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AGENDA

Part I: Introduction to (mostly supervised) deep
learning

Part Il: Architecture engineering
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DEEP LEARNING IS SUPER HOT

EVERY INDUSTRY WANTS INTELLIGENCE

Organizations engaged with NVIDIA on deep learning

= Higher Ed = Gaming
® Internet = Oil & Gas
m Life Sciences u Other
= Development Tools
= Finance
= Media & Entertainment
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6000 NIPS Registrations

000 NIPS is in top 3 conf for deep
learning (others: ICML & ICLR)
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Hidden Layers Output Layer

WHAT IS DEEP LEARNING?

Fast answer: multilayer perceptrons (aka deep
neural networks) of the 1980s rebranded in

2006.
“But has a lot more hidden layers (10-100X).

Slow answer: multilayer abstraction, recursive
function, multiple steps of computation, iterative
estimation, compositionality of the world, better
priors, advances in compute, data & optimization,
neural architectures, etc.

http://blog.refu.co/wp-content /uploads /2009 /05 /mlp.png
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MUCH HAS CHANGED

1986 -

Hidden Layers Output Layer
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THE LEARNING IS ALSO CHANGING

Supervised learniga sy ised |earning

WEUVMEGUDN  Anywhere in between: Gl

semi-supervised learning,

A 9 B reinforcement learning, Vv~ Prodel(V)
lifelong learning. V) = Piata (V)

Will be quickly solveaTor easy T

problems (Andrew Ng)
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STARTING POINT: FEATURE LEARNING

In typical machine learning projects, 80-90% effort is on feature engineering

A right feature representation doesn't need much work. Simple linear methods often work
well.

Text: BOW, n-gram, POS, topics, stemming, ti-idf, etc.

Software: token, LOC, API calls, #loops, developer reputation, team complexity,
report readability, discussion length, etc.

Try yourself on Kaggle.com!

10/1/17 10



| DEEP LEARNING AS FEATURE LEARNING
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’ RECURRENT NEURAL NETWORKS

Sentence classification Sequence labelling

Classification
\ Imdgejp’rioning / Neural machine translation

one to one one to many many to one many to many many to many
t Q brot _ _ bt bt
t t P+t t ottt bttt

Source: hitp:/ /karpathy.github.io /assets /rnn /diags.jpeg
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CONVOLUTIONAL NETS
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’ DEEP LEARNING IN COGNITIVE DOMAINS

Google
e Translate m |
‘b A y(

Where human can
recognise, act or answer =
accurately within seconds ord

Y N

woman, crowd, cat,
& camera, holding, purple y

A purple camera with a woman. )
\, Awoman holding a camera in a crowd.

sentences k

A woman holding a cat. Y,

: ( #1 Awoman holding a
& camera in a crowd. ) http://cdn.cultofmac.com/
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’ DEEP LEARNING IN NON-COGNITIVE DOMAINS

- Where humans need extensive training to do well
= Domains that demand transparency & interpretability.

... healthcare

F N ... security
Q/ ... genetics, foods, water ...

10/1/117 15



WHY IT WORKS: PRINCIPLES

Expressiveness

* Can represent the complexity of the world => Feedforward nets are universal function
approximator

* Can compute anything computable => Recurrent nets are Turing-complete
Learnability

* Have mechanism to learn from the training signals => Neural nets are highly trainable
Generalizability

“Work on unseen data => Deep nets systems work in the wild (Self-driving cars, Google
Translate/Voice, AlphaGo)

10/1/17 16



WHY IT WORKS: PRACTICE

Strong/erX|bIe priors (80-90% gain):
“ Have good features > Feature engineering (Feature learning)
* Respect data structure = HMM, CRF, MRF, Bayesian nets (FFN, RNN, CNN)

" Theoretically motivated model structures, regularisation & sparsity 9 SVM, compressed sensing
(Architecture engineering + hidden norm)

* Respect the manifold assumption, class/region separation => Metric + semi-supervised learning
(Sesame net)

. Dlsenta)ngle factors of variation = PCA, ICA, FA (RBM, DBN, DBM, DDAE, VAE, GAN, multiplicative
neuron

Uncertainty quantification (1-5% gain):
* Leverage Bayesian, ensemble = RF, GBM (Dropout, batch-norm, Bayesian neural nets)

Sharing statistical strength (1-10% gain):

* Encourage model reuse =2 transfer learning, domain adaption, multitask learning, lifelong learning (Column Bundle,
Deep CCA, HyperNet, fast weight)
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WHAT IS ARCHITECTURE ENGINEERING?

