Then using sequence-to-sequence + VAE/GAN to T N=7"%
. 2
model the continuous space that F
encodes/decodes SMILES strings .
= Allow easy optimization on the continuous space <3
C N 4 O
AL By ¢
1—/ — 0
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
20/01/2019 Source: wikipedia.org



VAE for drug space modelling

clceocel

CONTINUOUS MOLECULAR
REPRESENTATION
Latent Space

DECODER
Neural Network

Discrete Structure ENCODER
SMILES Neural Network

b

O

Property
f2)

Most Probable Decoding
argmax p(*lz)

Discrete Structure
SMILES

Uses VAE for sequence-to-sequence.

#REF: Bowman, Samuel R., et al. "Generating sentences
from a continuous space." arXiv preprint
arXiv:1511.06349 (2015).

Gomez-Bombarelli, Rafael, et al. "Automatic chemical
design using a data-driven continuous representation of
molecules." ACS Central Science (2016).
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1 N OH
Drawbacks of string . \
° HN N 0
representation —/ 5
F
String =2 graphs is not unique! 3
3
Lots of string are invalid B <
g N—\\4_<CJ
Precise 3D information is lost N _/‘N 7 N b
. . 1 _2 0
Short range in graph may become long range in F
string .
A better way is to encode/decode graph directly. C <‘”
N @]
4
A
= — O
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CCT)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
20/01/2019 Source: wikipedia.org



Better approach: Generating
molecular graphs directly

No regular, fixed-size structures

Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized over
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space

Agreement with or optimization of multiple “drug-like” objectives



GraphVAE

Handles irregular structures
Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph
Bounded by the size of the largest graph in training data.

Handles permutation invariance
Matching every pair of nodes in 2 graphs

Partially promotes diversity

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.
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Th h si
Latent vector for e graph size

whole grqph are bounded k>n
Adjacency matrix
P(G|G) by graph match ng
Y
: D
A " €
o
q5(2|G) =
~F gl
po(G|z) o

argmax

y/ y d C\)f

Edge types  Node types

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.
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Junction tree VAE

Junction tree is a way to build
a “thick-tree” out of a graph

Cluster vocab:
" rings

* bonds

= atoms

Jin, W.,, Barzilay, R., & Jaakkola, T. (201 8). Junction Tree
Variational Autoencoder for Molecular Graph
Generation. ICML’18.
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Algorithm 2 Tree decomposition of molecule G = (V, F)

V1 < the set of bonds (u, v) € F that do not belong to any rings.
V5 < the set of simple rings of GG.
for 1,7 in V5 do
Merge rings 71, r2 into one ring if they share more than two atoms (bridged rings).
end for
Vi < atoms being the intersection of three or more clusters in V7 U V5.
YV« VouUVi UV
E+—{(1,4,¢) e VXV xR||inj| >0}. Setc=oc0ifi € Vyorj e Vp, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, £).

Method Reconstruction Validity

CVAE 44.6% 0.7%

GVAE 53.7% 7.2%
Jin, W., Barzilay, R., & Jaakkola, T. SD-VAE?Z 76.2% 43.5%
(2018). Junction Tree Variational GraphVAE ) 13.59%

Autoencoder for Molecular Graph

Generation. ICML’18. JT-VAE 76.7 % 100.0%
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Graphs + Reinforcement learning

Generative graphs are very hard to get it right: The space is too large!

Reinforcement learning offers step-wise construction: one piece at a time
= A.k.a. Markov decision processes

= As before: Graphs offer properties estimation

{5)

|0 |NodelD
® Is|Nodelp At | Env 0.1 | Step reward
EdgeType update 0 | Final reward
(1) NodelD 0 |Stop
@ Node
— Edge
N |4 |NodelD
= 'S‘fﬁ;ﬁﬁe Sgple 5|NodelD A% | Env rger G 0.1 | Step reward
EdgeType update 1 | Final reward
MNode Stop
embedding
(d) Dynamics
(a) State — G, Scaffold—C  (b) GCPN —my(a;|G, U C) (C)Action —a, ~mg  p(Gpyq|Gray) (e) State — G,y (f) Reward —

20/01/2019 You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018). 00



Play ground: MOSES

ZINC
Clean Leads

4 591 276
molecules

* Macrocycles
= Atom types
* MCF

* PAINS

( 82 | Contributions

=

(%) Contributions

¥

MOSES
dataset

1936 962
molecules

Training

* Test with new

scaffolds

MODELS
Language model

VAE
AAE
ORGAN

Junction Tree VAE

METRICS
FCD

Diversity
Uniqueness

Validity

LEADERBOARD

— -«

as’b ’

https://medium.com /neuromation-io-blog /moses-a-40-week-journey-to-the-promised-land-of-molecular-generation-78b29453f7 5¢
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The outlook

Read an extremely long book of DNA and answer any queries
about it

Memory-augmented neural networks (MANN), and

Multiple hierarchical attentions and grammars 4
7
Instead of read, write (DNA/viruses/RNA/proteins) 7 N |
Recurrent net < > memory
Supper-rich genome SNP annotation N A |

The society of things (DNA/RNA/protein)
(LeCun, 2015)

Transfer learning between cell types, tissues and diseases

Biology-driven deep nets (e.g., knowledge as memory)

Handling rare events (e.g., the role of memory)
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