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DL has been fantastic, but ...

* [t is great at interpolating
« - data hungry to cover all variations and smooth local manifolds
« - little systematic generalization (novel combinations)
» Lack of human-perceived reasoning capability
» Lack natural mechanism to incorporate prior knowledge, e.g., common sense
* No built-in causal mechanisms

« - Have trust issues!

» To be fair, may of these problems are common in statistical learning!

14/08/2021 5



Why still DL in 20217

Theoretical Practical
Expressiveness: Neural Generality: Applicable to
nets can approximate any many domains.
function. Competitive: DL is hard to
Learnability: Neural nets beat as long as there are
are trained easily. data to train.
Generalisability: Neural Scalability: DL is better with
nets generalize surprisingly more data, and it is very

well to unseen data. scalable.



The next Al/ML challenge

The third wave of Al
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Perceiving
Learning
Abstracting
Reasoning

Photo credit: DARPA

2020s-20580s

- Learning + reasoning, general
purpose, human-like

- Has contextual and common-
sense reasoning

* Requires less data
- Adapt to change

* Explainable



Theory of mind

Recursive reasoning

Facts
Semantics
Events and relations

Working space

Single

System 2:

Analytical

- - Fast © Slow
Perception “ . Implicit/automatic - Deliberate/rational

- Pattern recognition + Careful analysis

- Single, sequential
= . Multiple ngie. sequentl
) \ J \ y

Toward deeper reasoning

Image credit: VectorStock | Wikimedia




System 2

THANKING,

* Holds hypothetical thought
* Decoupling from representation

FAST ... S LOW

- [] [] | -
* Working memory size is not essential. DANIEL

Its attentional control is. KAHNEMAN

14/08/2021



Reasoning in Probabilistic Graphical Models (PGM)

« Assuming models are fully specified
(e.g.. by hand or learnt)

« 2>Estimate MAP as energy
minimization

« >Compute marginal probability mii(z) =Y da)p(@iz) [ mei(e:)

= LeN(i)\j

.

all neighbor of 7 except j

« >Compute expectation &
normalisation constant

« Key algorithm: Pearl’s Belief
Propagation, a.k.a Sum-Product
algorithm in factor graphs.

e Known result in 2001-2003: BP
minimises Bethe free-energy
minimization.

Figure credit: Jonathan Hui
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Can we learn to infer directly from data
without full specification of models?



Agenda

* Part A: Learning-to-reason framework
» Part B: Reasoning over unstructured and structured data
» Part C: Memory | Data efficiency | Recursive reasoning
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Part A: Sub-topics

Reasoning as a prediction skill that can be learnt from data.
* Question answering as zero-shot learning.

Neural network operations for learning to reason:
« Concept-object binding.

« Attention & transformers.
« Dynamic neural networks, conditional computation & differentiable programming.

Reasoning as iterative representation refinement & query-driven program
synthesis and execution

 Compositional attention networks.

* Neural module networks.
Combinatorics reasoning



Learning to reason

* Learning is to self-improve by experiencing ~
acquiring knowledge & skills

* Reasoning is to deduce knowledge from
previously acquired knowledge in response to a
qguery (or a cues)

. Learnln? to reason is to improve the ability to
decide if a knowledge base entails a predicate.

« E.g.. given a video f, determines if the person with the
hat turns before singing.

« Hypotheses:
* Reasoning as just-in-time program synthesis.
* |t employs conditional computation.

14/08/2021

(Dan Roth; ACM Fellow; IJCAI
John McCarthy Award)
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Learning to reason, a definition

Definition 2.1.1. An algorithm A4 is an exact reasoning algorithm for the
reasoning problem (%, 2), if for all f € ¥ and for all « € 2, when A4 is presented
with input ( f, «), A runs in time polynomial in » and the size of f and «, and
answers “yes” if and only if f F «.

E.g., given a video f, determines if the person with the
hat turns before singing.

Khardon, Roni, and Dan Roth. "Learning to reason." Journal of the ACM
14/08/2021 (JACM) 44.5 (1997): 697-725. 15



Practical setting: (query, database, answer) triplets

* This is very general:
 Classification: Query = what is this? Database = data.
* Regression: Query = how much? Database = data.
« QA: Query = NLP question. Database = context/image/text.

Multi-task learning: Query = task ID. Database = data.

Zero-shot learning: Query = task description. Database = data.

Drug-protein binding: Query = drug. Database = protein.

