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Agenda

• Introduction

• Part A: Learning-to-reason framework

• Part B: Reasoning over unstructured and structured data

• Part C: Memory | Data efficiency | Recursive reasoning
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DL: 8 years snapshot



DL has been fantastic, but …

• It is great at interpolating

•  data hungry to cover all variations and smooth local manifolds

•  little systematic generalization (novel combinations)

• Lack of human-perceived reasoning capability

• Lack natural mechanism to incorporate prior knowledge, e.g., common sense

• No built-in causal mechanisms

•  Have trust issues!

• To be fair, may of these problems are common in statistical learning!
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Why still DL in 2021?

Theoretical
Expressiveness: Neural 
nets can approximate any 
function.

Learnability: Neural  nets 
are trained easily.

Generalisability: Neural 
nets generalize surprisingly 
well to unseen data.

Practical
Generality: Applicable to 
many domains.

Competitive: DL is hard to 
beat as long as there are 
data to train.

Scalability: DL is better with 
more data, and it is very 
scalable.



The next AI/ML challenge

2020s-2030s

 Learning + reasoning, general 
purpose, human-like

Has contextual and common-
sense reasoning

Requires less data

Adapt to change

 Explainable
Photo credit: DARPA



Toward deeper reasoning

System 1: 
Intuitive

System 1: 
Intuitive

System 1: 
Intuitive

• Fast
• Implicit/automatic
• Pattern recognition
• Multiple

System 2: 
Analytical

• Slow
• Deliberate/rational
• Careful analysis
• Single, sequential

Single

Image credit: VectorStock | Wikimedia

Perception

Theory of mind
Recursive reasoning

Facts
Semantics
Events and relations
Working space

Memory



System 2

• Holds hypothetical thought

• Decoupling from representation

• Working memory size is not essential. 
Its attentional control is.
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Figure credit: Jonathan Hui

Reasoning in Probabilistic Graphical Models (PGM)

• Assuming models are fully specified 
(e.g., by hand or learnt)

• Estimate MAP as energy 
minimization

• Compute marginal probability

• Compute expectation & 
normalisation constant

• Key algorithm: Pearl’s Belief 
Propagation, a.k.a Sum-Product 
algorithm in factor graphs.

• Known result in 2001-2003: BP 
minimises Bethe free-energy 
minimization.
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Heskes, Tom. "Stable fixed points of loopy belief propagation are local minima of the bethe free 
energy." Advances in neural information processing systems. 2003.



Can we learn to infer directly from data 
without full specification of models?
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Part A: Sub-topics

• Reasoning as a prediction skill that can be learnt from data.
• Question answering as zero-shot learning.

• Neural network operations for learning to reason:
• Concept-object binding.

• Attention & transformers.

• Dynamic neural networks, conditional computation & differentiable programming.

• Reasoning as iterative representation refinement & query-driven program 
synthesis and execution

• Compositional attention networks.

• Neural module networks.

• Combinatorics reasoning
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Learning to reason
• Learning is to self-improve by experiencing ~ 

acquiring knowledge & skills
• Reasoning is to deduce knowledge from 

previously acquired knowledge in response to a 
query (or a cues)

• Learning to reason is to improve the ability to 
decide if a knowledge base entails a predicate.

• E.g., given a video f, determines if the person with the 
hat turns before singing.

• Hypotheses:
• Reasoning as just-in-time program synthesis.

• It employs conditional computation.
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Khardon, Roni, and Dan Roth. "Learning to reason." Journal of the ACM 
(JACM) 44.5 (1997): 697-725.

(Dan Roth; ACM Fellow; IJCAI 
John McCarthy Award)



Learning to reason, a definition
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Khardon, Roni, and Dan Roth. "Learning to reason." Journal of the ACM 
(JACM) 44.5 (1997): 697-725.

E.g., given a video f, determines if the person with the 
hat turns before singing.



Practical setting: (query,database,answer) triplets

• This is very general:
• Classification: Query = what is this? Database = data.

• Regression: Query = how much? Database = data.

• QA: Query = NLP question. Database = context/image/text.

• Multi-task learning: Query = task ID. Database = data.

• Zero-shot learning: Query = task description. Database = data.

• Drug-protein binding: Query = drug. Database = protein.

