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Agenda

* Reasoning with external memories
« Memory of entities - memory-augmented neural networks
« Memory of relations with tensors and graphs
« Memory of programs & neural program construction.
* Learning to reason with less labels
« Data augmentation with analogical and counterfactual examples
* Question generation
 Self-supervised learning for question answering
» Learning with external knowledge graphs

* Recursive reasoning with neural theory of mind.
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Introduction



Memory is part of intelligence

« Memory is the ability to
store, retain and recall
information

 Brain memory stores
items, events and high-
level structures

« Computer memory
stores data and
temporary variables




Memory-reasoning analogy

1.0
» 2 processes: fast-slow
o Memory: familiarity- %1
recollection
» Cognitive test: .
. . Reasoning
o Corresponding reasoning and -
memorization performance | /C mold
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Heit, Evan, and Brett K. Hayes. "Predicting reasoning from memory." Journal of Experimental Psychology: General 140, no. 1 (2011): 76.
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Common memory activities

* Encode: write information to
the memory, often requiring
compression capability

» Retain: keep the information
overtime. This is often assumed
In machinery memory

* Retrieve: read information from
the memory to solve the task at
hand

Encode

Retain

Retrieve



Memory taxonomy based on memory content

ltem e Objects, events, items,
< . "
Memory variables, entities

Relational ~ e Relationships, structures,
Memory graphs

Program * Programs, functions,
<
Memory procedures, how-to knowledge




[ltem memory

Associative memory
RAM-like memory
Independent memory



Distributed item memory as
associative memory

Language Time Object

Where is my pen?
birthday party on What is the
30t Jan password?

"Green" means
"go," but what
does "red" mean?

Semantic Episodic Working
memory memory memory

Behaviour

4 e

)

Pavlov’s dog

Motor
memory



Associate memory can be implemented as
Hopfield network

Fast-weight

M
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Correlation matrix memory Hopfield network
A q ~ N
Encode V] = Z bkag Retrieve b = Ma . Retrieve  Z; (t + 1) = sign | > wy;x; (1)
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J
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Feed-forward Recurrent
retrieval retrieval




Rule-based reasoning with associative
memory

Conversion of lexical items to binary patterns.

. A = 100010 1 = 100001 X = 0011
* Encode a set of rules: B = 011000 2 = 010010 Y = 0110
u“ g = 000110 3 = 001100 = 1100
pre-conditions [ Outer product ]C 2 - ooot01
cy- " s 5 = 000011
->post-conditions for binding 6 = 110000 |
Bind tokens to form tensors. Assign separators.
1 A:l= B:3 = C:4 =
* Support variable 100001 000000 000000 oL = 00D
. . . 2 -
binding, rule-conflict 500000 501100 000000 55 = 00100
. - 000000 000000 000101
handllng and partial 100001 000000 000101
. 000000 000000 000000
rule input
. Superimpose-to form SIBs. Train into arity 3 network.
° Example of enCOd|ng A:1 . B:3 . C:4 = SIB, =
N B 100001 (too large to show).
rule “A:1,B:3,C:4>X 001100
000101 Woe =SB0
100101
000000 Wi =8 x X

Austin, Jim. "Distributed associative memories for high-speed symbolic reasoning." Fuzzy Sets and Systems 82, no. 2 (1996): 223-233.



Memory-augmented neural networks:
computation-storage separation

(=)

Computer that learns
from examples

(or neural net that

separates computation
from memory)

m 2016: Alex Graves - Different iable Neural Computer 13



Neural Turing Machine (NTM)

« Memory is a 2d matrix

* Controller is a neural ——— i~
network 55
ExternalNnput External Output
* The controller

read/writes to memory \ . YT

at certain addresses.

S T

Cantroller
* Trained end-to-end, N
differentiable _
. . . Read Heads Write\Heads
« Simulate Turing Machine | |
—>support symbolic
reasoning, algorithm Memory

solving

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).



