Could the laws of physics explain not just the universe but also the workings of our minds?

Physical Principles in Intelligence: The 2024 Nobel Prize in Physics

Trần Thế Truyền

Applied AI Institute (A2I2), Deakin University

truyen.tran@deakin.edu.au | truyentran.github.io

"The Nobel Prize in Physics 2024 recognizes methods that lay the foundation for the development of artificial intelligence."

John Hopfield

- Condensed matter physics
- Statistical physics
- Biophysics
- Molecular biology
- Complex systems
- Neuroscience

John Hopfield (born 1933)

Terry Sejnowski (born 1947)

David MacKay (1967-2016)

Geoffrey Everest Hinton

- Psychology
- Cognitive science
- Artificial intelligence
- Ethics

Hinton (born 1933)

Ghahramani (born

1970)

Sutskever (born 1986)

LeCun (born 1960)

Welling (born 1968)

Agenda

- The context
- Hopfield networks
- Boltzmann machines
- Deep learning
- Discussion

ChatGPT: Generate a picture of the universe and the mind

STEPHE WOLFRAN A NEW KIND C SCIENCE

Physics, life, mind and computation

Great topics studied for thousands of years

- Addressed by many traditions (Taoism, Buddhism, Hinduism, etc)
- Asked by philosophers, physicists, computer scientists, etc.

Only recently connections have been made

- What is life?
- Is the universe a computer?
- Is mind computation?

•

Schrödinger Vhat is Life?

Early models of human cognition

- Associationism: Humans learn through association
- 400BC-1900AD: Plato, John Locke, David Hume, David Hartley, James Mill, John Stuart Mill, Alexander Bain, Ivan Pavlov.

Connectionism

- Mid 1800s: The brain is a mass of interconnected neurons
- Alexander Bain, philosopher, psychologist, mathematician, logician, linguist, professor
 - 1873: The information is in the connections *Mind and body.*
- Connectionist machines
 - Network of processing elements
 - All world knowledge is stored in the connections between the elements
- Neural networks are connectionist machines
 - As opposed to Von Neumann Machines

Impulses carried toward cell body

Neurons in silico

20/11/2024 Credits: Fei-Fei Li, Ranjay Krishna, Danfei Xu

Neural networks as model of mind

- How does the mind work?
 - Perceiving
 - Remembering
 - Learning
 - Reasoning, planning
 - Doing
- Parallel Distributed Processing (1986)
- 1990s: Mind as recurrent neural network

1980s: Parallel Distributed Processing

- Information is stored in many places (distributed)
 - Each concept is represented by many neurons
 - Each neuron plays role in many concepts
- Activations are sparse (enabling selectivity and invariance)
- Popular these days: Embedding of everything into the vector space

Memory is essential to intelligence

- Memory is the ability to store, retain and recall information
- Brain memory stores items, events and high-level structures
- Computer memory stores data and temporary variables

Associative memory is powerful

FourFive things in Al

Representation

Inference

Learning

Stochasticity

Scale with compute

Agenda

Ξ	The context
(%) (%)	Hopfield networks
=	Boltzmann machines
	Deep learning
•••	Discussion

Questions

How do we teach the network to store *a specific* pattern or set of patterns?

How many patterns can we store?

How to "retrieve" patterns better..

^{20/11/2024} Credits: Bhiksha Raj, Rita Singh

Hopfield network

- Symmetric weights
- No self-connection
- Update either asynchronous or synchronous
- Neurons attract or repel each other
- The dynamic is deterministic

$$s_i \leftarrow egin{cases} +1 & ext{if } \sum_j w_{ij} s_j \geq heta_i, \ -1 & ext{otherwise}. \end{cases}$$

Update as energy minimization

- Start at some initial pattern (configuration)
- Let the network "runs"
- The convergence is a local attractor (stable)
- The operation is essentially Iterated Local Mode (ICM) known in (spatial) statistics, 1975.

20/11/2024

A spin glass system

- Each of the minima is a "stored" pattern
- => If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a *content addressable memory*
 - Recall memory content from partial or corrupt values
 - Also called *associative memory*
- Indeed, current frontier AI models are!

