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Integrate-and-fire neuron

L0 Wo

axon from a neuron ™

~@® synapse
. WoI

Wo T2

Relations, messaqing & attention

/" cell body

Zwimi +b

f (Z w;L; + b)

output axon

activation
function

andreykurenkov.com
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DL can learn from data, and fake it

P

P female6.png M malel.png M male2.png M  male3.png

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.
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DL can generate sequences nicely

SYSTEM PROMPT
(HUMAN-WRITTEN)

MODEL

COMPLETION
(MACHINE-
WRITTEN, 10 TRIES)

8/06/2019

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact that the unicorns
spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown

to science.

Now, after almost two centuries, the mystery of what sparked this odd

phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz,
and several companions, were exploring the Andes Mountains when they

found a small valley, with no other animals or humans. Pérez noticed that
the valley had what appeared to be a natural fountain, surrounded by two

peaks of rock and silver snow.

GPT-2, https:/ /openai.com/blog/better-language-models /H#fn?2



https://openai.com/blog/better-language-models/#fn2

‘ What can DL do to genomics?

Deep learning offerings
Function approximation

Program approximation

Program synthesis

Deep density estimation
Disentangling factors of variation
Capturing data structures
Generating realistic data (sequences)
Question-answering

Information extraction

Knowledge graph construction and
completion

8/06/2019

Inspire

Solve

Genomic problems
GWAS, gene-disease mapping
Binding site identification
Function prediction
Drug-target binding

Drug design

Structure prediction
Sequence generation
Functional genomics
Optimizing sequences

Organizing the (knowledge about)
Oomics universe
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“Diet networks” for GWAS

H#REF: Romero, Adriana, et al. "Diet Networks:
Thin Parameters for Fat Genomic" ICLR (2017).

Use a “hypernet” to generate the main net.
Features are embedded (not data instance).
Unsupervised autoencoder as regularizer.

Works well on country prediction on the 1000
Genomes Project dataset.

= But this is a relatively easy problem. PCA, even
random subspace can do quite well!

8/06/2019
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G ene ex p Fress i on: Deep TRIAGE: Interpretable and Individualised

Biomarker Scores using Attention Mechanism for the
D ee pT R I AG E Classification of Breast Cancer Sub-types

Adham Beykikhoshk!:", Thomas P. Quinn", Samuel C. Lee!, Truyen Tran!, and Svetha
Venkatesh!

1C-=r|.l:.m for Pattern Rscognition and Dato Anobytics, Deakin University, Geelong, Australin
* adham.bephiddackin edu.aw; contectlomquinndgmail. com

—_— B —_— Abstract
Motivation: Ereast cancer 15 & collection of multiple tlssue pathologles, each with a distinet
molecular signatore that correlates with patlent prognosls and responss to therapy, Aoccorately differ-

entiating hetween hreast cancer sub-types 1s an Important part of clinical declsion-making. Already,
this problem has been addressed using machine learning methods that separate tisspe samples nbo
distinet groups. However, thers remalns unexplamed heterogenelty within the established sub-types
that cannot be resolved by the commonly used classification algorithms. In this paper, we propose &
nowel deeq. learning architecturs, called DeepTRIAGE [ Deep learning for the THactahle Individualized
Analysts of Gene Expresgion), which not only classifies cancer sub-types with comparable accuracy,
bt slmultanesusly assipns each patlent thelr own set of Interpretable and individualised biomarker

seores, These personallsed scores deseribe how Important each feature 1s in the classificatlon of each

A ﬂ A patient, and can be analysed post-hoc to generate new hypothesss about Intra-class heterogensality.
Results: We apply the DespTRIAGE framework to classify the gene expression signatures of
luminal A and luminal B breast cancer sub-types, and illustrate its use for genes and gene set (La.,

G0 and KEGG) features. Using DeepTRIAGE, wa find that the GINE1 gene and the kinetochore
organlsatlon GO term are the most iImportant features for luminal sub-type classification. Through
classiflcation, DeepTRIAGE stmultaneously reveals heterogeneity within the luminal A blomarker
seores that signiflicantly associate with tumoor stage placing all luminal samples along & continuom

http://distill.pub /2016 /augmented-rnns/

of severity.
Atte ntio n m ec h a n is m Availabdlity and fmplementation: The proposed model ts implemented in Python using Py-
Torch framework. The analysls s done In Python and R, All Metheds and models are frecly avallable

from https: //githuboeom fadham /BliomarkerA thend.