The art and science of designing neural nets to better fit
problem/task/data/performance structures

Examples:

SUPERVISED: FFN, CNN, RNN, Mem Net, Neural Turing Machine, Dynamic Mem Net, DeepCare, Deepr,
Highway Net, LSTM, ResNet, HyperNet, DeepMat, Column Net, Column Bundle, TensorNet, etc.

UNSUPERVISED: RBM, DBN, DBM, DAE, DDAE, NADE, MADE, GAN, VAE, Moment Match Net, Ladder
Net, etc.

10/1/117
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TWO ISSUES IN LEARNING

1. Slow learning and local traps
Partly solved using Adaptive Stochastic Gradient Descents.
Better solved with Architecture engineering.

2. Data/model uncertainty and overfitting

Many models possible

Models are currently very big with hundreds of millions parameters

Deeper is more powerful, but more parameters.

= The best way to reduce model uncertainty: Architecture engineering



POPULAR ARCHITECTURES

Image classification: CNN + FFN

Video modelling: CNN + RNN

Image caption generation: CNN + RNN
Sentence classification: CNN + FFN
Sentence classification: RNN + FFN

Regular shapes (chain, tree, grid): CNN |
RNN

CNN

CNN - Object  oytputs LSTMs
Raw Frames  pretrained

Our LSTM network is connected to a
CNN for RGB frames or a
CNN for optical flow images

CNN - Action
pretrained



REGARDLESS OF PROBLEM TYPES, THERE
ARE JUST E8ERFIVE STEPS

Step O: Collect LOTS of high-quality data
“Corollary: Spend LOTS of time, $$ and compute power

Step 1: Specify the computational graph Y = F(X; W)
Step 2: Specify the loss L(W; D) for data D = {(X1,Y1), (X2,Y2), ... }

Step 3: Differentiate the loss w.r.t. W (now mostly automated)

Step 4: Optimize the loss (a lot of tools available)

10/1/117



SPECIFY COMPUTATIONAL GRAPHS

Everything is a computational graph from end-
to-end.

Each block has an input and an output, and
some tensor operators.

= Hence the name TensorFlow.

Vectors (1D), matrices (2D) and tensors N-D)

T Output

operations

Element-wise transforms

Automatic differentiation naturally supported

... Itis Lego building exercise!

10/1/117

Tensor
operations
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DEEP LEARNING AS NEW ELECTRONICS
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DEEP LEARNING AS NEW ELECTRONICS

Analogies:
= Neuron as feature detector = SENSOR, FILTER

* Multiplicative gates = AND gate, Transistor, Resistor
= Attention mechanism = SWITCH gate

* Memory + forgetting = Capacitor + leakage

= Skip-connection => Short circuit

» Computational graph => Circuit

* Compositionality = Modular design

Relationships
= Now: Electronics redesigned to support tensors in deep learning
= Prediction: Deep learning helps to design faster electronics

10/1/17
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#ARCHITECTURE-ENGINEERING @PRADA

Flexible gates (p-norm) Matrices (DeepMat)

Sequences (Long-deep highway)  Graphs & relations (Column

Events/episodes + intervention ~ Nets)
(DeepCare) Permutation (Neural Choice)

Predictive motifs (Deepr) Multi-X (Column Bundle)



’ Highway networks and Gated Recurrent Units
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A VERY SIMPLE SOLUTION: P-NORM

1 1

(] + ab)? =1, equivalently: ao = (1 —af)?

p=5 a; =09 «a=0.3865
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p-norm + highway network for vector data

(a) MiniBoo dataset

(b) Sensorless dataset

P epochs to 89% | Fl-score (%) P epochs to 99% | macro Fl-score (%)
0.8 N/A 8&.5 0.8 92 99.1

1 94 89.1 1 77 99.4

2 33 90.2 2 41 99.7

3 33 90.4 3 35 99.7




’ p-norm + GRU for sequential data
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PART II: ARCHITECTURE ENGINEERING

Sequences (LSTM + Long-deep)

10/1/117
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TOWARDS INTELLIGENT ASSISTANTS IN
SOFTWARE ENGINEERING

10/1/117

Motivations: Software is eating the world. Open source
codebases are very rich and large.