Recommender system: Query = User (or item). Database =
inventories (or user base);

14/08/2021 16



Can neural networks reason?

There is a continuity between
algebraically rich inference] and
connecting together trainable
earning systems]

Central to reasoning is composition
rules to guide the combinations of
modules to address new tasks

14/08/2021

“When we observe a visual scene, when we
hear a complex sentence, we are able to
explain in formal terms the relation of the
objects in the scene, or the precise meaning
of the sentence components. However, there
is no evidence that such a formal analysis
necessarily takes place: we see a scene, we
hear a sentence, and we just know what they
mean. This suggests the existence of a
middle layer, already a form of reasoning, but
not yet formal or logical.”

17



Hypotheses

* Reasoning as just-in-time program synthesis.
* [t employs conditional computation.
* Reasoning is recursive, e.g., mental travel.



Two approaches to neural reasoning

« Implicit chaining of predicates through recurrence:
« Step-wise query-specific attention to relevant concepts & relations.

* |terative concept refinement & combination, e.g., through a working
memory.

« Answer is computed from the last memory state & question embedding.
- Explicit program synthesis:

* There is a set of modules, each performs an pre-defined operation.

* Question is parse into a symbolic program.

 The program is implemented as a computational graph constructed by
chaining separate modules.

 The program is executed to compute an answer.

14/08/2021 19



In search for basic neural operators for reasoning

» Basics:
« Neuron as feature detector - Sensor, filter
« Computational graph - Circuit
« Skip-connection - Short circuit

 Essentials

« Multiplicative gates - AND gate, Transistor,
Resistor

« Attention mechanism - SWITCH gate
« Memory + forgetting - Capacitor + leakage
« Compositionality - Modular design o Nicola Asuni

14/08/2021 20


http://www.circuitsarchive.org/

Part A: Sub-topics

* Neural network operations for learning to reason:
« Concept-object binding.
« Attention & transformers.
« Dynamic neural networks, conditional computation & differentiable programming.

« Reasoning as iterative representation refinement & query-driven program
synthesis and execution.

 Compositional attention networks.
* Reasoning as Neural module networks.

» Combinatorics reasoning

14/08/2021
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More reading: Greff, Klaus, Sjoerd van Steenkiste, and Jirgen Schmidhuber. "On the
binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).

Concept-object binding

« Perceived data (e.g., visual objects) may not share the same semantic space
with high-level concepts.

* Binding between concept-object enables reasoning at the concept level

Language-binding Object Graph Unit

{ﬁ‘-r—l,k-}

mg—q

Visual Graph Constructor

TILp — | e
—

G(Vi, Ar)

-~

visual objects

Language Binding Constructor

—

—

—
—

——
G'(Xy, Ar)

M _ ==

Representation Refinement

—_
-

—

e linguistic objects

\ visual objects

gq Vv

L

Example of concept-object binding in LOGNet (Le et al, IJCAI’2020)

14/08/2021
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Attentions: Picking up only what is needed at a step

* Need attention model to select or ignore
certain computations or inputs

« Can be “soft” (differentiable) or “hard” _"‘ . \_’

(requires RL)

* Needed for selecting predicates in
reasoning.

» Attention provides a short-cut - long- @_’

term dependencies

http://distill.pub/2016/augmented-rnns/

* Needed for long chain of reasoning.

« Also encourages sparsity if done right!



Fast weights | HyperNet - the multiplicative interaction

» Early ideas in early 1990s by Juergen Schmidhuber and
collaborators.

- Data-dependent weights | Using a controller to generate weights of
the main net.

=
W
H_:T
=
N
r-r:-
A 4

Xt1 Xt

Figure: The HyperRNN system. The black system represents the main RNN while the orange system
represents the weight-generating HyperRNN cell.

14/08/2021
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Memory networks: Holding the data ready for inference

L Predicted
W - | Answer

a

o > X e
ST | ;‘

Weighted Sum 4 u
x

Embedding C

* Inputi t 2> Load int
fa nputis a se oad into

memory, which is NOT updated.

re— "' « State is a RNN with attention
M ] I ‘ ] ] reading from inputs

 Concepts: Query, key and
content + Content addressing.

 Deep models, but constant path
length from input to output.

