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https://twitter.com/nvidia/status/1010545517405835264



(Real) Turing 
machine
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It is possible to invent a single 
machine which can be used to 
compute any computable sequence. If 
this machine U is supplied with the tape 
on the beginning of which is written the 
string of quintuples separated by 
semicolons of some computing 
machine M, then U will compute the 
same sequence as M.

Wikipedia
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Can we learn from data a model that 
is as powerful as a Turing machine?



Agenda

Brief review of deep learning
Neural Turing machine (NTM)
Dual-controlling for read and write (PAKDD’18)
Dual-view in sequences (KDD’18)
Bringing variability in output sequences  (NIPS’18 ?)
Bringing relational structures into memory (IJCAI’17 WS+)
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2016

Deep 
learning in a 
nutshell

http://blog.refu.co/wp-content/uploads/2009/05/mlp.png

1986
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Let’s review current offerings

Feedforward nets (FFN)

Recurrent nets (RNN)

Convolutional nets (CNN)

Message-passing graph nets (MPGNN)

Universal transformer

…..

Work surprisingly well on LOTS of important 
problems

Enter the age of differentiable programming
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BUTS …

No storage of intermediate results.

Little choices over what to compute and what 
to use

Little support for complex chained reasoning

Little support for rapid switching of tasks



Searching for better priors

Translation invariance in CNN

Recurrence in RNN

Permutation invariance in attentions and graph 
neural networks

Memory for complex computation

Memory-augmented neural networks 
(MANN)

(LeCun, 2015)



What is missing? A memory
Use multiple pieces of information

Store intermediate results (RAM like)

Episodic recall of previous tasks (Tape like)

Encode/compress & generate/decompress 
long sequences

Learn/store programs (e.g., fast weights)

Store and query external knowledge

Spatial memory for navigation
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Rare but important events (e.g., snake 
bite)

Needed for complex control

Short-cuts for ease of gradient 
propagation = constant path length

Division of labour: program, execution 
and storage

Working-memory is an indicator of IQ in 
human



Example: Code language model

10

Still needs a better memory for:

Repetitiveness
E.g. for (int i = 0; i < n; i++)

Localness
E.g. for (int size may appear more often 
that for (int i in some source files. 

Very long sequence (big file, or char level)



Example: Electronic 
medical records

Three interwoven processes:
Disease progression
Interventions & care processes
Recording rules
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Source: medicalbillingcodings.org

visits/admissions

time gap ?

prediction point

Abstraction

Modelling

Need memory to handle thousands of events



EMR visualisation

A prototype system developed iHops (our spin-off)



Conjecture: Healthcare is Turing computational

Healthcare processes as executable 
computer program obeying hidden 
“grammars”

The “grammars” are learnable through 
observational data

With “generative grammars”, entire health 
trajectory can be simulated.
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Get sick

See 
doctor

Enjoy 
life



Other possible applications of memory

Video captioning

QA, VQA

Machine translation
Machine reading (stories, books, DNA)

Business process continuation

Software execution
Code generation
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Graph as sequence of edges

Event sequences

Graph traversal
Algorithm learning (e.g., sort)

Dialog systems (e.g., chat bots)

Reinforcement learning agents



Neural Turing machine (NTM)
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RNN: theoretically powerful, 
practically limited

Classification
Image captioning

Sentence classification

Neural machine translation

Sequence labelling

Source: http://karpathy.github.io/assets/rnn/diags.jpeg
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Neural Turing machine (NTM)

A controller that takes 
input/output and talks to an 
external memory module.

Memory has read/write 
operations.

The main issue is where to write, 
and how to update the memory 
state.
All operations are differentiable.

https://rylanschaeffer.github.io/content/research/neural_turing_machine/main.html



NTM operations
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https://medium.com/@aidangomez/the-neural-turing-machine-79f6e806c0a1

https://rylanschaeffer.github.io
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NTM unrolled in time with LSTM as controller

#Ref: https://medium.com/snips-ai/ntm-lasagne-a-library-for-neural-turing-machines-in-lasagne-2cdce6837315



Differentiable neural computer (DNC)
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Source: deepmind.com

#REF: Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external 
memory.” Nature 538.7626 (2016): 471-476.

https://rylanschaeffer.github.io

20162014



Dual-controlling for read and write
Hung Le, Truyen Tran & Svetha Venkatesh

PAKDD’18
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MANN with dual control (DC-MANN)
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Two controllers, for input & output

The encoder reads the input sequence 
is encoded into memory

The decoder reads the memory and 
produces a sequence of output symbols 

During decoding, the memory is write-
protected (DCw-MANN)

#REF: Hung Le, Truyen Tran, and Svetha Venkatesh. “Dual Control Memory 
Augmented Neural Networks for Treatment Recommendations”, PAKDD18. 