Goal: To model code, text, team, user, execution, project
& enabled business process => answer any queries by
developers, managers, users and business

For now:
* LSTM for code language model

* LD-RNN for report representation
- Stacked/deep inference (later)

33



Slide by Hoa Khanh Dam

A DEEP LANGUAGE MODEL FOR
SOFTWARE CODE (pam eT AL, FSE'16 SE+NL)

A good language model for source code would capture the long-term
dependencies

The model can be used for various prediction tasks, e.g. defect prediction, code
duplication, bug localization, etc.

The model can be extended to model software and its development process.

UNIVERSITY
T OF WOLLONGONG
=) AUSTRALIA

)DEAKIN

UNIVERSITY AUSTRALIA




Slide by Hoa Khanh Dam

CHARACTERISTICS OF SOFTWARE CODE

Repetitiveness
E.g. for (inti=0;i<n;i++)

Localness
E.g. for (int size may appear more often that for (int i in some source files.

Rich and explicit structural information
E.g. nested loops, inheritance hierarchies

Long-term dependencies
try and catch (in Java) or file open and close are not immediately followed each other.

35



Slide by Hoa Khanh Dam

CODE LANGUAGE MODEL

@ FileWriter writer = new FileWriter(file );
writer.write(‘‘This is an example’);

int count = 0;

System.out. prinltin (‘*Long gap’ );

A
writer . flush ():
writer.close ():

writer = new FileWriter () ; <eos>
h1 h2 h3 h4 hk-g hk.1 hk
t t 1 t ) ) )
LSTM —»{ LSTM |—» LSTM |—» LSTM | ... —»/LSTM —»|LSTM | LSTM
i £ - 1
Wi W3 W3 Wy W2 Wic-1 Wk
FileWriter writer = new close ()

Previous work has applied RNNs to model software code (White et al, MSR 2015)

RNNs however do not capture the long-term dependencies in code



Slide by Hoa Khanh Dam

EXPERIMENTS

Built dataset of 10 Java projects: Ant, Batik, Cassandra, Eclipse-E4, Log4l, Lucene,
MavenZ2, Maven3, Xalan-J, and Xerces.

Comments and blank lines removed. Each source code file is tokenized to produce a
sequence of code tokens.

“ Integers, real numbers, exponential notation, hexadecimal numbers replaced with
<num> token, and constant strings replaced with <str> token.

“ Replaced less “popular” tokens with <unk>

Code corpus of 6,103,191 code tokens, with a vocabulary of 81,213 unique tokens.

37



Slide by Hoa Khanh Dam

EXPERIMENTS (CONT,)

sent-len | embed-dim | RNN | LSTM | improv %
10 13.49 12.86 4.7
20 10.38 9.66 6.9
50 0 7.03 | 6.81 14.1
100 ” 7.20 | 6.40 11.1
200 6.64 5.60 15.7
500 6.48 4.72 27.2
20 7.96 7.11 10.7
o 50 7.20 6.40 11.1
)0 —
10 100 7.23 D.72 20.9
200 9.14 5.68 37.9

Table 1: Perplexity on test data (the smaller the
better).

Both RNN and LSTM improve with more training data (whose size grows with sequence length).

LSTM consistently performs better than RNN: 4.7% improvement to 27.2% (varying sequence
length), 10.7% to 37.9% (varying embedding size).

38



STORY POINT ESTIMATION

m Spring XD / XD-2970
- : : " Standardize XD logging to align with Spring Boot Tite
Traditional estimation methods

Type: (=) Story Status: DONE
require experts, LOC or function Prory * Mejor Resoluion Complete
, ! Affects Version/s: 1.2GA Fix Version/s: 1.2 RC1
pOIntS. Story Points: 8
. Sprint: Sprint 49
* Not applicable early pescrintion
- 1 In XD today we use commons-logging or slf4j APIs bound to log4j at runtime (configured with
ExpenSIVe log4j.properties).

— . . . Boot uses slf4j APIs backed by logback. This causes some build incompatibilities building a
'eatu re eng INEer| ng IS nOt easy! component that depends on spring-xd-dirt and spring-boot, requiring specific dependency

exclusions. In order to simplify building and troubleshooting log dependencies, XD should
standardize on

\Ieeds a Cheap Way to Start from sifdj APIs (replace any commons-logging Loggers with SIf4j). This is internal only, and would

not impact users who are used to seeing log4j.properties. An additional step is to replace log4j

u St a d OCU m e nta‘tio n with logback. This change would be visible to end users but will provide us greater affinity with

8 boot and improve the developer experience. If we make this change it should go into 1.2 GA.