8/06/2019 10
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DeepBind (Alipanahi et al, Nature Biotech 2015)

a Current batch Motif scans Features %u *’"
s

ldentifying curent movel — _
binding Puamer il pp—

S i t e S b 1. Calibrate 2. Train candidates 3. Test final model
i e
fi2h

Test
AL

0.93

L

LUse best @)
calibration 5

(3 attempts) | g2

Evaluate
random .

calibrations .
1300

;. «~ ¢ Useall training data . 5 Use parameters
. 3-fold cross validation éﬁ‘;?ﬂ“ﬂ P ( = e EL;S Z - of best candidate
i TP = i £ ram 5 ; E
- [[Train Validatel. Auc = ) :

i Test dala never seen _
. during calibration or training

Trainin
data :

8/06/2019 http://www.nature.com/nbt /journal /v33/n8 /full /nbt.3300.html



|I\/Iu|tip|e
modalities

H#REF: Eser, Umut, and L. Stirling
Churchman. "FIDDLE: An integrative
deep learning framework for

functional genomic data
inference." bioRxiv (2016):
081380.
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THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence)
to simulatenously predict multiple outputs

H3KSme TF Binding
H2AZ Chromatin Multi-task
H3K36me3 State learning
Class Probabilities
| Y S FE: Layer |
I 1= FC Layer |
| | | I
[ 2ndcombined Fclaer | [ 2nd combined Fiayer | | 2nd Combined FC Layer | I - B
| Hmnbi:ledﬂz:upr | mcmﬁnladﬂ:l.wu- | | mmﬂinladmlam | il |} 'L g
| 3rd Smoathing | 3rd smoothing | | 3rd smoothing | fHEES |
2Znd set of convolutional 2nd set of Convolutional 2nd set of Convolutional nin s i
eps e s " rm
L edsmothne | [ ondsmootive | [ __2ndsmpodine ] 'EI_I_UDI'"]'E"IZIZI'E"ZIII]III"IZI"
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Source: https://simons.berkeley.edu/sites /default /files/docs /4575 /201 6-kundaje-simonsinstitute-

deeplearning.pdf

Chromatins

DNA double helix

NI *'ﬂ"ii\.u}lm"

;_"J_, Core histone dimers:
" O — 2xH2A/H2B

‘Beads on a string’
form of chromatin

Chromatin fiber of
packed nucleosomes

1,400nm

Chromosome

https://gph.ec.quoracdn.net



https://simons.berkeley.edu/sites/default/files/docs/4575/2016-kundaje-simonsinstitute-deeplearning.pdf
https://qph.ec.quoracdn.net/
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From vector to graph with
PAN: Personalized Annotation Networks

Nguyen, Thin, Samuel C. Lee,
Thomas P. Quinn, Buu Truong,
Xiaomei Li, Truyen Tran, Svetha
Venkatesh, and Thuc Duy Le.
"Personalized Annotation-based
Networks (PAN) for the Prediction
of Breast Cancer

Relapse." bioRxiv (2019):
534628.

8/06/2019
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Predicting molecular bioactivities as
qguerying a graph

(D

Task/query Bioactivities
—’[ Controller ]—*

e Memory - ] ., _ P ' ;_ 4 ‘ ~ lq-

k F\ -7 R . a5 V) . A - .
\\ N e R / : I :

N R 4 / ; Nortriptyline

\\ \ 4 = |

‘ Drug i d Kevi . :
lecul #REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
molecule

ray structure of dopamine transporter elucidates antidepressant
mechanism." Nature 503.7474 (2013): 85-90.

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
smmy - Networks for Molecular Activity Prediction." ICPR’18. 18



Multi-target binding for drug
repurposing as graph multi-labeling

(yla Y2, y3) mi_l
U2 t—1
t—1 Ty
U1 . ll y
t—1 ~~ z5 ;
t—1
V4 l3 /
U3
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing
8/06/2019 approach.” Machine Learning, 2019. 9



Dataset Metrics Fingerprint SMILES Molecular Graph

SVM | HWN GRU WL+SVM | CLN | GAML

m-AUC | 81.94 | 85.95 83.29 86.06 88.35 88.78

Oeancers M-AUC | 81.37 | 85.85 82.74 85.74 88.23 88.50
m-F1 50.63 | 57.44 55.97 54.55 59.48 | 62.03%*

M-F1 50.71 | 57.29 55.99 54.54 59.50 | 62.14%*

m-AUC | 79.85 | 77.46 79.11 81.62 82.08 82.82

50proteins M-AUC | 74.77 | 73.78 75.25 77.60 78.36 | 79.35%*
m-F1 17.21 16.37 16.08 17.04 18.37 | 20.47*

M-F1 18.40 | 15.87 14.96 18.66 17.72 | 19.83%*

Table 4: The performance in the multi-label classification with graph-structured
input (m-X: micro average of X; M-X: macro average). SVM and HWN work
on fingerprint representation; GRU works on string representation of molecule
known as SMILES; WL+BR and CLN work directly on graph representation.