* Equivalent to a RNN with shared
Input set.
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Transformers: Analogical reasoning through self-

attention
State Ap, = Softmax(aQp K, )Vi

Output
Qh — ‘4/qu Kh — ‘A/kX and Vh — ‘A/UX ProbaTbiIities
[ Softmax |
\ ) 1
Computational Linear
and Memory Quer Memory _ [ ] .
Complexity y Key
[ Add & Norm ]4—
O (n?) [
[ Feed Forward ]
e — I
I [ Add & Norm ]1—
[ ) I\/Iult:Head
[ MatMul : ] —(_Add &Norm | [Cross—Attention ]
[ Conca:[enate ] % QI <N
1I [ Feed Forward ] ‘
[ Scaled Dot-Product Attention ] ; Nx [ Add& Norm Je—

—>[ Add & Norm ]

. . 1 Masked
[ I_inear] [ Linear ] [ Linear ] [ Multi-Head J [ Multi-Head ]

Self-Attention

P T) V Self-Attention
\Y K Vv Q S Y S S Y S
o~ / N J
Embetang P 7O Lo
Input Embedding ’ Input Embedding
f t
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Transformer as implicit reasoning

« Recall: Reasoning as (free-) energy minimisation

« The classic Belief Propagation algorithm is minimization algorithm
of the Bethe free-energy!

 Transformer has relational, iterative state refinement makes it
a great candidate for implicit relational reasoning.

Hopfiela Energy

— exp (lse (1, £XT))

14/08/2021

[0

New Energy

lse(8,EXT) + J€7E +c

D

Update Rule

softmax (8 €X7) X

[0

Transformer

1
softmax | — QK T) \ %4
( Vg
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Transformer v.s. memory networks

« Memory network:
» Attention to input set
* One hidden state update at a time.

» Final state integrate information of the set, conditioned on the query.
* Transformer:
« Loading all inputs into working memory

« Assigns one hidden state per input element.

 All hidden states (including those from the query) to compute the answer.



Dapth

Universal transformers

Parameters are tied across positions and time steps

T times

14/08/2021
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Dynamic neural networks

 Memory-Augmented Neural Networks

* Modular program layout
* Program synthesis



Neural Turing machine (NTM)
A memory-augmented neural network (MANN)

* A controller that takes
input/output and talks to an External Input External Output

external memory module. B \ ______________ / ______________________________ |

« Memory has read/write

operations. . Controller

 The mainissue is where to SN\
write, and how to update the Read Heads Write Heads
memory state. T 1

» All operations are |
differentiable. Memory

Source: rylanschaeffer.github.io



External Input

MANN for reasoning

 Three steps:
« Store data into memory
 Read query, process sequentially, consult memory

N

External Output

/

’ Controller

SN

Read Heads

|

‘ Write Heads ‘

l

e Qutput answer

* Behind the scene:
« Memory contains data & results of intermediate steps

 LOGNet does the same, memory consists of object
representations

 Drawbacks of current MANNS:

 No memory of controllers - Less modularity and
compositionality when query is complex

 No memory of relations - Much harder to chain predicates.

14/08/2021

Memory ‘

Source: rylanschaeffer.github.io
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Part A: Sub-topics

 Reasoning as iterative representation refinement & query-driven
program synthesis and execution.

 Compositional attention networks.
* Reasoning as Neural module networks.

» Combinatorics reasoning

14/08/2021
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MAC Net: Recurrent,
iterative representation
refinement

(2) MAC Recurrent Network

.

Control -

Memory =»

I (1) Input Unit

knowledge base

KHxde

14/08/2021

% p cells

control
reasonin
Control -»> Control - Control -> ¢ . g
operation
Memory -»> Memory -> Memory = m memor'y
P Intermediate
result
(3) Output Unit
question g > | classifier
T T T H
CW iCW,i ... iCW question lr
i | S| words
Answer
what is the material of the large object “metal”

that is both behind the
and in front of the blue cylinder?”

Hudson, Drew A., and Christopher D. Manning.
networks for machine reasoning." ICLR 2018.

~ _\, .
Read Unit

the Knowledge Base

\
Control Unit

Reasoning Operation

Extracts Information from

Decodes a

Write Unit

Integrates the Information
with the Memory

(MAC cell

Cia
control

m;,
memory

»| Control

J

guestion
P
@

[ Retrieved I;

information
e
-+| Read
KB
Knowledge mi'l
Base

4

"Compositional attention

34



Module networks

(reasoning by constructing and executing neural programs)

* Reasoning as laying
out modules to reach
an answer find blue compare describe

« Composable neural
architecture - %
question parsed as
program layout of
(x = y), could be a %
sub-reasoning process
((x, a) > v). find bal i

modules)
How many things are the same size as the ball?