10/1/117 39



D-RNN FOR REPORT
REPRESENTATION T o o

(CHOETKIERTIKUL ET AL, WORK IN PROGRESS) story point

estimate “— 0:0 .:0
/ document repl tat
D = Long Deep pooiing
. h
| STM for document representation - < hy | e s R s T
Highway-net with tied parameters for I A A
story point estimation \
>
Embed < ‘ ‘
\
Sfomdc\tAo{] )\(/15/2 Iog?;,ltwlg:;3 \::)/4 cl)ﬁgs wi\fi\/é
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RESULTS
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Fig. 4. Top-500 word clusters used in the Apache’s issue reports

10/1/117

MAE = Mean Absolute Error SA=1(1—-— MAE x 100
A"IAErguess

Proj  Techniquen @~ MAE SA | Proj  Technique @ MAE SA

ME LD-RNN .02 59.03 JI LD-RNN .38 59.52
LSTM+RF 1.08 57.57 LSTM+RF 1.71  49.71
BoW+RF 1.31 48.66 BoW+RF 2.10 38.34
Mean 1.64 35.61 Mean 248 27.06
Median 1.73  32.01 Median 293 13.88

UG LD-RNN .03 52.66 | MD LD-RNN 597 50.29
LSTM+RF 1.07  50.70 LSTM+RF 9.86 17.86
BoW+RF 1.19 45.24 BoW+RF 10.20  15.07
Mean 1.48 32.13 Mean 10.90 0.16
Median 1.60 26.29 Median 7.18 40.16

AS LD-RNN .36 60.26 | DM LD-RNN 3.77 47.87
LSTM+RF 1.62 52.38 LSTM+RF 451 37.71
BoW+RF 1.83 46.34 BoW+RF 478 33.84
Mean 208 39.02 Mean 5.29 26.85
Median 1.84 46.17 Median 482 33.38

AP LD-RNN 271 42,58 | MU LD-RNN 2.18  40.09
LSTM+RF 297 37.09 LSTM+RF 223 38.73
BoW+RF 296 37.34 BoW+RF 2.31 36.64
Mean 3.15 33.30 Mean 259 28.82
Median 371  21.54 Median 2.69 26.07
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PART II: ARCHITECTURE ENGINEERING

Episodes + intervention
(DeepCare)

10/1/117
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PREDICTIVE HEALTH USING ELECTRONIC
MEDICAL RECORDS (EMR)

visits /admissions prediction point
I . * Time-stamped
: L ; o * Coded data: diagnosis,
‘ Hime gap ‘ 9 procedure & medication
- <:>‘ o < > = <:> ¢ | * Text not considered, but in
x| % x| principle can be mapped in
""""""""""""""""""" to vector using LSTM
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EMR CHALLENGES

Long-term dependencies
Episodic, event-based with time-stamps
nterventions change the natural dynamics of diseases

Fach EMR is a sequence of sets of multiple types



LONG SHORT-TERM MEMORY (LSTM)

'

Input

10/1/117

iy = o0 (Wizy + Uihi—1 + b;)

fi=o0 (met + Ufht_l + bf)
ot =0 (Woxs + Ushi—1 + by)
ci = fir xci—1 + 4 x tanh (Wexy + Uchyi—1 + b,)

h; = o, * tanh(c;)
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current aggregation over

state time — prediction

DEEPCARE: DYNAMICS |

prev. memory

history current previous time current
states data intervention gap intervention
\
|

101/17 New in DeepCare 46



DEEPCARE:

STRUCTURE

10/1/117

Latent states

Vector embedding

LSTM

Multiscale pooling

> LSTM

Future risks

Neural network

Admission

______________

>

Long short-term
memory

<~ Time gap

History

\\
\
\
|
1
1
/
II
N )/
/
/I
LSTM |-~ 7> LSTM |
J N
d i
1
| -
I
I )
! i
\ i
B ‘\; """ }:*':1'
-k e
' |: :I
|
|
O =
I
‘ .................. ||LJ|1
L
» <€ Fyture >
47



50
40
30
20
10

Intervention recommendation (precision@3)

DEEPCARE: PREDICTION RESULTS

12 months 3 months

10/1/117

Diabetes Mental

® Markov ™ DeepCare

12 months 3 months
80
75
70
65
-1l »
55
Diabetes Mental

B SVM ®m Random Forests m DeepCare

Unplanned readmission prediction (F-score)
48



PART II: ARCHITECTURE ENGINEERING

Predictive motifs (Deepr +
Deepic + DeepURL)