Examples: Image denoising

To store one pattern

Hebbian learning rule

$$E = -\sum_{i} \sum_{j < i} w_{ji} y_{j} y_{i} = -\sum_{i} \sum_{j < i} y_{i}^{2} y_{j}^{2}$$
"Neurons that fire together, wire together"

$$= -\sum_{i} \sum_{j < i} 1 = -0.5N(N-1)$$
This is the global minimum

$$sign\left(\sum_{j \neq i} w_{ji} y_{j}\right) = sign\left(\sum_{j \neq i} y_{j} y_{i} y_{j}\right)$$

$$= sign\left(\sum_{j \neq i} y_{j}^{2} y_{i}\right) = sign(y_{i}) = y_{i}$$

To store multiple patterns

$$w_{ji} = \sum_{\mathbf{y}_p \in \{\mathbf{y}_p\}} y_i^p y_j^p$$

- **Hopfield**: For a network of *N* neurons can store up to ~0.15*N* patterns through Hebbian learning
 - Provided they are "far" enough
- Later: Guarantees that a network of N bits trained via Hebbian learning can store 0.14N random patterns with less than 0.4% probability that they will be unstable
- A better method: Energy-based methods!
 - Contrastive learning (e.g., CLIP)

Agenda

A stochastic Hopfield network with hidden nodes

- Capacity of Hopfield network can be vastly increased by introducing hidden nodes
- Stochasticity gives principled ways to handle uncertainty, randomness and statistical properties
- **Observation**: The behavior of the Hopfield net is analogous to annealed dynamics of a spin glass characterized by a Boltzmann distribution
- Linked to MaxEnt principle (Ma Entropy)
 - Everything else equal ...

The Helmholtz Free Energy of a System

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

$$P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)$$

$$E(S) = -\sum_{i < j} w_{ij} s_i s_j$$
Gibbs distribution

^{20/11/2024} Credits: Wikipedia, Bhiksha Raj, Rita Singh

Training a Boltzmann machine

20/11/2024 Credits: Wikipedia, Bhiksha Raj, Rita Singh

Generalising Boltzmann machines

Factor graph

Example: Markov random fields

Image from LabelMe

Inference as Bethe free-energy minimization

- Inference problems
 - \rightarrow Estimate MAP as energy minimization
 - →Compute marginal probability
 - →Compute expectation & normalisation constant
- Key solution = Belief propagation
 - = Sum-Product algorithm in factor graphs.

20/11/2024

Heskes, Tom. "Stable fixed points of loopy belief propagation are local minima of the bethe free energy." *Advances in neural information processing systems*. 2003.

Figure credit: Jonathan Hui

Generation: Markov networks for mixed data types

Restricted Boltzmann machines (RBMs)

- Hidden variables to denote underlying unobserved processes
- Stack of RBMs is akin to renormalization trick in physics

Restricted Boltzmann Machine (~1994, 2001)

Agenda

Deep models via layer stacking Theoretically powerful, but very difficult to train!

Block representation

Start of deep learning: Layer-wise training

Later: Stochastic gradient descent (SGD)

- Using mini-batch to smooth out gradient
- Use large enough learning rate to get over poor local minima
- Periodically reduce the learning rate to land into a good local minima
- It sounds like **Simulated Annealing**, but without proven global minima
- Works well in practice since the energy landscape is a <u>funnel</u>

Modern SGD: Adaptive

Adagrad (Duchi et al, 2011)

Column Networks inspired from columnar structure of brain

Generalized message passing

#REF: Pham, Trang, et al. "Column Networks for Collective Classification." AAAI. 2017.

Deep learning vs electronics

- Neuron as feature detector \rightarrow SENSOR, FILTER
- Multiplicative gates → AND gate, Transistor, Resistor
- Attention mechanism \rightarrow SWITCH gate
- Memory + forgetting \rightarrow Capacitor + leakage
- Skip-connection \rightarrow Short circuit
- Computational graph \rightarrow Circuit
- Compositionality \rightarrow Modular design

2015 - Attention is a key for efficiency

- Visual attention in human: Focus on specific parts of visual inputs to compute the adequate responses.
- Examples:
 - We focus on objects rather than the background of an image.
 - We skim text by looking at important words.
- In neural computation, we need to select the most relevance piece of information and ignore all other parts

Photo: programmersought

2017 - Transformer

- Tokenization
- Token encoding
- Position coding
- Sparsity
- Exploit spatiotemporal structure

Transformer: Key ideas

- Use self-similarity to refine token's representation (embedding).
 - "June is happy" -> June is represented as a person's name.
 - Hidden contexts are borrowed from other sentences that share tokens/motifs/patterns, e.g., "She is happy", "Her name is June", etc.
 - Akin to retrieval: matching query to key.
- Context is simply other tokens co-occurring in the same text segment.
 - Related to "co-location".
 - How big is context? \rightarrow Small window, a sentence, a paragraph, the whole doc.
 - What is about relative position? \rightarrow Position coding.