Input
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Inputs Outputs
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Algorithmic reasoning
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o
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Write Weightings Read Weightings 1
57 46 3 2
s eie ga . Priority - fV\/\/\/
Co py initialise: move head to start location A\ 1234567 . . .
while input delimiter not seen do
receive input vector Inputs . :1' Targets —
write input to head location Priority sort
increment head location by 1
Hypothesised Locations Write Weightings Read Weightings

end while

return head to start location

while true do
read output vector from head location
emit output
increment head location by 1

end while

Time —— Time —— Time ———

Locatiobn ——



Optimal memory writing for
memorization

« Simple finding: writing too often
deteriorates memory content (not |
retainable) l R

« Given input sequence of length T -
and only D writes, when should we AN

N —
/
/
7
<

o hy
write to the memory?
Theorem 3. Given D memory slots, a sequence with length T', a decay rate 0 < A < 1,
D+1 . - . .
then the optimal intervals {l; € R }f:gl satisfying T = > 1; such that the lower bound on Uniform writing Is optlmal for

i=1

D41 memorization
the average contribution Iy = % > falli) is maximized are the following:
i=1

T

D+1 ()

h=lya=..=lIlpy1 =

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Learning to Remember More with Less Memorization." In International Conference on Learning Representations. 2018.



Better memorization means better algorithmic reasoning

| Max | zy29...x7 | max (z1,z9) max (z3,24) ... max (xp_1,27) |

T=50, D=5

Decoding Read Weizht

Decoding Read Weight

Encoding Write Weight

Encoding Write Weight

o 4 ng .
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= b
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Memory of independent entities

Weston, Jason, Bordes, Antoine, Chopra, Sumit, and Mikolov, Tomas.
Towards ai-complete question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

 Each slot store one or some entities

- Memory writing is done separately for | 12k Three Supporting Facts
h lot John picked up the apple.
each memory slo John went to the office.
—>each slot maintains the life of one or ;“:“ st ‘“d“[:-‘ k““*;e“-
oy ohn dropped the apple.
more entities Where was the apple before the kitchen? A:office

« The memory is a set of N parallel RNNs

RNN 1 John Apple John Apple Office John Apple Kitchen
RNN 2 Apple John Apple John Office Apple John Kitchen

Time

v

19



Recurrent entity network

1

key
; @ ; @
- i - # -
update update
gale gate

@ . _ .

TNETNOTY slot

| 95 < als) by + s{ wy)
i;j — gf)(UhJ + V‘LUJ' -+ WSt)

© :

kev
L Garden
fo _ fo >
—={ " i h—'
update update
Eate
IEInory rl]ﬂl'
hj — hj + gj O) hj
- B hj - Henaff, Mikael, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
input ® J ‘ |hj | | input @ "Tracking the world state with recurrent entity networks."
: In 5th International Conference on Learning Representations, ICLR 2017. 2017.

Mary picked up the ball)| Mary went to the garden.

“Where 1s the ball?”

S
I

Softmax(y’ k)
u= pih;
J

y = Ro(q + Hu)

20



Recurrent Independent Mechanisms

Top down attention

Default Sparse Default Sparse

dynamics Communication dynamics Communication

i I () i
e

—
B
ﬁ.f

Pl lht+1 E'»t+_.],/ ht+2

Competing RIMs

Biased competition
based on top down

attention

L
CEE]

Bottom up visual information \

= = Query
—— Passing Gradient
----- » No Passing Gradient

Input & .
0 « X = w @ It.

Active RIM

(A O | D Inactive RIM
0 —mi O Key-Value Attention

Visual input

hex = Di(hey) = LSTM (hy i, AU™:0P7)) Nk € 8, hWI(XWe)T

N\ Agjn) — softmax XW?,

V.

Qik = Wilhi,Vk €Sy Kip=Wehip,Vk  Vig = Wihey, Yk

Qi (K )T

Vi.+ hi (Vk € S;.
m )i,.+ t.k t

hit41 x = softmax (

Goyal, Anirudh, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard Schélkopf. "Recurrent independent mechanisms.” ICLR21. 21



Reasoning with independent
dynamics

10 20 30 40
Copy
Ball w ® * L %
: »> e ® w® Y ®
dynamics o * v e
<
&
Active region [nactive region O Ground truth . Prediction (input feed) O Prediction (rollout)
Frame: 2 5 8 11 14 17 20 23 26 29 32 : 38 13 16 19
s[ o] ] %] o] o o eof 2| ] *, " o o
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Binary Cross Entropy

4 Objects

Copying Train(50) | Test(200)
k'l' ki’\ h'h"lI.L‘, CE CE

6 4 600 0.00 0.00

6 3 600 0.00 0.00

RIMs ¢ 5 g00 0.00 0.00
5 2 500 0.00 0.00

- - 300 0.00 432

LSTM . 400 0.00 3.56
NTM - - - 0.00 | 2.54
RMC - - - | 0.00 | 0.13
Transformers - - | 0.00 | 0.54

