

DEEP LEARNING IN NON-COGNITIVE DOMAINS

Truyen Tran PRaDA, Deakin

DEEP LEARNING IN COGNITIVE DOMAINS

DEEP LEARNING IN NON-COGNITIVE DOMAINS

Where humans need extensive training to do well Domains with great diversity but small in size Domains with great uncertainty, low-quality/missing data Domains that demand transparency & interpretability.

... healthcare, security, foods, water, manufacturing

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

CENTRE FOR PATTERN RECOGNITION AND DATA ANALYTICS

PRADA: MAKING DATA SPEAK

Domains

- Health
- Pervasive computing
- Social media
- Manufacturing
- Cybersecurity
- Now: in collaboration with UoW software engineering and process mining

Methods

- Deep learning
- Bayesian nonparametrics (topic models included)
- Sparse methods (e.g., compress sensing)
- Probabilistic graphical models
- Distributed computing
- Optimization

PRADA: THE MAKING

4 Startups

TOBY Playpad Accelerated Learning for children with Autism

Our patented technology learns *normal* activity and alerts **only** on *abnormal* events

VIRTUAL OBSERVER

Integrating web technology and mobile scattered sensors to revolutionise situational awareness.

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

INTRODUCTION TO DEEP LEARNING

Google Brain

Google DeepMind

Facebook (FAIR)

Baidu

Microsoft

Twitter Cortex

IBM

EVERY INDUSTRY WANTS INTELLIGENCE

Organizations engaged with NVIDIA on deep learning

DEEP LEARNING: MACHINE THAT LEARNS EVERYTHING

End-to-end machine learning – no human involved. Models are **compositional**, e.g., object is composed of parts.

• \rightarrow Models can be complex, but building block is simple and universal!

• \rightarrow Learning is more efficient in multiple steps

Things can be learn: **Feature** | Selectivity | Invariance | Dynamics | Memory encoding and forgetting | Attention | Planning

THE BUILDING BLOCKS: FEATURE DETECTOR

WHY FEATURE LEARNING?

In typical machine learning projects, 80-90% effort is on <u>feature</u> <u>engineering</u>

 A right feature representation doesn't need much work. Simple linear methods often work well.

Vision: Gabor filter banks, SIFT, HOG, BLP, BOW, etc.

Text: BOW, n-gram, POS, topics, stemming, tf-idf, etc.

SW: token, LOC, API calls, #loops, developer reputation, team complexity, report readability, discussion length, etc.

Try yourself on Kaggle.com!

Deep Learning = Learning Hierarchical Representations

Y LeCun MA Ranzato

14

It's deep if it has more than one stage of non-linear feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

THREE MAIN ARCHITECTURES

Deep (DNN): Vector to vector

Most existing ML/statistics fall into this category

Recurrent (RNN): Sequence to sequence

- Temporal, sequential. E.g., sentence, actions, DNA, EMR
- Program evaluation/execution. E.g., sort, traveling salesman problem

Convolutional (CNN): Image to vector/sequence/image

- In time: Speech, DNA, sentences
- In space: Image, video, relations

DNN FOR **VEC2VEC** MAPPING

RNN FOR **SEQ2SEQ** MAPPING

deep neural nets with parameter tying

Source: http://karpathy.github.io/assets/rnn/diags.jpeg

CNN FOR TRANSLATION INVARIANCE

WHEN DOES DEEP LEARNING WORK?

Lots of data (e.g., millions of images)

Strong, clean training signals (e.g., when human can provide correct labels – cognitive domains)

Data structures are well-defined (e.g., image, speech, NLP, video)

Data is compositional (luckily, most data is like this)

The more primitive (raw) the data, the more benefit of using deep learning.

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X (non-cognitive) is:

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

X = PROSPECTIVE HEALTHCARE

Promises yet to be delivered.

Bottleneck: data – providers not willing to share. Many issues – privacy, ethics, governance.

Requirements

- Transparency & interpretability
- Correctly model characteristics of healthcare data (e.g., Irregular timing, Interventions, Regular motifs)

A wide range of modalities: health processes, EMR, questionaires, imaging, biomarkers, NLP (clinical notes, pubmed, social media), wearable devices, genomics.

DEEP ARCHITECTURES FOR HEALTHCARE

Our primary goal: predicting future risk!

DNND – vector input & vector output, no sequences

DEEPR (CNN) – repeated motifs, short sequences

DEEPCARE (RNN) – long-term dependencies, long sequences

SUICIDE RISK PREDICTION: MACHINE VERSUS CLINICIAN

DEEPR: CNN FOR REPEATED MOTIFS AND SHORT SEQUENCES

phrase/admission time gaps/transfer

DISEASE EMBEDDING & MOTIFS DETECTION

E11 I48 I50

Type 2 diabetes mellitus Atrial fibrillation and flutter Heart failure

E11 I50 N17

Type 2 diabetes mellitus Heart failure Acute kidney failure

EMBEDDING OF PATIENTS: LINEARIZING DECISION BOUNDARY

DEEPCARE: LONG-TERM MEMORY

Illness states are a dynamic memory process \rightarrow moderated by time and intervention

Discrete admission, diagnosis and procedure \rightarrow vector embedding

Time and previous intervention \rightarrow "forgetting" of illness

Current intervention \rightarrow controlling the risk states

34

2/04/2019

 \rightarrow decreasing illness

\rightarrow Increasing illness

DEEPCARE: TWO MODES OF FORGETTING AS A FUNCTION OF TIME

Intervention recommendation (precision@3)