DC-MANN

LSTM LSTM LSTM LSTM LSTM LSTM

E11 N18

1916 1910

I10 1916 1910

1893
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#Ref: https://medium.com/snips-ai/ntm-lasagne-a-library-for-neural-turing-machines-in-lasagne-2cdce6837315



Result: Odd-Even Sequence Prediction
 Input: a sequence of random odd numbers  output: 
a sequence of even numbers
Output:

24

Write-
protected 

helps

Without memory, 
LSTMs fail the task



Treatment recommendation

E11 I10 N18 1916 1910 Z86 E11 A08 1952 1893 E11 T81 A08

Admission 1 Admission N-1 Admission N (current)

? ? ?

Predict output sequence:
Treatments for current admission
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Result: Medicine prescription
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Compared to DNC
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Dual-view sequential problems
Hung Le, Truyen Tran & Svetha Venkatesh

KDD’18
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Synchronous two-view sequential 
learning

Visual

Speech

1 2 3 4



Asynchronous two-view sequential 
learning Healthcare: medicine prescription 

E11 I10 N18

1916 1910

Z86 E11

1952 1893

DOCU100L ACET325

Diagnoses

Procedures

Medicines



Asynchronous two-view sequential 
learning Healthcare: disease progression 

E11 I10 N18

1916 1910

Z86 E11

DOCU100LACET325

Previous diagnoses

Previous interventions

Future diagnoses ???



Intra-view & inter-view 
interactions

output



Dual architecture

Dual Memory Neural Computer (DMNC). There are two encoders and one decoder implemented as LSTMs. 
The dash arrows represent cross-memory accessing in early-fusion mode

Intra-interaction

Inter-interaction

Long-term 
dependencies

#Ref: Le, Hung, Truyen Tran, and Svetha Venkatesh. "Dual Memory Neural Computer for 
Asynchronous Two-view Sequential Learning." KDD18.



Accuracy

Learning curve

Simple sum, but distant, asynchronous
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Bringing variability in output sequences
Hung Le, Truyen Tran & Svetha Venkatesh

Submitted to NIPS’18

30/08/2018 37



Motivation: Dialog system
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A dialog system needs to maintain the history of chat (e.g., could be 
hours)
Memory is needed

The generation of response needs to be flexible, adapting to variation 
of moods, styles
 Current techniques are mostly based on LSTM, leading to “stiff” default responses 

(e.g., “I see”).

There are many ways to express the same thought
 Variational generative methods are needed.



Variational Auto-Encoder (VAE)
(Kingma & Welling, 2014)

Two separate processes: generative (hidden  visible) versus 
recognition (visible  hidden)

http://kvfrans.com/variational-autoencoders-explained/

Gaussian 
hidden 
variables

Data

Generative 
net

Recognising
net



Variational memory encoder-
decoder (VMED)
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Conditional Variational Auto-Encoder

contextgenerated

latent variables

VMED

contextgenerated

latent variables memory

reads



30/08/2018 41



Sample response
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Sample response (2)
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Bringing relational structures into memory
Trang Pham, Truyen Tran & Svetha Venkatesh

IJCAI’17 WS+
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NTM as matrix machine

Controller and memory 
operations can be 
conceptualized as matrix 
operations
 Controller is a vector 

changing over time

 Memory is a matrix 
changing over time
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#REF: Kien Do, Truyen Tran, 
Svetha Venkatesh, “Learning 
Deep Matrix Representations”, 
arXiv preprint arXiv:1703.01454 

Recurrent dynamics



Idea: Relational memory
Independent memory slots not suitable for relational reasoning

Human working memory sub-processes seem inter-dependent
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Relational structure

New memory proposal
New information

Transformation

Old memory
Time-aware bias



Relational Dynamic Memory Network 
(DMNN)
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Controller

Memory

Graph

Query Output

Read WriteOutput
Controller

Memory

Query

Read Write

Relational Dynamic Memory NetworkNTM



RDMN unrolled
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Input process

Memory process

Output process

Controller process

Message passing



Drug-disease 
response
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Molecule  Bioactivity



Chemical reaction
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Molecules  Reaction



Team @ Deakin (A2I2)
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Thanks to many people who have created beautiful graphics & open-source programming frameworks.
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