Trained on 4 Objects

Tested on 6-8 Objects

12
50

LSTM
LSTM 2!
RIM

]

30 40

Ground truth

Rollout



Relational memory



Why relational memory? [tem memory
IS weak at recognizing relationships

A Retrieval-based inference

e Store and retrieve individual items
* Relate pair of items of the same time step
* Fail to relate temporally distant items

M = Zbkaf




Dual process in memory

* Store items
e Simple, low-order
System 1

Store relationships between items
Relational * Complicated, high-order

Memory * System 2

Howard Eichenbaum, Memory, amnesia, and the hippocampal system (MIT press, 1993).

Alex Konkel and Neal J Cohen, "Relational memory and the hippocampus: representations and methods", Frontiers in neuroscience 3 (2009).




Memory as graph

 Memory is a static graph with

fixed nodes and edges

my; = f (hi!

* Relationship is somehow
Known

« Each memory node stores

o t
ONG
t—1 &
hy ) \ /'/ \ of = r (ht)
nis M,

the state of the graph’s node @ MLl Ak %)

* Write to node via message
passing
* Read from node via MLP

Palm, Rasmus Berg, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks." In Neur/PS. 2018.

26



bADI

x; = MLP(concat(last(LSTMg(s;)), last(LSTMg(q)), onehot(p; + 0)))

\
\ Edge
Node
t __, t
. OK =r (Et hi)
Question \
Factl|  (w)-=——g——-
. Answer
Fact2 | (%ol
ms 1.0
‘ 21§ 08
Fact 3 @ ------------------
fi\ %? 0.6
N :
t t—1 ;1t— < 0.4
mi; = f (b, b
0.2
Method N  Mean Error (%) Failed tasks (err. >5%)
RRN* (this work) 15 0.46 +0.77 0.13+0.35 -

CLEVER

0; = concat(p;, onehot(¢; ), onehot(m;))
g = concat(onehot(s), onehot(n))
Ty = MLP(concat(o;,q))

<

Node

(colour, shape. position) \

Edge \ v ®

(distance) >

i
solution to the question: “green, 3 jumps”, which is “plus”,
-—- RRN(1) =--- RRN(2) --- RRN(3) ~- RRN(4)

RN —— Random —— MLP

Question jumps



Memory of graphs access conditioned on query

* Encode multiple graphs, each
graph is stored in a set of
memory row

Query [ Controller ] Output
 For each graph, the controller 7 —
read/write to the memory: "?\ \ / o' \
h; Write / \
 Read uses content-based e orh K " [ T ‘ ‘ \"-.l

attention

* Write use message passing

« Aggregate read vectors from — e

all graphs to create output

Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv preprint arXiv:1808.04247 (2018).



Capturing relationship can be done via
memory slot interactions using attention

« Graph memory needs customization to an explicit design of nodes and
edges

 Can we automatically learns structure with a 2d tensor memory?
« Capture relationship: each slot interacts with all other slots (self-

attention)
Compute attention weights Normalize weights with row-wise softmax Compute weighted average of values Return updated memory
Queries Keys th,2 Weights  Normalized Weights Weights Values Updated Memory
g1 eoeeee® YXXXX. ecleee@ Q0@ eoce 00000 Y XXX XX
------Eﬂ------i@|ooooo—+ '®) O © @ 00000 YXXXX
00000 v 000000 Q0000 (6] o ©o0000o0o  EXN NN
eceoee ‘ecccoee eeoee0 © E — ©ooloco X0k
. _ L | o eYo¥ol[e](oNe T
Q ees000 QK" Ht}ihlmx[({?h’! ) softmax () K 4 ]@ I N T
K |

—\.-r
1T 1,4

Santoro, Adam, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap.
"Relational recurrent neural networks." In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7310-7321. 2018.