What color is the thing with the same size as the blue cylinder?

green

O 0O

« A module is a function

four

O O

O 0O

14/08/2021 35



Putting things together:
A framework for visual
reasoning

Context .—

[ Decode

Question . >| ——>Answer

Final objects (5 T
(Higher level Reason Unit)
4 LT

X ?—- Y_.—-
Output objects (D e ¥ o ©
il Reason |
Unit

@—— Reason ——s{" Decode }— Answer
4

O
- aim 1, aim 2
user answer machine
reasoner

answer

look up Knowledge ‘[

extraction
and matching

14/08/2021 - @Truyen Tran & Vuong Le, Deakin Uni

External Knowledge G5




Part A: Sub-topics

* Neural network operations for learning to reason:
* Concept-object binding.
» Attention & transformers.
« Dynamic neural networks, conditional computation & differentiable programming.

« Reasoning as iterative representation refinement & query-driven program
synthesis and execution.

 Compositional attention networks.
* Reasoning as Neural module networks.

« Combinatorics reasoning

14/08/2021
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Implement combinatorial algorithms
with neural networks

Train neural processor P to imitate algorithm A
P

Processor P: Abstract inputs C Processor ) Abstract ml—tpm
- 1 4

(a) aligned with the .
computations of the target Generalizable

_ Inflexible
algorithm;
(b) operates by matrix - N
e z A(z)
multiplications, hence
nat(ij\/.ely admits UserI Natural inputs Natural outputs
gradients; = [ q
(c) operates over high- %»3:
dimensional latent spaces g8 Noisy
ﬁ g;ﬂ High dimensional
xXr

Velic¢kovi¢, Petar, and Charles Blundell. "Neural Algorithmic Reasoning." arXiv preprint arXiv:2105.02761 (2021).
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Processor as RNN

* Do not assume knowing the
structure of the input, input as a

sequence

—>not really reasonable, harder to

generalize

* RNN is Turing-complete
—> can simulate any algorithm

* But, itis not easy to learn the
simulation from data (input-

output)

- Pointer network

Assume O(N) memory
And O(N”2) computation
N is the size of input

”;_ = ?_rT ta.nh(‘[_)[,--’J e; + '[,1[.-’20{” ,, c (1.-. . 'n..)

p(Ci|Ch....,Ci—1,P) = softmax(u')

y‘l
(b) Ptr-Net
Predictions Predictions: tour length is 3.523
(d) Ptr-Net, m=5-50, n=500 (e) Ptr-Net , m=50, n=50 (f) Ptr-Net , m=5-20, n=20
Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks."
In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, pp. 2692-2700. 2015. 39



Processor as MANN

¢ MANN SimU|ateS neu ral da Controller b Read and write heads € Memory ;E;Tnopzrﬁgis
computers or Turing
machine-> ideal for T
Implement algorithms
» Sequential input, no C®_’ o
assumption on input T
structure
« Assume O(1) memory

and O(N) computation

Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471-476 (2016) 40



 Each node is associated with random one-hot

Sequential encoding of graphs
or binary features

Convex D .\\
Hull

* Qutput is the features of the solution
TSP 7 g Geometry

[x1,y1, featurel], [featured],
[x2,y2, feature2], |:> [feature2],
Shortest " "= T T,
. xe KX 7 .,
Path “s;f’f- ¥ éﬁj«(* ‘“"\.‘
e Y . Graph
—y— [node_featurel, node_feature2, edge12], [node_featured],
__;r/;:‘ [node_featurel, node_feature2, edge13], :> [node_feature2],
v

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020. 4l



DNC: graph
reasoning

Decoded memory locations

B Write head
Hl Read head 1
M Read head 2

a Weightings Decode

Locations
t P2 O000 A4 44O

H .4
| A4

a Read and write weightings

Graph definition

Oxford Circus>Tottenham Court Rd ll
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Green Park>Victoria |
Green Park>Piccadilly Circus | |
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|
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NUTM: learning multiple algorithms at once

— NTM —==- NUTM =2
(p=2) Cost per sequence (bits): 18.0

- . . 7
Co Repeat Co Associative Recall
Py P py .
07 07 o s C | AR
2 0.6 06 o N
3 3
= 7 0.5
o 2
o o | — NTM
=
= 03 0.3 °
@ 4 4
5 ‘ : - NUTM (p= (
. o 01 o l[' {p -
00 0.0 - ¥
T T T T T T T T T T T T T T T T T T
o 10K 20K 30K 40K 50K o 20K 40K 60K  BOK 100K o 20K 40K 60K  BOK 100K
Sequence Number Sequence Number Sequence Number

Cost per sequence (bits): 0.0

Cost per sequence (bits): 0.0 2 =

0 20K 40K
Sequence Number(x16)

50 100 150 200

Cost per sequence (bits): 5.0

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory."
In International Conference on Learning Representations. 2019.
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Processor as graph neural network (GNN)

7" e RNy,

Q. =

R ht he ha
he hy «<— h, hi
Input GNN

https://petar-v.com/talks/Algo-WWW.pdf
Velickovi¢, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.

