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DEEP LEARNING IN NON-COGNITIVE DOMAINS

Where humans need extensive training to do well

Domains with great diversity but small in size

Domains with great uncertainty, low-quality/missing data

Domains that demand transparency & interpretability. 

… healthcare, security, foods, water, manufacturing
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AGENDA

Introduction to PRaDA
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 Healthcare
 Software engineering
 Choice and ranking
 Anomaly detection
 Multi-relational databases
 Representation

The open room
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CENTRE FOR PATTERN RECOGNITION AND DATA ANALYTICS
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PRADA: MAKING DATA SPEAK

Domains
Health
 Pervasive computing
 Social media
Manufacturing
Cybersecurity
Now: in collaboration with UoW –
software engineering and process 
mining

Methods
Deep learning
 Bayesian nonparametrics (topic models 
included)
 Sparse methods (e.g., compress sensing)
 Probabilistic graphical models
Distributed computing
Optimization
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Accelerated Learning
for children with
Autism

4 Startups Collaborators
PRADA: THE MAKING
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INTRODUCTION TO DEEP LEARNING

Google Brain

Google DeepMind

Facebook (FAIR)

Baidu

Microsoft

Twitter Cortex

IBM
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DEEP LEARNING: MACHINE THAT LEARNS EVERYTHING

End-to-end machine learning – no human involved.
Models are compositional, e.g., object is composed of parts.

→ Models can be complex, but building block is simple and universal!

→ Learning is more efficient in multiple steps

Things can be learn: Feature | Selectivity | Invariance | Dynamics 
| Memory  encoding and forgetting | Attention | Planning
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THE BUILDING BLOCKS: FEATURE DETECTOR

∫ ∫

signals

feedbacks
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WHY FEATURE LEARNING?

In typical machine learning projects, 80-90% effort is on feature 
engineering
A right feature representation doesn’t need much work. Simple linear 
methods often work well.

Vision: Gabor filter banks, SIFT, HOG, BLP, BOW, etc.
Text: BOW, n-gram, POS, topics, stemming, tf-idf, etc.
SW: token, LOC, API calls, #loops, developer reputation, team 
complexity, report readability, discussion length, etc. 
Try yourself on Kaggle.com!
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(Bengio, DLSS 2015)
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THREE MAIN ARCHITECTURES

Deep (DNN): Vector to vector
Most existing ML/statistics fall into this category

Recurrent (RNN): Sequence to sequence
 Temporal, sequential. E.g., sentence, actions, DNA, EMR
 Program evaluation/execution. E.g., sort, traveling salesman problem 

Convolutional (CNN): Image to vector/sequence/image
 In time: Speech, DNA, sentences
 In space: Image, video, relations
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DNN FOR VEC2VEC MAPPING
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RNN FOR SEQ2SEQ MAPPING

Source: http://karpathy.github.io/assets/rnn/diags.jpeg

deep neural nets with parameter tying
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CNN FOR TRANSLATION INVARIANCE

translation

(Quoc Le, 2015)

(Russ Salakhutdinov, 2015)2/04/2019 18



WHEN DOES DEEP LEARNING WORK?

Lots of data (e.g., millions of images)

Strong, clean training signals (e.g., when human can provide correct 
labels – cognitive domains)

Data structures are well-defined (e.g., image, speech, NLP, video)

Data is compositional (luckily, most data is like this)

The more primitive (raw) the data, the more benefit of using deep 
learning.
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X = PROSPECTIVE HEALTHCARE

Promises yet to be delivered.

Bottleneck: data – providers not willing to share. Many issues – privacy, ethics, 
governance.

Requirements
 Transparency & interpretability
 Correctly model characteristics of healthcare data (e.g., Irregular timing, Interventions, Regular motifs)

A wide range of modalities: health processes, EMR, questionaires, imaging, biomarkers, 
NLP (clinical notes, pubmed, social media), wearable devices, genomics.
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Risk: LOW

Score = 1
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Score = 2

Risk: Moderate
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Risk: High

Score = 2
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Risk: high

Score =  
1
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DEEP ARCHITECTURES FOR HEALTHCARE

Our primary goal: predicting 
future risk!

DNND – vector input & vector 
output, no sequences

DEEPR (CNN) – repeated motifs, 
short sequences

DEEPCARE (RNN) – long-term 
dependencies, long sequences

INTEGRATED DATA VIEW OF MULTIPLE HOSPITAL SYSTEMS

MULTI DATA INPUT METHODS

FLEXIBLE TO CREATE, EASY TO USE

SECURE AND ACCESSIBLE, ANYWHERE

Patient data
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DNND

Input vector --
redundancy

Output vector – multiple 
prediction horizons

Tricks: Dropout

assessment

15 days30 days 60 days 120 days 180 days

hidden layers

pooling

history
future

360 days

fragmentation

[0-3]m[3-6]m[6-12]m
data segments

[12-24]m[24-48]m
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SUICIDE RISK PREDICTION: MACHINE VERSUS CLINICIAN
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DEEPR: CNN FOR REPEATED MOTIFS AND SHORT 
SEQUENCES

output

max-pooling

convolution --
motif detection

embedding

sequencing

medical record

visits/admissions

time gaps/transferphrase/admission

prediction

1

2

3

4

5

time gap
record 
vector

word 
vector

?