10/1/117
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DEEPR: CNN FOR REPEATED MOTIFS AND
SHORT SEQUENCES (NGUYEN ET AL, J-BHI, 2016)

V|S|’rs/adm|55|ons prediction point // output
T A 4 :
/ . .
=g .'“L‘n o J— / @ prediction
A : : E A E ; 1 /
i ° L | ° i L K record
I i time gap ! i ! i )/ vector

E-; ;-; E-E é?f‘———”/ @mcx-pooling
*i ik > C
S —— - — ININININININEEE
convolution --

redelecrs ¥ DI N® ometeren
K el 1)UL IIIIIIIII

@ embedding

---------------------

____________________________

@ sequencing T T \“": T;;:,}}?' """"""

——————————
__________

101/17 phrase/admission time gaps/transfer 50



DISEASE EMBEDDING &

MOTIFS DETECTION

E11 + 148 + 150

Type 2 diabetes mellitus
Atrial fibrillation and flutter
Heart failure

E11 +150 + N17

Type 2 diabetes mellitus
Heart failure
Acute kidney failure

10/1/117
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DEEPIC: MORTALITY PREDICTION IN

INTENSIVE CARE UNITS (WORK IN PROGRESS)  [meraremermvare

00:00,RecordID,132539
00:00,Age,54
00:00,Gender,0
00:00,Height,-1
00:00,ICUType,4
00:00,Weight,-1
00:07,GCS,15
00:07,HR,73

00:07 ,NIDiasABP,65
00:07,NIMAP,92.33

Existing methods: LSTM with
missingness and time-gap as input.

New method: Deepic

Ste pS: 00:07,NISysABP,147
, ) 00:07,RespRate, 19
* Measurement quantization 00:07,Temp,35.1
: C 00:07,Urine,900
* Time gap quantization 00:37,HR,77
. . 00:37,NIDiasABP,58
- Sequencmg words into sentence 00:37 NIMAPS |
00:37,NISysABP,157
- CN N http://www.healthpages.org/brain-injury /brain-injury-intensive-care-unit-icu/ 00:37,Re5qute’] 9
00:37,Temp,35.6
00:37,Urine, 60

Data: Physionet 2012

10/1/117 52



DEEPIC: SYMBOLIC & TIME GAP REPRESENTATION
OF DATA

measurement points  srediction point S/ © output
Lo T /
— ’ T
— ;"!“: ;’"'“: - Y @ prediction
] A LA . !
. e o )/ record
@ timegap | @ Py ’

é H §<::>; ] K:% H §<:>§ q o /,’/ vector @) max-pooling
SR — N 00

ol ROSOSOSOSOSOSON N s
K el UL IIIIIIIII

------------------------------------------------------------------

@ embedding

) N . ________,' ‘ l_________ __________,' k ___________________________ ;
@ sequencing AEN SIS 4 >

____________
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LAVASOFT

L SOFT

Ad-Aware

SECURITY WARNING! )4

Visiting this site may harm your computer!

By clicking on the “"Continue to site” button,
you understand that this site has been flagged and may harm your computer,

MALICIOUS URL CLASSIFICATION

54



MODEL OF MALICIOUS URLS

Train on 900K malicious URLs
1,000K good URLs
Accuracy: 26%

No feature engineering!

e e

record
vector

Safe /Unsafe
@ Prediction with FFN

@ max-pooling

IR ®

vector

h t t

10/1/117

P

/[ /] w ww .

S

convolution --
motif detection

@ Embedding (may

be one-hot)
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PART II: ARCHITECTURE ENGINEERING

Matrices (DeepMat)

10/1/117
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DEEPMAT: MATRICES GENERALIZE VECTORS
(KIEN DO ET AL. 2017)

ECG/EEG: row (channel), column Documents of multiple parts (e.qg.,
(time steps) title, abstract, etc).

Healthcare: row (measures), column  Multiple outcomes: time-horizons

(time interval) Video as a sequence of 2D images

-ace of multiple views Video as a sequence of 3D short

mage with multiple distortions clips

mage of multiple over-lapping Correlation/interaction matrix over
hatches/parts time: neoronal net, email, friendship
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VEC2VEC > MAT2MAT

i

I

=)

——

T

= =| T
| | |

Y =WHpA

Hi = 0 (AtHt—1Ct + By)

H, = O'(VXU+B1)



MATRIX RNN

The forward pass at a layer:

H =0UX\V, +U'H,_1V}, + B)