• Recommender system: Query = User (or item). Database = 
inventories (or user base);
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Can neural networks reason?

Reasoning is not necessarily 
achieved by making logical 
inferences

There is a continuity between 
[algebraically rich inference] and 
[connecting together trainable 
learning systems] 

Central to reasoning is composition 
rules to guide the combinations of 
modules to address new tasks
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“When we observe a visual scene, when we 
hear a complex sentence, we are able to 
explain in formal terms the relation of the 
objects in the scene, or the precise meaning 
of the sentence components. However, there 
is no evidence that such a formal analysis 
necessarily takes place: we see a scene, we 
hear a sentence, and we just know what they 
mean. This suggests the existence of a 
middle layer, already a form of reasoning, but 
not yet formal or logical.”

Bottou, Léon. "From machine learning to machine 
reasoning." Machine learning 94.2 (2014): 133-149.



Hypotheses

• Reasoning as just-in-time program synthesis.

• It employs conditional computation.

• Reasoning is recursive, e.g., mental travel.
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Two approaches to neural reasoning
• Implicit chaining of predicates through recurrence: 

• Step-wise query-specific attention to relevant concepts & relations. 

• Iterative concept refinement & combination, e.g., through a working 
memory.

• Answer is computed from the last memory state & question embedding.

• Explicit program synthesis:

• There is a set of modules, each performs an pre-defined operation.

• Question is parse into a symbolic program.

• The program is implemented as a computational graph constructed by 
chaining separate modules.

• The program is executed to compute an answer.
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In search for basic neural operators for reasoning

• Basics:
• Neuron as feature detector  Sensor, filter

• Computational graph  Circuit

• Skip-connection  Short circuit

• Essentials
• Multiplicative gates  AND gate, Transistor, 

Resistor

• Attention mechanism  SWITCH gate

• Memory + forgetting  Capacitor + leakage

• Compositionality  Modular design

• ..
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Part A: Sub-topics

• Reasoning as a prediction skill that can be learnt from data.

• Question answering as zero-shot learning.

• Neural network operations for learning to reason:
• Concept-object binding.

• Attention & transformers.

• Dynamic neural networks, conditional computation & differentiable programming.

• Reasoning as iterative representation refinement & query-driven program 
synthesis and execution.

• Compositional attention networks.

• Reasoning as Neural module networks.

• Combinatorics reasoning
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Concept-object binding
• Perceived data (e.g., visual objects) may not share the same semantic space 

with high-level concepts.

• Binding between concept-object enables reasoning at the concept level

14/08/2021 22
Example of concept-object binding in LOGNet (Le et al, IJCAI’2020)

More reading: Greff, Klaus, Sjoerd van Steenkiste, and Jürgen Schmidhuber. "On the 
binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).



Attentions: Picking up only what is needed at a step

• Need attention model to select or ignore 
certain computations or inputs

• Can be “soft” (differentiable) or “hard” 
(requires RL)

• Needed for selecting predicates in 
reasoning.

• Attention provides a short-cut  long-
term dependencies

• Needed for long chain of reasoning.

• Also encourages sparsity if done right!

http://distill.pub/2016/augmented-rnns/



Fast weights | HyperNet – the multiplicative interaction

• Early ideas in early 1990s by Juergen Schmidhuber and 
collaborators.

• Data-dependent weights | Using a controller to generate weights of 
the main net.
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Ha, David, Andrew Dai, and Quoc V. Le. "Hypernetworks." arXiv preprint arXiv:1609.09106 (2016).



Memory networks: Holding the data ready for inference

• Input is a set  Load into 
memory, which is NOT updated.

• State is a RNN with attention 
reading from inputs

• Concepts: Query, key and 
content + Content addressing.

• Deep models, but constant path 
length from input to output.

• Equivalent to a RNN with shared 
input set.
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Sukhbaatar, Sainbayar, Jason Weston, and Rob 
Fergus. "End-to-end memory networks." Advances in 
neural information processing systems. 2015.



Transformers: Analogical reasoning through self-
attention
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Tay, Yi, et al. "Efficient transformers: A survey." arXiv
preprint arXiv:2009.06732 (2020).