prediction point
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DISEASE EMBEDDING & MOTIFS 
DETECTION

E11 I48 I50
Type 2 diabetes mellitus
Atrial fibrillation and flutter
Heart failure

E11 I50 N17
Type 2 diabetes mellitus
Heart failure
Acute kidney failure
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EMBEDDING OF PATIENTS: LINEARIZING DECISION 
BOUNDARY
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DEEPCARE: LONG-TERM MEMORY

Illness states are a dynamic memory process → moderated by time 
and intervention

Discrete admission, diagnosis and procedure → vector embedding

Time and previous intervention → “forgetting” of illness

Current intervention → controlling the risk states

2/04/2019 33



DEEPCARE: DYNAMICS

memory

*
input 
gate

forget 
gate

prev. memory

output 
gate

*

*

input

aggregation over 
time → prediction

previous 
intervention

history 
states

current 
data

time 
gap

current 
intervention

current 
state

New in DeepCare2/04/2019 34



DEEPCARE: STRUCTURE

Time gap

LSTM

Admission
(disease)

(intervention)

Vector embedding

Multiscale pooling
Neural network

Future risks

Long short-term 
memory

Latent states

FutureHistory

LSTM LSTM LSTM
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DEEPCARE: TWO MODES OF FORGETTING AS A FUNCTION OF TIME

→ decreasing illness

→ Increasing illness
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DEEPCARE: PREDICTION RESULTS

Intervention recommendation (precision@3) Unplanned readmission prediction (F-score)

12 months 3 months 12 months 3 months
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X = SOFTWARE ANALYTICS

Goal: To model code, text, team, user, execution, project & enabled 
business process answer any queries by developers, managers, users 
and business

 End-to-end
 Compositional

For now:
 LSTM for report representation
 DeepSoft vision paper
 Stacked/deep inference (later)
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LONG SHORT-TERM MEMORY FOR TEXT REPRESENTATION

LSTM

Authenticate

[0.1 0.3 -0.2]

quota

[-1 -2.1 0.5]

requests

[1.5 0.5 -1.2]

quota requests <EOS>

[1 -0.5 -3] [-1.3 0 2] [-0.5 -0.5 -1]

[-0.27 -0.33 -0.67]

LSTMLSTM
Sequence embedding

Word embedding

Output states
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DEEPSOFT: COMPOSITIONAL DEEP NET FOR SW PROJECT
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X = RANKING

 Raking web documents in search engines
 Movie recommendation
 Advertisement placement
 Tag recommendation
 Expert finding in a community network
 Friend ranking in a social network
 ???

*(these graphics were downloaded using image.google.com)
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LEARNING-TO-RANK

Learn to rank responses to a query

A ML approach to Information Retrieval
 Instead of hand-engineering similarity measures, learn it

Two key elements
Choice model  rank loss (how right/wrong is a ranked list?)
 Scoring function  mapping features into score (how good is the choice?)

Web documents in search engines 
 query: keywords

 Movie recommendation
 query: an user

 Advertisement placement 
 query: a Web page

 Tag recommendation
 query: a web object

 Friend ranking in a social network 
 query: an user

2/04/2019 44



CHOICE BY ELIMINATION

gate

input

rank score

gate

A

B

C

A

C C

Recurrent highway networks

The networks represent the 
scoring function

All networks are linked 
through the rank loss – neural 
choice by elimination

It is a structured output 
problem (permutation)
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YAHOO! L2R CHALLENGE (2010) 

 19,944 queries

 473,134 documents 

 519 unique features

 Performance measured in:

 Expected Reciprocal Rank (ERR)

 Normalised Discounted Cumulative Gain (NDCG)
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RESULTS

As of 2011 – Forward selection + quadratic rank function

As of 2016 – Backward elimination + deep nets

Rank 41 out of 1500

Rank?
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X = ANOMALY DETECTION

London, July 
7, 2005
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Real world - what are the operators monitoring?
2/04/2019 50



Strategy: learn normality, anything does not fit in is abnormal
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MAD: MULTILEVEL ANOMALY DETECTION
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X =MULTI-RELATIONAL DATABASES 

The world is multi-relational (e.g., friend, class-mate, collaborator, flat-mate).

Stacked inference (with Hoa & Morakot)

Deep inference

Shallow Stacked inference Deep inference
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STACKED INFERENCE RESULT

Latest update: Deep Inference is now better!
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REPRESENTATION OF MATRIX AND TENSORS
column-specific model

row-specific model
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REPRESENTATION OF MIXED-TYPES
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








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
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1

2

3

Gaussian RBM

THURSTONIAN BOLTZMANN MACHINE
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THE BEST STRATEGY TO PLAY THIS DEEP LEARNING 
GAME?

“[…] the dynamics of the game will evolve. In the long run, 
the right way of playing football is to position yourself 
intelligently and to wait for the ball to come to you. You’ll 
need to run up and down a bit, either to respond to how 
the play is evolving or to get out of the way of the scrum 
when it looks like it might flatten you.” (Neil Lawrence)

http://inverseprobability.com/2015/07/12/Thoughts-on-ICML-2015/
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“A NEW IDEA IS JUST RE-PACKAGING OF OLD IDEAS”
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DEEP (LEARNING) QUESTIONS

Is this just yet-another-toolbox or a 
way of thinking?

Is this a right approach to AI?
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