Relational Memory Core (RMC) operation

CORE O”tﬁ”t MULTI-HEAD DOT PRODUCT ATTENTION
query q
L l l llllllh;\j:l'-’f*IIIIII o000
YXIrr ke key K e®eeee® | Updated
orev. A —@> MLP—® Memony | = s eee ... 0000060 " eeeeee  Memory
Memory » Residual Residual Wy XX L LN
A é . Next EEN NN ] R DVSI%ED%
. Memory Input—+LC o000 00 A
. Apply gating Y softmax(Q KT )V
Input ***computation of gates not depicted

Sit — (hz',t—l: mi,,t—l)

fia=Wai+U iy 1+ 0 _ M1 q[l M:: |Hrk T

it = Wiz, + Ulhiyq + b M = softmax
RNN_IIke 0; + = Woﬂit + Uohi’t_l + b° \ dk
Interface mig=o(fiz+b)omis1+0(iig)o Gy (M 1)
N— —
hit = o(0;+) otanh(m,; ;) row/memory-wise MLP with layer normalisation

Sit4+1 = (mi,ta hi,t)



Allowing pair-wise interactions can answer
questions on temporal relationship

attention weights

attending to H
9% time ) 0.0 0.2 04 0.6 0.8 1.0
& 01234567 & B ¥ B u |
O -/'m | | N
=~ ] n [ | n |
c " n N | | N "
= - | ] L - . What is the N'" farthest from vector m’
E < N | | | |
E ~ [ | L | B — A 4
| — 1 — 1 1 L 1 s | 1 L 1 I | 1 i ;']
@ Input Vector Id (3) Reference vector is the last in a sequence, e.g. "Choose the 5th furthest vector from vector 7" . r dy 3
] ™ 4 e
i M [ n ke | [ - | [ = nr o
" A e >
n u n " vy
| [ -
L L] L L L [l S BN v
| 1 O [ | — ) | — | 1 [~ 1 [ ] | 1
(b) Reference vector is the first in a sequence, e.g. "Choose the 3rd furthest vector from vector 4"
- . _ R _ L m - R R R
| |
| | a : || B | | ||
n [ | | | | | | | |
[ |
n

(c) Reference vector comes in the middle of a sequence, e.q. "Choose the é6th furthest vector from vector 6" 31



Dot product attention works for
simple relationship, but ...

For hard relationship, scalar
representation is limited



Complicated relationship needs high-
order relational memory

b R \’\é;l:%{
xtract items e “ memory .~
ri - o

InY ™~
et
===

\ N 5 . __
N 4_:-:-‘:::‘" ,; // | . . = ] 5 &
= //»"" P T et :
SAMg (M) [s] = A® (M, [s], Mg, M,) ) M W
8] © My [j]) @ M, [j] (8)

Mgy

3d relational

= R E T S o AT o e tensor

ran, and Svetha Venkatesh. "Self-
iative memory." In International Conference Associate every pairs of them 33
1. PMLR, 2020.



Program memory



Predefining program for subtask

« A program designed for a
task becomes a module

* Parse a question to module
layout (order of program
execution)

 Learn the weight of each
module to master the task

Andreas, Jacob, Marcus Rohrbach, Trevor Darrell, and Dan Klein. "Neural module networks." In Proceedings of the IEEE conference on

Where is
the dog?

\. Parser

computer v

CNN

ision and pattern recognition, pp. 39-48. 2016.



Program selection is based on
parser, others are end2end trained

3 classify : I'mage x Attention — Label
1 attend : Image — Attention 2 re-attend : Attention — Attention
classify[where]
5 mOdU|e _ attend[dog] re-attend[above]
t I t Attend [ FC [ Softmax
empiates Convolution FC —> ReLU
measure : Attention — Label
measure[exists]
n E FC P ReLU (= FC P Softmax yes
attend[red] .
# combine[and] i measure[is] -D{ Yes )
is there a red shape above
a circle? attend[clr--:le] re-attend[above]
Parsing
5 combine : Attention x Attention — Attention
measure[is](
combine[and]( combine[except]
attend[red],
re-attend[above]( Stack (= Conv. = RelLU
attend[circle]))) 36




The most powerful memory is one that stores
both program and data

« Computer architecture:

HEAD

Universal Turing . ‘e’ = =
Machines/Harvard/VNM j;C.Dde.nurﬁber ng Tu':acl.ﬁine.,w .Inpl.Jt t!:.: .H.: _.C.)ut;:;t.ut |
« Stored-program principle s —
. . Scanned| T T 1 Eoet
* Break a big task into subtasks, ymbol | ek [mwen | e
each can be handled by a Rliltttag G oy e e
TM/single purposed program S PP PR

Stored in a program memory | Contreol unit

https://en.wikipedia.org/ 37



NUTM: Learn to select program (neural weight)
via program attention

* Neural stored-program memory
(NSM) stores key (the address)
and values (the weight)

* The weight is selected and
loaded to the controller of NTM

* The stored NTM weights and
the weight of the NUTM is
learnt end-to-end by
backpropagation

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory."
In International Conference on Learning Representations. 2019.