Unplanned readmission prediction (F-score)

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X (non-cognitive) is:

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

X = SOFTWARE ANALYTICS

Goal: To model code, text, team, user, execution, project & enabled business process \rightarrow answer any queries by developers, managers, users and business

End-to-end

Compositional

For now:

- LSTM for report representation
- DeepSoft vision paper
- Stacked/deep inference (later)

LONG SHORT-TERM MEMORY FOR TEXT REPRESENTATION

DEEPSOFT: COMPOSITIONAL DEEP NET FOR SW PROJECT

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X (non-cognitive) is:

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

$\mathbf{X} = \mathbf{RANKING}$

- Raking web documents in search engines
- Movie recommendation
- Advertisement placement
- Tag recommendation
- Expert finding in a community network
- Friend ranking in a social network
- ššš

LEARNING-TO-RANK

Learn to rank responses to a query

A ML approach to Information Retrieval

Instead of hand-engineering similarity measures, learn it

Two key elements

- Choice model \rightarrow rank loss (how right/wrong is a ranked list?)
- Scoring function \rightarrow mapping features into score (how good is the choice?)

- query: keywords
- Movie recommendation

query: an user

- Advertisement placement
 - query: a Web page
- Tag recommendation

query: a web object

- Friend ranking in a social network
 - query: an user

CHOICE BY ELIMINATION

The networks represent the scoring function

All networks are linked through the rank loss – neural choice by elimination

It is a structured output problem (permutation)

Recurrent highway networks

YAHOO! L2R CHALLENGE (2010)

CHALLENGE from YAHOO!

Home Datasets Instructions Registration Submission Leaderboard FAQs Workshop

Tasks

The competition is divided into two tracks:

- 1. A standard learning to rank track, using only the larger dataset.
- A transfer learning track, where the goal is to leverage the training set from set1 better ranking function on set2.

You can compete in one or both tracks. The relevance labels on the validation and test not given. The goal is to train a ranking function on the training set and to predict a rank urls for each query on the validation and test sets.

Evaluation

Submissions will be evaluated using two criteria: the Normalized Discounted Cumulativ (NDCG) and the Expected Reciprocal Rank (ERR), defined as follows:

NDCG =
$$\frac{\text{DCG}}{\text{Ideal DCG}}$$
 and $\text{DCG} = \sum_{i=1}^{\min(10,n)} \frac{2^{y_i} - 1}{\log_2(1+i)}$
 $\frac{2}{04/2019} \text{ERR} = \sum_{i=1}^n \frac{1}{i} R(y_i) \prod_{j=1}^{i-1} (1 - R(y_j)) \text{ with } R(y) = \frac{2^y - 1}{16}$

19,944 queries

- 473,134 documents
- 519 unique features
- Performance measured in:
 - Expected Reciprocal Rank (ERR)
 - Normalised Discounted Cumulative Gain (NDCG)

As of 2011 – Forward selection + quadratic rank function

		ERR	NDCG@1	NDCG@5
RESULIS	Rank Regress	0.4882	0.683	0.6672
	RankNet	0.4919	0.6903	0.6698
	Ranking SVM	0.4868	0.6797	0.6662
	ListMLE	0.4955	0.6993	0.6705
	PairTies-D	0.4941	0.6944	0.6725
	PairTies-RK	0.4946	0.6970	0.6716
Kank 41 out of 1500	PMOP-FD	0.5038	0.7137	0.6762
	PMOP-Gibbs	0.5037	0.7105	0.6792
As of 2016 – Backward elimination + deep nets	PMOP-MH	0.5045	0.7139	0.6790

	Placket-Luce			Choice by elimination			
Rank function	ERR	NDCG@1	NDCG@5	ERR	NDCG@1	NDCG@5	
SGTB	0.497	0.697	0.673	0.506	0.705	0.681	
Neural nets	0.501	0.705	0.688	0.509	0.719	0.697	 - Rank?
2/04/2019				1			47

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

X = ANOMALY DETECTION

London, July 7, 2005

Real world - what are the operators monitoring?

Strategy: learn normality, anything does not fit in is abnormal

MAD: MULTILEVEL ANOMALY DETECTION

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

X = MULTI-RELATIONAL DATABASES

The world is multi-relational (e.g., friend, class-mate, collaborator, flat-mate).

Stacked inference (with Hoa & Morakot)

Deep inference

Stacked inference

Deep inference

Shallow

/

2/04/2019

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

REPRESENTATION OF MATRIX AND TENSORS

mode-2

REPRESENTATION OF MIXED-TYPES

AGENDA

Introduction to PRaDA

Introduction to deep learning

Deep learning for [X], where X =

- Healthcare
- Software engineering
- Choice and ranking
- Anomaly detection
- Multi-relational databases
- Representation

The open room

THE BEST STRATEGY TO PLAY THIS DEEP LEARNING GAME?

"[...] the dynamics of the game will evolve. In the long run, the right way of playing football is to position yourself <u>intelligently and to wait for the ball to come to you</u>. You'll need to run up and down a bit, either to respond to how the play is evolving or to get out of the way of the scrum when it looks like it might flatten you." (*Neil Lawrence*)

"A NEW IDEA IS JUST RE-PACKAGING OF OLD IDEAS"

DEEP (LEARNING) QUESTIONS

Is this just yet-another-toolbox or a way of thinking?

Is this a right approach to Al?