MATRIX-MATRIX MAPPING

channel
mapping

X

input channels

output channels

feature
mapping
input features

output features



MATRIX-NN VS VECTOR-NN

| matrix-NN vector-NN | Error | # Parameters
H1: (20, 20) H1: 400 matrix-NN: 2.45% matrix-NN: 3,030
H2: (10, 10) H2: 100 vector-NN: 1.46% vector-NN: 355,110
H1: (50, 50) H1: 2500 matrix-NN: 1.73% matrix-NN: 11,710
H2: (20, 20) H2: 400 vector-NN: 1.40% vector-NN: 2,966,910
H1: (100, 100) H1: 10000 matrix-NN: 1.38% matrix-NN: 53,110
H2: (50, 50) H2: 2500 vector-NN: >1.40% vector-NN: 32,877,510

Table 1: Comparison between Matrix Nets and Vector Nets over MNIST

| matrix-NN vector-NN | Error | Parameters
H1: (20, 20) H1: 400 matrix-NN: 4.26% matrix-NN: 6,538
H2: (10, 10) H2: 100 vector-NN: 1.86% vector-NN: 850,738
H1: (50, 50) H1: 2500 matrix-NN: 2.15% matrix-NN: 24,638
H2: (20, 20) H2: 400 vector-NN: 2.41% vector-NN: 2,966,910
H1: (100, 100) H1: 10000 matrix-NN: 1.76% matrix-NN: 126,538
H2: (50, 50) H2: 2500 vector-NN: >2.41% vector-NN: 45,267,538

Table 2: Comparison between Matrix Nets and Vector Nets over Extended Yale Face B




MATRIX RNN VS VECTOR RNN

vector-RNN # hidden units: [100, 200, 500, 700, 1000, 1200, 1500, 2000]
matrix-RNN # hidden units: [(10, 10), (20, 20), (30, 30), (50, 50), (80, 80), (100, 100), (150, 150), (200, 200)]

96Performance of Matrix RNN and Vector RNN over MovingMNIST 3.0 le7 # parameters of Matrix RNN and Vector RNN
=—a matrix =—a matrix
94 e—e vector e—e vector
oo vector-drop 2.5F
92
é’o 2.0}
90 n
g :
o -~ 1.5}
- o
88 #
1.0}
86 |-
aal 0.5
82 Il Il 1 | | 1 1 0'0 - " m —— T T
0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000

hidden units hidden units



PART II: ARCHITECTURE ENGINEERING

Graphs & relations (Column
Nets)
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EXPLICIT RELATIONS

Canonical problem: collective classification, a.k.a. structured outputs, networked classifiers

\

JBAS-7 [ ]

Stacked inference

s ' = (Neural) conditional random fields
) JBOP-1

JBIDE-1469 JBAS-14

" Column networks

@ Existing task

® Delayed task

O Non-delayed task
Each node has its own atiributes
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TASK DEPENDENCY IN SOFTWARE PROJECT

(CHOETKIERTIKUL ET AL, WORK IN PROGRESS)

Lol _--->9
AR JBIDE-1694 JBIDE-1717
BIDE-1492~ -
@9'4 ‘gg@ﬁ\ ,r'ep £ 02~ " 1BDS-655
v NNt

& 15IDA-788 dev = same developer

JBIDE-1492 oie” rep = same reporter

Project manager P ver com = same component
‘k’ : fix = same fix version
ver = same affect version
JBIDE-1694 JBIDE-799

top = same topic

4 N\
Approximately, one-third of IT projects went over

the scheduled time

/.

-
/

82% software projects missed schedules

10117 -



 STACKED INFERENCE

es €2 7 ” Y Depth is achieved by stacking
- |® /. & /‘ several classifiers.
] NP )
1 h .) \‘ K‘J \. Lower classifiers are frozen.
4
T T i 1
X1 Xo X3 X4

Relation graph Stacked inference
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’ COLUMN NETWORKS: INSPIRATION




COLUMN NETWORKS: DESIGN

(TRANG PHAM ET AL, @ AAAI'16)

Thin column
/\

Ya

)
I
—

Relation graph Stacked learning Column nets
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PART II: ARCHITECTURE ENGINEERING

Permutation (Neural Choice)
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KEY PROBLEM: RANKING

00 "
" Raking web documents in search engines Baiwﬁrg b BI ng

" Movie recommendation

" Advertisement placement GOO le

" Tag recommendation 8

= Expert finding in a community network S

Google Search ‘ I'm Feeling Lucky

® Friend ranking in a social network
m 22¢

LEARNING TO RANK

CHALLENGE " Y2

Home Datasets Instructions | Registration

10/1/117
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= Web documents in search engines
= query: keywords
= Movie recommendation
EARNING-TO-RANK oo
= Advertisement placement
= query: a Web page
" Tag recommendation
" query: a web object