38



Scaling with memory of mini-programs

* Prior, 1program =1 neural 8
network (millions of 1 )] (e (i
parameters) ; - P g II
- Parameter inefficiency since <— (2] = | oy Yo
i | — | i B
the programs do nOt Share NTt:I:rkﬂ Program Program
common parameters “ Controller Memory
e Solution: store sharable
mini_prog rams to Compose it is analogous to building Lego structures

corresponding to inputs from basic Lego bricks.

infinite number of programs

39



Recurrent program attention to retrieve

singular components of a program

P, = USV?!

Tm

_ E T
= Jtn?-"'tn'“tn
T

PH

u .
Utn = E “’THHMU (?)

i=1

P,
Utn = Z wy, My (1)
i=1

softplus (ZP wy., Mg (i ))
Otn41 + softplus (ZP wy, Mg (i ))

Otn —

‘ my; * Usage | k"™ Keys

i

Program

Controller

elelslele]
(slalslale]
(slalslale] ’U.-tj
(s]elslele]
TR
"""""""""""" 0000 ~
> Program ® Outer : 0000
Attention product ' 0000 Vg
— ' o00olH—
“-\f:! Multiply @ Sum [els]als) —
Memory

Le, Hung, and Svetha Venkatesh. "Neurocoder: Learning General-Purpose Computation Using Stored Neural Programs." arXiv preprint arXiv:2009.11443 (2020).

40
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= Linear classifier —4%— Newrocoder (H=1)

12 20 20

_______________________________________ 0 4]

—_ 1 20 20
Program attention is equivalent to 210 : : :
binary decision tree reasoning £l | 20 20 5
""'---__________ il i] o
6 1 + 20 2 ’

=
o

1 3

Number of recurrent attention steps (J

(a)

rJd
(=]
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Agenda

* Learning to reason with less labels:
« Data augmentation with analogical and counterfactual examples
* Question generation
 Self-supervised learning for question answering
» Learning with external knowledge graphs

« Recursive reasoning with neural theory of mind.



What color is the racehorse?  How many people are playing ?

Data Augmentation with Analogical and
Counterfactual Examples

ORIGINAL IMAGE

SELECTION OF OBIECTS
Candidate Objects

Candidate Objects

horse
person
fence

m=1, person

& inpainting

Color

inversion

MUTATION

A ="one"”

Poor generalization when training under independent
and identically distributed assumption.

Intuition: augmenting counterfactual samples to allow
machines to understand the critical changes in the

input that lead to changes in the answer space.
» Perceptually similar, yet
« Semantically dissimilar realistic samples

Mutation Type Question Answer
Original Is the lady holding the baby? Yes
Substitution (Negation) Is the lady not holding the baby? No
Substitution (Adversarial) s the cat holding the baby? No
Original How many people are there? Three
Deletion (Masking) How many [MASK] are there? “Number™
Original What is the color of the man’s shirt? Blue
Substitution (Negation) What is not the color of the man’s shirt? Magenta
Deletion (Masking) Is the [MASK] holding the baby? Can’t say
Original What color is the umbrella ? Pink
Deletion (Masking) What color is the [MASK]? “color”

Language counterfactual examples 43



Question Generations

IE L asenrizzreeeB Kl divergence
ey — I . I -------- encoder fusion decoder
attribute D Ict t :-_‘: -------- .'_‘.'.=" I, loss
L N MLE loss question swer
CNN e . .

oo P I e mage --_.,@
image
LSTM | MLP i I I l I I answer a

MLP What color is

v

question

5
51O

[
a
™

.

it is green h,
answer 2

question

. Question answering is a zero-shot L= EID> &“—' ”“AN & """"" -
learning problem. Question ' @

generation helps cover a wider
range of concepts.

——————————

__________

I What sport is the+ l
| L m— VQG loss
i boy playmg-"' i

* Question generation can be done

with either supervised and (hasebatl] —EeCY

__________

unsupervised learning.