State

KeyQuery Memory



Transformer as implicit reasoning

• Recall: Reasoning as (free-) energy minimisation
• The classic Belief Propagation algorithm is minimization algorithm 

of the Bethe free-energy!

• Transformer has relational, iterative state refinement makes it 
a great candidate for implicit relational reasoning.

14/08/2021 27

Ramsauer, Hubert, et al. "Hopfield networks is all you need." arXiv preprint 
arXiv:2008.02217 (2020).



Transformer v.s. memory networks

• Memory network:

• Attention to input set

• One hidden state update at a time.

• Final state integrate information of the set, conditioned on the query.

• Transformer:

• Loading all inputs into working memory

• Assigns one hidden state per input element.

• All hidden states (including those from the query) to compute the answer.
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Universal transformers

14/08/2021 29
https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html

Dehghani, Mostafa, et al. "Universal 
Transformers." International Conference on 
Learning Representations. 2018.



Dynamic neural networks

• Memory-Augmented Neural Networks

• Modular program layout

• Program synthesis

14/08/2021 30



Neural Turing machine (NTM)
A memory-augmented neural network (MANN)

• A controller that takes 
input/output and talks to an 
external memory module.

• Memory has read/write 
operations.

• The main issue is where to 
write, and how to update the 
memory state.

• All operations are 
differentiable.

Source: rylanschaeffer.github.io



MANN for reasoning
• Three steps:

• Store data into memory

• Read query, process sequentially, consult memory

• Output answer

• Behind the scene:
• Memory contains data & results of intermediate steps

• LOGNet does the same, memory consists of object 
representations

• Drawbacks of current MANNs:
• No memory of controllers  Less modularity and 

compositionality when query is complex

• No memory of relations  Much harder to chain predicates.

14/08/2021 32

Source: rylanschaeffer.github.io



Part A: Sub-topics

• Reasoning as a prediction skill that can be learnt from data.
• Question answering as zero-shot learning.

• Neural network operations for learning to reason:
• Concept-object binding.

• Attention & transformers.

• Dynamic neural networks, conditional computation & differentiable programming.

• Reasoning as iterative representation refinement & query-driven 
program synthesis and execution.

• Compositional attention networks.

• Reasoning as Neural module networks.

• Combinatorics reasoning
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MAC Net: Recurrent, 
iterative representation 
refinement
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Hudson, Drew A., and Christopher D. Manning. "Compositional attention 
networks for machine reasoning." ICLR 2018.



Module networks
(reasoning by constructing and executing neural programs)

• Reasoning as laying 
out modules to reach 
an answer

• Composable neural 
architecture 
question parsed as 
program (layout of 
modules)

• A module is a function 
(x  y), could be a 
sub-reasoning process 
((x, q)  y).

14/08/2021 35https://bair.berkeley.edu/blog/2017/06/20/learning-to-reason-with-neural-module-networks/



Putting things together: 
A framework for visual 
reasoning

14/08/2021 36@Truyen Tran & Vuong Le, Deakin Uni
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Implement combinatorial algorithms 
with neural networks

38

Generalizable
Inflexible

Noisy
High dimensional

Train neural processor P to imitate algorithm A

Processor P:
(a) aligned with the 

computations of the target 
algorithm; 

(b) operates by matrix 
multiplications, hence 
natively admits useful 
gradients;

(c) operates over high-
dimensional latent spaces

Veličković, Petar, and Charles Blundell. "Neural Algorithmic Reasoning." arXiv preprint arXiv:2105.02761 (2021).



Processor as RNN
• Do not assume knowing the 

structure of the input, input as a 
sequence 
not really reasonable, harder to 
generalize

• RNN is Turing-complete
 can simulate any algorithm

• But, it is not easy to learn the 
simulation from data (input-
output)
Pointer network  

39

Assume O(N) memory
And O(N^2) computation
N is the size of input

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." 
In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, pp. 2692-2700. 2015.