Learn to rank responses to a query

® Friend ranking in a social network

A ML approach to Information Retrieval " query: an user

* Instead of hand-engineering similarity measures, learn it

Two key elements
* Choice model => rank loss (how right/wrong is a ranked list?)
* Scoring function = mapping features into score (how good is the choice?)
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CHOICE-BY-ELIMINATION

Forward selection does not fit competitive
situations @“
= Sport tournament, grant selection

N-—1
Choice-by-elimination:
P(m) = TN 7 | TN
= Given a set of items with associated utility (m) = Q) 1_{ Q7 | mit1:n)
f —

* For each step, identify the worst item and remove it
“ Repeat until one item is left exp (—f(zx,))

_ , Q(T*—-£|7T-i+1:f\-") —
Rank the items by the reverse order of removal Z;;‘:l exp (— I (ij ))



HIGHWAY NETS FOR O3

RANKING : ", °
____________ O,K_______»‘ rank score
S N
The networks represent the

scoring function ) @ Q) @ R @ gate

All networks are linked

through the rank loss — neural
° ° ° ° Y ' < 1.
choice by elimination 2 @ bt @ X gate

It is a structured output

problem (permutation)

10117 Parameter-tying highway networks 7



YAHOO! L2R CHALLENGE (2010)

LEARNING TO RANK

CHALLENGE "™ Y=g

Home Datasets Instructions Registration Submission Leaderboard FAQs ‘Workshop

= 19,944 queries
Tasks

The competition is divided into two tracks: | 473, ] 34 documents

1. A standard leaming to rank track, using only the larger dataset.
2. Atransfer learning track, where the goal is to leverage the training set from set1

better ranking function on setz. " 5] 9 Unique feqtures

You can compete in one or both tracks. The relevance labels on the validation and test

] iNe
not given. The goal is to train a ranking function on the training set and to predict a ran Pe rfo rmance medsu red In:

urls for each query on the validation and test sets.

= Expected Reciprocal Rank (ERR)

Evaluation
Submissions will be evaluated using two criteria: the Mormalized Discounted Cumulati o . . o
(NDCG) and the Expected Reciprocal Rank (ERR), defined as follows: u NOI‘mCI Ilsed DISCOUHTed CumUIGHVG qun (N DCG)
min(10,n) )
DCG 2 —1
NDCG = — i ¢ DCG = [
Ideal DCG and Z log, (1 + 1)
ERR g 11\’ | 1-R h R 21
> SR [[(0 - R(y) with R(y) = = 74

=1 i=1



As of 2011 — Forward selection + quadratic rank function

ERR NDCG@]l NDCG@5
RESULTS Rank Regress 04882 0683 0.6072
RankNet 0.4919 0.6903 0.6698
Ranking SVM  0.4868 0.6797 0.6662
ListMLE 0.4955 0.6993 0.6705
PairTies-D 0.4941 0.6944 0.6725
PairTies-RK 0.4946 0.6970 0.6716
Rank 41 out of 1500 ™ pnNiop-FD 05038 07137 0.6762
PMOP-Gibbs 0.5037 0.7105 0.6792
As of 2016 — Backward elimination + deep nets PMOP-MH _ 0.5045 0.7139 0.6790
Placket-Luce Choice by elimination
Rank function| ERR NDCG@]1 NDCG@5| ERR NDCG@1 NDCG@5
SGTB 0.497  0.697 0.673 |0.506  0.705 0.681
Neural nets  [0.501 0.705 0.688 |0.509 0.719 0.697 «+~ Rank?
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Multi-X (Column Bundle)
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IMPLICIT RELATIONS IN CO-OCCURRENCE
OF MULTI-[X] WITHIN A CONTEXT

X can be:
A &

“Labels
The common principle is to

“ Tasks
“Views/parts

Much of recent exploit the shared statistical
machine learning! strength

*Instances
=Sources




(M

COLUMN BUNDLE FOR N-TO-M MAPPING

(PHAM ET AL, WORK IN PROGRESS)