BERT: Transformer That Predicts Its Own

Masked Parts

Embedding [ “::2 J [ w::a J [ “::4 ] l w’s
BERT is like parallel tovocabs | =
a p p I"OXi mate pse u d O- [ Classification Layer: Fully-connected layer + GELU + Norm

likelihood ( OTZ ) OL ] oT., ]| c:L
T
N

v

* ~ Maximizing the ~ T T I T
conditional likelihood of
some variables given the Transformer encoder
rest.

-

(.

« When the number of Embedding ] I ! T
variables is large, this [ owe ] [ ws | [masg | [ ws |

converses to MLE T T T
(maximum likelihood W1 w2 W3 W4 Ws
estimate).

[Slide credit: Truyen Tran] 46



Visual QA as a Down-stream Task of Visual-
Language BERT Pre-trained Models

Numerous pre-trained visual language models during 2019-2021.

Single-stream model Two-stream model

Cross-modal Transformer
Cross-modal Transformer

S A H B B B A B Lt f f 1 1t 1 t 1 t 1
. ) ﬁ The man is cutting a pizza [ Multi-layer Transformer ] [ Multi-layer Transformer ]
S S T T 1T 17 T

The man is cutting a Ppizza

VisualBERT (Li, Liunian Harold, et al., 2019)
VL-BERT (Su, Weijie, et al., 2019)

UNITER (Chen, Yen-Chun, et al., 2019) VILBERT (Ly, Jiasen, et al., 2019)

12-in-1 (Lu, Jiasen, et al., 2020) LXMERT (Tan, Hao, and Mohit Bansal, 2019)
Pixel-BERT (Huang, Zhicheng, et al., 2019)

OSCAR (Li, Xiujun, et al., 2020)

[Slide credit: Licheng Yuetal.] 47



Learning with External Knowledge

Why external knowledge
for reasoning?

* Questions can be beyond
visual recognition (e.g.

firetrucks usual |y use a fl re Q: What sort of vehicle uses this item? Q: What is the sports position of the
A: firetruck man in the orange shirt?
hYd ra nt) A: goalie/goalkeeper

« Human's prior knowledge for
cognition-level reasoning (e.g.

" Why is [person1f@] poinling a gun at b) is right because...

[person2[#l]?

human’s goals, intents etc.)

a) [person1 @] is chasing [person1 ] and

a)[person1 @] wants to kill [person2[l].(1%) ([3%'-3;)50"3” ]| because they just robbed a bank.
270

b) Robbers will sometimes hold their gun in the air
to get everyone’s attention. (5%)

b) [person1® ] and [person3 l] are rob-

bing the bank and [person2[§]] is the bank
manager. (71 %)

¢) The vault in the background is similar to a

¢) [person2 [ ] has done something to upset bank vault. [person3 @] is waiting by the vault
[person1 ] . (18%) for someone to open it. (49%)
d) Because [person2 @] is [person1®]’s d) A room with barred windows and a counter usu-

O
daughter. [personi @] wants to protect ally resembles a bank. (11%)

[personz[l]. (8%)
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Learning with External Knowledge

Retrieved by Wikipedia search API

Image feature
Vv
question
D@[h 0
Q "".'" hq

Key a, | - |a

Atitle

art

|:| Input

|:| Hidden State

@ = softmaz(fs(Ok + qx-1))|[s @ GRU

o e |

>

)
=
-

oh

o] , = FC
i o lim ki ;= ey £/ v Predicted — ———— -
[ Visual entity inking ————— I b P o = = FC2) hay - hgent
l | "X' @ -—+ Copy (no action) M
X Add X5
P;

Face coordinates

Wikipedia Caption:
Obama and his wife WIKIDATA
Michelle at the Civil
Rights Summit at the

LBJ Presidential — Z]
Library, 2014.
0]

(Optional)

Question: How many
of them were born in
USA?

| s 2 [



Agenda

* Reasoning with external memories
« Memory of entities - memory-augmented neural networks
« Memory of relations with tensors and graphs
« Memory of programs & neural program construction.

* Learning to reason with less labels:

« Data augmentation with analogical and counterfactual examples
* Question generation

« Self-supervised learning for question answering

* Learning with external knowledge graphs

* Recursive reasoning with neural theory of mind.