Processor as MANN

• MANN simulates neural 
computers or Turing 
machine ideal for 
implement algorithms

• Sequential input, no 
assumption on input 
structure

• Assume O(1) memory

and O(N) computation

40Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016)



Sequential encoding of graphs

41

• Each node is associated with random one-hot 
or binary features

• Output is the features of the solution

[x1,y1, feature1], 
[x2,y2, feature2], 
…

[feature4], 
[feature2], 
…

Geometry

[node_feature1, node_feature2, edge12], 
[node_feature1, node_feature2, edge13], 
…

[node_feature4], 
[node_feature2], 
…

Graph

Convex
Hull

TSP

Shortest
Path

Minimum
Spanning
Tree

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020.



DNC: graph 
reasoning 

42
Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016)



NUTM: learning multiple algorithms at once

43

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory." 
In International Conference on Learning Representations. 2019.



Processor as graph neural network (GNN)

44

https://petar-v.com/talks/Algo-WWW.pdf
Veličković, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
"Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

Motivation:
• Many algorithm operates on graphs 
• Supervise graph neural networks with algorithm operation/step/final output
• Encoder-Process-Decode framework: 

Attention Message
passing

https://petar-v.com/talks/Algo-WWW.pdf


Example: GNN for a specific problem  (DNF counting)

• Count #assignments that satisfy disjuntive normal 
form (DNF) formula

• Classical algorithm is P-hard O(mn)

• m: #clauses, n: #variables

• Supervised training on output-level

45

Best: O(m+n)

Abboud, Ralph, Ismail Ceylan, and Thomas Lukasiewicz. "Learning to reason: Leveraging neural networks for approximate DNF counting.“
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3097-3104. 2020.



Neural networks and algorithms alignment 

46Xu, Keylu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What Can Neural Networks Reason About?." ICLR 2020 (2020).

https://petar-v.com/talks/Algo-WWW.pdf

Neural exhaustive
search



GNN is aligned with Dynamic 
Programming (DP)

47
Neural exhaustive
search



If alignment exists  step-by-step supervision

48
Veličković, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. "Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

• Merely simulate the

classical graph algorithm, 
generalizable

• No algorithm discovery 

Joint training is 
encouraged



Processor as Transformer

• Back to input sequence 
(set), but stronger 
generalization

• Transformer with encoder 
mask ~ graph attention

• Use Transformer with:
• Binary representation of 

numbers

• Dynamic conditional masking 

49
Yan, Yujun, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. 
"Neural Execution Engines: Learning to Execute Subroutines." Advances in Neural Information Processing Systems 33 (2020).

Next step

Masked
encoding

Decoding

Mask
prediction



Training with execution trace

50



End of part A

14/08/2021 51

https://bit.ly/37DYQn7


	From Deep Learning to Deep Reasoning
	Logistics
	Agenda
	DL: 8 years snapshot
	DL has been fantastic, but …
	Why still DL in 2021?
	Slide Number 7
	Slide Number 8
	System 2
	Reasoning in Probabilistic Graphical Models (PGM)
	Can we learn to infer directly from data without full specification of models?
	Agenda
	Part A: Sub-topics
	Learning to reason
	Learning to reason, a definition
	Practical setting: (query,database,answer) triplets
	Can neural networks reason?
	Hypotheses
	Two approaches to neural reasoning
	In search for basic neural operators for reasoning
	Part A: Sub-topics
	Concept-object binding
	Attentions: Picking up only what is needed at a step
	Fast weights | HyperNet – the multiplicative interaction
	Memory networks: Holding the data ready for inference
	Transformers: Analogical reasoning through self-attention
	Transformer as implicit reasoning
	Transformer v.s. memory networks
	Universal transformers
	Dynamic neural networks
	Neural Turing machine (NTM)�A memory-augmented neural network (MANN)
	MANN for reasoning
	Part A: Sub-topics
	MAC Net: Recurrent, iterative representation refinement
	Module networks�(reasoning by constructing and executing neural programs)
	Putting things together: A framework for visual reasoning
	Part A: Sub-topics
	Implement combinatorial algorithms with neural networks
	Processor as RNN
	Processor as MANN
	Sequential encoding of graphs
	DNC: graph reasoning 
	NUTM: learning multiple algorithms at once
	Processor as graph neural network (GNN)
	Example: GNN for a specific problem  (DNF counting)
	Neural networks and algorithms alignment 
	GNN is aligned with Dynamic Programming (DP)
	If alignment exists  step-by-step supervision
	Processor as Transformer
	Training with execution trace
	End of part A