Bold indicates better values. (*) p < 0.05.

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing

approach.” arXiv preprint arXiv:1804.00293(2018).




Drug-target binding as graph reasoning

Reasoning is to deduce knowledge from previously
acquired knowledge in response to a query (or a cues)

Can be formulated as Question-Answering or Graph-
Graph interaction:

*Knowledge base: Binding targets (e.g., RNA/protein sequence, or
3D structures), as a graph

“Query: Drug (e.g., SMILES string, or molecular graph)
*Answer: Affinity, binding sites, modulating effects

8/06/2019 2



An analogy from Video Question Answering

Video as sequence of frame, but
also a complex 3D graph of
objects, actions and scenes

- 2 Protein, RNA

Question as sequence of words,
but also a complex dependency
graph of concepts

- = Protein, drug

Answer as facts (what and where)
and deduced knowledge.

- = Affinity, binding sites,
modulation effect

8/06/2019

Input Clips CNN Features  Clip Representation

. |+ | »-|

\

Regression\
/ {Answer

“Classlﬂcaﬂonf

\/

¥ words

- |oint Features 4—'

I
I
1
' 8

#Ref: Minh-Thao Le, Vuong Le, Truyen Tran, Learning to Reason with
Relational Video Representation for Question Answering, In Submission
2019.
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Drug-drug, drug-target & protein-
protein as graph-graph interaction

Query —>[ Controller ]—> Output

BN

Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv

preprint arXiv:1808.04247(2018).
8/06/2019



Inferring (bio) relations as knowledge

graph completion

belong_to
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https:/ /www.zdnet.com/article /salesforce-research-knowledge-graphs-and-machine-
learning-to-power-einstein/
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Do, Kien, Truyen Tran, and Svetha Venkatesh. "Knowledge

graph embedding with multiple relation projections." 2018

24th International Conference on Pattern Recognition (ICPR).

IEEE, 2018.
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Drug design as structured machine
translation, aka conditional generation

Can be formulated as structured machine translation:

"Inverse mapping of (knowledge base + binding properties) to
(query) = One to many relationship.

Representing graph as string Sequences

(e.g., SMILES), and use “Iterative methods

sequence VAEs or GANS. Reinforcement learning
Graph VAE & GAN “Discrete objectives

“Model nodes & interactions Any combination of these +

*Model cliques memory.

8/06/2019



Drug design as reinforcement learning

{5)

|0 |NodelD
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You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018).
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Opportunities for Deep Learning in Genomics

/
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https: / /towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec? 1 4fe18c2

https: //www.oreilly.com /ideas/deep-learning-meets-genome-biology

Genetic diagnostics
Refining drug targets

Pharmaceutical
development

Personalized medicine
Better health insurance

Synthetic biology

28


https://towardsdatascience.com/opportunities-and-obstacles-for-deep-learning-in-biology-and-medicine-6ec914fe18c2
https://www.oreilly.com/ideas/deep-learning-meets-genome-biology

D I 1 Bertolero, M. A,, Blevins, A. S., Baum, G. L., Gur, R.
e e p e a r n I n g Ve rS u S C., Gur, R. E., Roalf, D. R., ... & Bassett, D. S.

e n O m i C S (2019). The network architecture of the human
g brain is modularly encoded in the genome. arXiv
preprint arXiv:1905.07606.

Neuron €= Nucleotide, amino acid (building bricks)

Neural networks €2 Chemical/biological networks (the house)
Message passing €<= Signalling (the communication)

Neural programs ¢ Proteins/RNAs (the operating machines)
Neural Turing machine > DNA (data + instruction + control)
Neural universe €2 Omics universe (the computational universe)
Learning over time €< Co-evolution (adaptation)

Super Neural Turing machine ¢> DNA + Evolution (data + program + adaption)

8/06/2019 2



Living bodies as multiple programs

Interacting

“We need new (neural)
capabilities:

* Truly Turing machine: programs
can be stored and called when
needed.

= Can solve BIG problem with
many sub-modules.

= = Composionality

= Can reason given existing
structures and knowledge bases

8/06/2019

Neural Stored-program Memory
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