Positional encoding

- The Transformer relaxes the sequentiality of data
 - Positional encoding to embed sequential order in model

Large Language Models are Transformer trained on the entire Internet!

Yann LeCun • 3rd+ VP & Chief Al Scientist at Meta 11mo • 🔇 + Follow ···

The weak reasoning abilities of LLMs are partially compensated by their large associative memory capacity.

They are a bit like students who have learned the material by rote but haven't really built deep mental models of the underlying reality.

Transformers are modern Hopfield net

$$lse(\beta, \boldsymbol{x}) = \beta^{-1} log \left(\sum_{i=1}^{N} exp(\beta x_i) \right)$$

$$E = -lse(\beta, \boldsymbol{X}^T \boldsymbol{\xi}) + \frac{1}{2} \boldsymbol{\xi}^T \boldsymbol{\xi} + \beta^{-1} log N + \frac{1}{2} M^2$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

$$\boldsymbol{\xi}^{new} = f(\boldsymbol{\xi}) = \boldsymbol{X} \boldsymbol{p} = \boldsymbol{X} softmax(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

20/11/2024

Ramsauer, Hubert, et al. "Hopfield networks is all you need." *arXiv preprint arXiv:2008.02217* (2020).

45

LARGE LANGUAGE MODEL HIGHLIGHTS (MAR/2024)

2024

Credit: DeepMind

Convergence: One model for all – the case of Gato (2022)

Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez et al. "A generalist agent." *arXiv preprint arXiv:2205.06175* (2022). 47

Why one-model-for-all possible?

- The world is regular: Rules, patterns, motifs, grammars, recurrence
 - World models are learnable from data!
- Human brain gives an example
 - One brain, but capable of processing all modalities, doing plenty of tasks, and learning from different kind of training signals.
 - Thinking at high level is independent of input modalities and task-specific skills.
- Advances in modern AI:
 - Model flexibility
 - Powerful training and inference machines
 - Smart tricks

Current Generative Al

GenAls are compression engine

Prompting is conditioning for the (preferenceguided) decompression.

GenAls are approximate program database Prompting is retrieving an approximate program that takes input and delivers output.

GenAls are World Model

We can live entirely in simulation!

Agenda

A very brief timeline of 100 years

Memories are stored at attractors in a landscape

ition 60

The interdisciplinary nature of modern physics, crossing with:

- Computation
- Information theory
- Cognition.

Concepts foundational to AI stem from physics (energy landscapes and statistical mechanics).

- Reshaping the discipline's boundaries.
- Foundational work => practical AI systems.

Timeliness & innovation: AI has pervasive societal impact.

The bridges between physics, mind, and computer science

Information, Physics, and Computation

Marc Mézard Andrea Montanari

Criticisms

20/11/2024

Al belongs to computer science or technology, not physics.

Prioritizing applied technologies over fundamental discoveries.

Inadequate recognition of prior works Prior to Hopfield network (1982): Lenz-Ising recurrent architecture (1925); Amari (1972), Nakano (1972).

Prior to Boltzmann machine (1985): Glauber (1963); Ivakhnenko & Lapa (1965); Edwards-Anderson (1975); Sherrington & Kirkpatrick (1975)

Prior to layer-wise training of DBN (2006): Ivakhnenko & Lapa (1965); Schmidhuber (1990, 1991)

Prior to backprop (1986): Amari & Saito (1967), Linnainmaa, 1970; Werbos (1982)

Prior to modern deep networks: Ivakhnenko's 1971

Looking into the future

Giorgio Parisi, 2021 Nobel in Physics for complex systems Solved Sherrington-Kirkpatrick model (1979) Al as a discovery tool: e.g., quantum mechanics, materials science, and complex systems. Interdisciplinary: Physics + AI + cognitive sciences for study of universe and human cognition.

Philosophical implications: Informational fabric => the nature of consciousness, intelligence, and the universe's computational structure.

Future-ready scientists: Technology + science.

Al as physics

- Intelligence as self-organizing phenomena: reducing ignorance/entropy
- Neural networks as a statistical mechanical system
- Learning as variational optimization
- Inference free-energy minimization
- Phase transition may occur in AI systems
- Ultimate AI must solve the consciousness problem, which may require quantum physics (or a new physics)

Life has low entropy

Al for Physics

Xie, Tian, and Jeffrey C. Grossman. "Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties." *Physical review letters* 120.14 (2018): 145301.

Thank you!