50



i Core Al faculty:
3 Theory of mind

Source: religious studies project



Theory of mind

Perception “

Recursive reasoning

- Fast
- Implicit/automatic
- Pattern recognition

Multiple

J

=
A -

Facts

Semantics
Events and relations
Working space

Single

System 2:

Analytical

\

- Slow

- Deliberate/rational
- Careful analysis

- Single, sequential

Where would ToM fit in?

Image credit: VectorStock | Wikimedia



Contextualized recursive reasoning

* Thus far, QA tasks are straightforward and objective:
* Questioner: | will ask about what | don’t know.
 Answerer: | will answer what | know.

* Real life can be tricky, more subjective:

* Questioner: | will ask only questions | think they can
answer.

 Answerer 1: This is what | think they want from an answer.
 Answerer 2: | will answer only what | think they think | can.

- We need Theory of Mind to function socially.

14/08/2021
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Social dilemma: Stag Hunt games

 Difficult decision: individual outcomes (selfish)

: THE STAG HUNT
or group outcomes (cooperative). AND THE EVOLUTION
, oF SOCIAL STRUCTURE
« Together hunt Stag (both are cooperative): Both have more
meat.

« Solely hunt Hare (both are selfish): Both have less meat.

« One hunts Stag (cooperative), other hunts Hare (selfish): Only
one hunts hare has meat.

- Human evidence: Self-interested but ERAROIRNS
considerate of others (cultures vary).

* Idea: Belief-based guilt-aversion

* One experiences loss if it lets other down.
* Necessitates Theory of Mind: reasoning about other’'s mind.




Theory of Mind Agent with Guilt Aversion (ToOMAGA)

Update Theory of Mind
* Predict whether other’s behaviour are Observations

Material Rewards
. . Matrix
cooperative or uncooperative — -
- [ )

: '’
« Updated the zero-order belief (what Belief-based | Material
other will do) Motivation Motivation

« Update the first-order belief (what other
think about me)

Guilt Aversion

 Compute the expected material reward

of other based on Theory of Mind >

 Compute the psychological rewards, i.e.

“feeling quilty” Update the Value Function ToMAGA it
« Reward shaping: subtract the expected Nguyen, Dung, et al. "Theory of Mind with Guilt Aversion Facilitates
loss Of the other. Cooperative Reinforcement Learning." Asian Conference on Machine

Learning. PMLR, 2020.

[Slide credit: Dung Nguyen]



Rabinowitz, Neil, et al. "Machine theory of mind." International conference on machine learning. PMLR, 2018.

Machine Theory of Mind Architecture (inside the Observer)

goal

_ Successor
next-step action representations
probability ~ —— ¥

m C SR
Nyous Npast (obs) \ T /
€chari — 23 pl €char,ij — Z o1

prediction

>
net
E€mental,i — gqﬁ 0 t—15 €char, z T

current
T T state

char net AT
net St
past recent
trajectories trajectory
(0bs) y Npast (obs) _ t—1
{ Tij J=1 Tik (St/ at’)t’:0



AToM ot mentonacton U5
architecture

Hypernetwork AE PredNet ]
* Observer maintains memory of Theory of Mind

previous episodes of the agent. AT =0 S

* |t theorizes the “traits” of the
agent.

* Implemented as Hyper Networks. CharNet ]

“mental ,i

current state

MentalNet ]

* Given the current episode, the 5 I
observer tries to infer goal, past ajectries current raectory
intention, action, etc of the

agent.

* Implemented as memory retrieval
through attention mechanisms.




Wrapping up



Wrapping up

Reasoning as the next challenge for deep neural networks

Part A: Learning-to-reason framework
« Reasoning as a prediction skill that can be learnt from data
 Dynamic neural networks are capable

« Combinatorics reasoning

Part B: Reasoning over unstructured and structured data
* Reasoning over unstructured sets

* Relational reasoning over structured data

Part C: Memory | Data efficiency | Recursive reasoning
* Memories of items, relations and programs
* Learning with less labels

* Theory of mind

14/08/2021 59



Theory of mind

Perception “

Recursive reasoning

- Fast
- Implicit/automatic
- Pattern recognition

Multiple

J

=
A 5

Facts

Semantics
Events and relations
Working space

Single

System 2:

Analytical

\

- Slow

- Deliberate/rational
- Careful analysis

- Single, sequential

A possible framework for learning and reasoning

with deep neural networks

Image credit: VectorStock | Wikimedia
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