Motivation:
 Many algorithm operates on graphs
* Supervise graph neural networks with algorithm operation/step/final output

* Encoder-Process-Decode framework:

"Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

—f(ﬁ - JA( —'(f]’ Hgﬁ))

77 = fa@" nY) HY = p(z® E®)
ﬁ
34

Attention | A" =ReLU [ ) (ft) 29 ,fj))w*“ i =u 2, @ M(*“) “),f;)) Message
(1)€E (J,i)€E passing 44
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https://petar-v.com/talks/Algo-WWW.pdf

Example: GNN for a specific problem (DNF counting)

Count #assignments that satisfy disjuntive normal ACN . . 1
form (DNF) formula @\_ﬁ%.wl/@

Classical algorithm is P-hard O(mn)
=
N
O,

m: #clauses, n: #variables

Supervised training on output-level | |
Figure 2: Graph encoding of the DNF formula

¢ = (21 A-zo Ay) V(T ATg A —T3).

'ﬁa:n._t+l = Lcl( Tots Z ﬂf{(tri t)) Ve, t+1 = Ld(vﬂ:‘d,t'! Z Anl'fc(ﬁa:{,,ﬂl)) V. t41 = ch ('ﬁrc,ulg lr"'f{d(?f:cd,t+l))-

.TEE'\'(I;) :I,‘:-:Gl\r(ﬂ’:d)

Vpy te1 = L!(Ur;,te( > ﬂ'i'c(“uic._m)Ilﬂ'i':(vm,t)))
Iy I ° z.eN(zp)
o 0 ® 0. oxo ..} 0
o :

24 Best: O(m+n)

X

-1 k-
& @ N - ) - 3
@ —I9 ] e
(b) (c) (d)
Abboud, Ralph, Ismail Ceylan, and Thomas Lukasiewicz. "Learning to reason: Leveraging neural networks for approximate DNF counting.” 45

In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3097-3104. 2020.



Neural networks and algorithms alignment

P o P -

[T WEHaT
ﬂ:—c:\mnh /- \
|I ol I| hP-Complate

x\\--:--f;r [ \\\\h_;/”f

P NP P =P
Summary statistics Relational argmax Dynamic programming NP-hard problem
What is the maximum value =~ What are the colors of the What is the cost to defeat monster X  Subset sum: Is there a
difference among treasures? furthest pair of objects? by following the optimal path? subset that sums to 07
T g
MLPs Deep Sets (Zaheer et al, GNNs GNNs Neural exhaustive

~ feature extraction f E ~ summary statistics ME.:% ~ (pairwise) relations m ~ (pairwise) relations search

h{) = Z MLP(I"") (hgk—l}: hgkr .1,;)

y = MLP([[sesX,) y = MLP, (Z MLP](X,?)) >

s 5
sz 8

https://petar-v.com/talks/Algo-WWW.pdf

Xu, Keylu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What Can Neural Networks Reason About?." ICLR 2020 (2020). 46



100%  95% 96% 100%

GNN is aligned with Dynamic
PrOgramming (DP) GNNG GNNT  Doep  MLP  Sored

(a) Maximum value difference.

96%  94%  91%

Graph Neural Network Bellman-Ford algorithm 62%
27%

_for k =1...GNNiter: _ | for k =1..1SI-1: | —
GNN7 GNN4 GNN3 GNN2 GNN1 Deep MLP

m No need to learn for-loops m Sets

h,® = Z, MLP(h,&), h,k1) d[k][u] = miny d[k-1][v] + cost (v, u)

(c) Monster trainer.