] S~
~—| |

o [

» label 1 label 2

~___ |

Column l/\\i

Cross-sectional star topology
Part A Part B



RESULT: MULTILABEL LEARNING

Method Movielens tmc2007 MediaMill
MicroF1 | H Loss MicroF1 | H Loss MicroF1 | H Loss
PCC 55.6 0.229 73.2 0.058 56.0 0.035
BPNN 53.8 0.196 66.9 0.067 55.4 0.039
LLSF 51.8 0.208 64.9 0.064 54.0 0.031
HWN 53.0 0.190 76.0 0.053 22.4 0.035
CLB 54.3 0.191 76.5 0.049 56.7 0.032
Table 1

10/1/117

H Loss: Hamming Loss
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RESULT: MULTIVIEW LEARNING

Method . Youtube | NUS-WIDE
MicroF1l | H Loss || MicroF1 | H Loss
HW 97.3 0.027 53.1 0.022
2views-MRBM-HW 95.2 0.048 50.0 0.023
2views-CLB 97.9 0.021 56.9 0.019
CLB 98.0 0.020 57.7 0.019

10/1/117

Table 2
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RESULT: MULTI-INSTANCE LEARNING

Method IMDB

MicroF'1 H Loss
HW 83.9 0.163
CLB 85.4 0.150




RESOURCES

@oxne

K [

TensorFlow

10/1/117

P

g
A

\!.
¥
\

hua Bengio,

N

v,
s

E«AI?
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Thank youl!

http://ahsanqawl.com/2015/10/qa/
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S The

The goodrold

-
»
&

Group theory (Lie algebra, renormalisation group, spin-
class)

Differential Turing machines
Memory, attention & reasoning
Reinforcement learning & planning
Lifelong learning

Dropouts & batch-norm

Rectifier linear transforms & skip-connections
Highway nets, LSTM & CNN

Representation learning (RBM, DBN, DBM, DDAE)
Ensemble

Back-propagation

Adaptive stochastic gradient




TWO MAJOR VIEWS OF “DEPTH™ IN DEEP
LEARNING

- [2006-2012] Learning layered representations, from raw data to abstracted goal (DBN, DBM, SDAE, GSN).
= Typically 2-3 layers.
= High hope for unsupervised learning. A conference set up for this: ICLR, starting in 2013.

= We will return in Part lIl.

* [1991-1997] & [2012-2016] Learning using multiple steps, from data to goal (LSTM/GRU, NTM/DNC, N2N
Mem, HWN, CLN).

= Reach hundreds if not thousands layers.
= Learning as credit-assignment.

= Supervised learning won.

= Unsupervised learning took a detour (VAE, GAN, NADE/MADE).

10/1/17

85



WHEN DOES DEEP LEARNING WORK?

Lots of data (e.g., millions)

Strong, clean training signals (e.g., when human can provide correct labels —
cognitive domains).
Andrew Ng of Baidu: When humans do well within sub-second.

Data structures are well-defined (e.g., image, speech, NLP, video)
Data is compositional (luckily, most data are like this)

The more primitive (raw) the data, the more benefit of using deep learning.

10/1/17
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BONUS: HOW TO POSITION E ‘
timate
“[...] the dynamics of the game will evolve. In the long GUIDE
run, the right way of playing football is to position yourselt
intelligently and to wait for the ball to come to you. You'll SOCCER
need to run up and down a bit, either to respond to how P ITIO
pS NS

the play is evolving or to get out of the way of the scrum
when it looks like it might flatten you.” (Neil Lawrence,
//2015, now with Amazon)

';\
{‘ 3 . -

DL

http:/ /inverseprobability.com /2015 /07 /12 /Thoughts-on-ICML-2015/ .
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THE ROOM IS WIDE OPEN

Architecture engineering
Non-cognitive apps
Unsupervised learning

Graphs

Learning while preserving privacy

Modelling of domain invariance

Better data efficiency
Multimodality

Learning under adversarial stress
Better optimization

Going Bayesian

http:/ /smerity.com/articles /2016 /architectures_are_the_new_feature_engineering.html



’ Early approach to heavier-than-air flight

A e — a2

10 cm
10 cm -70 ms -31 ms 36 ms 73 ms 92 ms
& SN . —————— F————— . | R ae——— .
108 m 124 m 135 ms 151 ms 17

http:/ /people.eku.edu /ritchisong /55 4notes2.html



z(m)

y(m)

0.01

0.005

-0.005

-0.01

-0.01

-0.005

0.005

0.01

Side View

-0.015

-0.06

-0.015




A FASTER WAY

wWing Airfoil /\

Enabling factors
v’ Aerodynamics

v’ Powerful engines
v’ Light materials
v’ Advances in control

v’ Established safety practices