Learns a simple reasoning step 95%  9o%

21% g,
GNN3  GNN1  Deep MLP
Sets
(b) Furthest pair.

hy( d[k][u] |
- 72% 69% 61% 60%

Sets

MLP(hy(1), hy(<1)) Bd[k-1][v] + cost (v, u) (d) Subset sum. Random guessing yields 50%.
Neural exhaustive

search MLPQ(III&XT(_:S MLP; o LSTM(X:[, }X|T| : X1, ...}X|.r| = T)) 47




If alighnment exists 2> step-by-step supervision

* Merely simulate the
M (25747

classical graph algorithm,
generalizable

A1) A1) At)
M ( LAY gl

* No algorithm discovery

) 6 ) (t) supervise <8 ) o
AP T A At) Aty i)
min (.r als DTy r.u) Uvlz'., @ M (,.“ + 20, Epu

(vau)e 2

Algorithm Inputs Supervision signals )
o 2 (t+1)
Breadth-first search ‘. isire > ¥ y B ’
@, "+ 1s t reachable from s in < ¢ hops’ 7 has the algorithm terminated?
IEHl)s
Bellman-Ford :rgt): shortest distance from s to i T, — Joint training is
(using < ¢ hops) pgt}: predecessor of ¢ in the encou raged
shortest path tree (in < { hops)
-TEHUs
Prim’s algorithm 2{": is node i in the (partial) MST (),
(built from s after ¢ steps)? -pgt}: predecessor of ¢ in the partial MST
-
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Velickovi¢, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. "Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.



Processor as Transformer

e Back to input sequence
(set), but stronger
generalization

* Transformer with encoder
mask ~ graph attention

 Use Transformer with:

* Binary representation of
numbers

* Dynamic conditional masking

Yan, Yujun, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi.

Masked
encoding

Nx |~ Add & Norm |

X

Decoding

Value

[ Sigmoid |

| Linear |
}

[~ Add & Nom J—
t

. , .
| Add & Norm |

Feed Forward ’

Masked
attention

¢+ }

Add & Norm |
: L
‘ Attention ‘
ki A

i

Feed Forward ‘

| Add & Norm |«

Last
layer|

Mask
prediction

Pointer | | Output mask

‘ Attention I

______________

...............

Nx

| Sigmoid N

Next step

‘ Feed Forward

t

{ 1D convolution

[ Normalize ]

—b‘ Concat ‘

"Neural Execution Engines: Learning to Execute Subroutines." Advances in Neural Information Processing Systems 33 (2020).
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raining with execution trace

s;hnﬂmﬂé:njrll](dara]: merge_snrt[dafa, start, end]: amfinpamwu source_node, shortest_path): mi:}l:;uﬂn;a:ga_rﬂlng_irno[gmph. source_node, node_val):
while (lenidata) > 0): if (start < end): nodes = [| mst_weights = [ |
= (start +end )/ 2 ancheor_node = source_node anchor_nade = source_node
I rriin_inclex, min_slement = find_minidata) | node_list = graph.get_nodes() res_nodes = graph.get_nodes()
clata_ deleta(min_index) merge_sort(data, start, mid) while node_list: while node st
sarted_ist.append(min_elamen me sort(data, mid+1, en i st = grag X
sarted | nad?;?:rn min._ f rge_sort( d) TSP ————— ; adj fist = graph.adjlanchor nods)
. shorlest_pathfancher_node =
findl_min(data) return merge(data, start, mid, end) node_vallres_nodes) = min(node_valres_nodes),
min_slemant = -1 | shortest_path = minjpossible_paths, shortest_path) ] acf_Nistiras_nades))
min_index = -1 : P
for inclax, slement in enumerate(data) [ anchor_node, min_dist = minishortest_pathinode_ist)| | anchor_node, min_weight = mininode_vallres_nodes)

if (plament < min_elemant):

! node_list.deletelanchor_nods) mst_nodes.appendianchor_node)
min_elzment = element nodes.appendianchor_noda) mst_weights.append(min_weight)
min_fndex = index dists.appendimin_dist) res_nodes.deletefanchar_node)

return [min_index, min_element return dists, nodes return mst_nodes, mst_weights

anchor_node

shortest _path anchor e res_nodes

grap‘h"?dj ,F graph.ady
(Neu’al Execution ‘

data

data end-start

MNeural Execution re Shﬂpﬂi )
Engine
Neural Execution

Engine

Neural Execution
Engine

possible_paths

Neural Execution
Engine

learned mask Enging

min_element shortest _path Neural Execution

Engine

append() Meural Execution

sorted list partially sorted data learned mask Engine
- min_dist anchor_node  min_weight res_nodes
anchor node append() {learned_mask)
{learned mask pp

¥

nodes dists mst_nodes mst_weights



End of part A
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