GET Your HANDS DIRTY

DEEP LEARNING & APPLICATIONS IN NON-COGNITIVE DOMAINS

PART II: PRACTICE

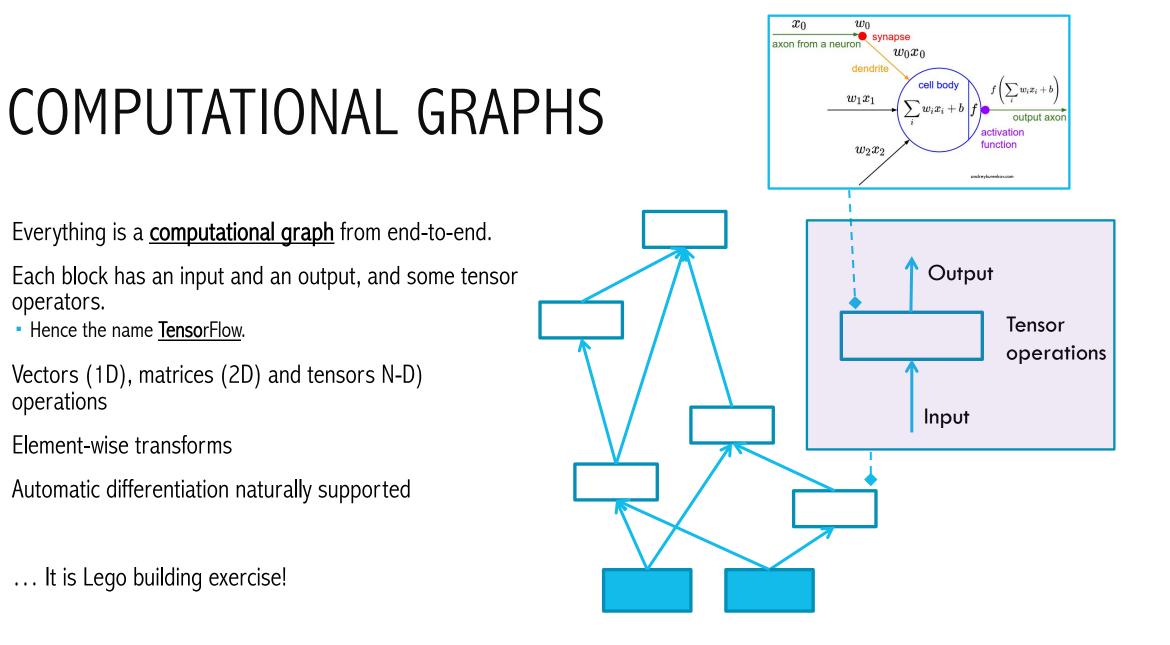
Truyen Tran Deakin University truyen.tran@deakin.edu.au prada-research.net/~truyen

Al'16, Hobart, Dec 5th 2016

PART II: PRACTICE APPLYING DEEP LEARNING TO NON-COGNITIVE DOMAINS

Hand-on:

- Introducing programming frameworks (Theano, TensorFlow, Mxnet)
- Domains how-to:
- Healthcare
- Learning to rank objects
- Software engineering
- Anomaly detection
- Malicious URLs



3/12/16

CHOOSING THE RIGHT FRAMEWORK

Languages: Python, Matlab, Java, C/C++, R, Julia

Keys:

Keras
Automatic gradient, if not, the needs checking from finite-difference methods.
GPU support. Can be 10X-100X different.

Lasagne TensorFlow (Google -- Python)

Nolearn Theano (Montreal Uni -- Python)

Mxnet (collaborative work, supports C++, Python, Julia, Matlab, JavaScript, R, Scala)

Torch7 (Facebook, DeepMind, Twitter -- Lua)

Others: Caffe, CNTK, H2O, Chainer, etc.

THEANO & TENSORFLOW

Two most popular frameworks at present. Both in Python.

Theano

- Academic-driven. Pioneer.
- Symbolic computation ightarrow can be tricky to debug
- Wrapper: Lasagne, Keras

TensorFlow

- Google \rightarrow Native distributed computing support
- A lot of support, huge community
- Slightly bigger/messier code
- Linux/Mac only but VirtualBox will help in Windows
- Wrapper: Keras

- $\sqrt{}$ Excellent support for many languages
- \sqrt{Fast} , portable
- $\sqrt{1}$ Intuitive syntax
- $\sqrt{\text{Recent choice by AWS}}$

Tensorflow vs. MXNET

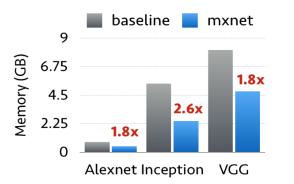
-	Languages	MultiGPU	Distributed	Mobile	Runtime Engine
Tensorflow	Python	Yes	No	Yes	?
MXNET	Python, R, Julia, Go	Yes	Yes	Yes	Yes
(Googlenet) E5-1650/980	Tensor flow	Torch7	Caffe	MXNET	
Time	940ms	172ms	170ms	180ms	
Memory	all (OOM after 24)	2.1GB	2.2GB	1.6GB	
larianas	s Labs		Carnegie Mellon University		

http://bickson.blogspot.com.au/2016/02/mxnet-vs-tensorflow.html

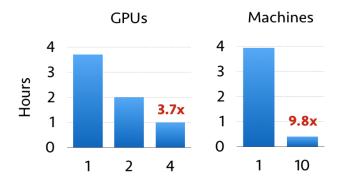
Portable

https://github.com/dmlc/mxnet

Efficient



Scalable



BUILDING A MODEL

Check the model assumption

- Is this only the vector \rightarrow FNN?
- Is this a regular sequence \rightarrow RNN?
- Is there repeated motifs ightarrow CNN?
- Is there a mix of static and dynamic features?
- What does the output look like?
 - A class
 - A sequence
 - An image?
- What are performance measures? → Surrogate smooth objective functions

Everything is a computational graph

From here to there is a tensor

So simple stacking is fine (the idea behind Keras)

Fit small datasets first to test the waterBut be cautious: small data do not always generalize

Always monitor the gap between train/validation sets: small gap indicates underfitting, big widening gap indicates overfitting.

STEPS

Prepare a clean big dataset

Design a suitable architecture \rightarrow the main ART

Choose an optimizer (sgd, momentum, adagrad, adadelta, rmsprop, adam)

Normalise data (very important for fast training & well-behaved learning curve)

Shuffle data randomly (extremely important!)

Run the optimizer

Sit back & wait (in fact, should spend time monitor the convergence)

Grid search if time permits (sometimes very important to get correct convergence!)

Ensemble if time permits

Reiterate if needed

THINGS TO TAKE CARE OF

Data quality

Leakage

- Never touch validation data for feature engineering
- Be aware of overlapping between training/validation in time-sensitive data

Memory limitation

CPU/GPU time

Always shuffle the data <u>BEFORE</u> training – create a mixing of labels

Initialisation matters

Dropouts: almost always help, normally with bigger models. But be careful with RNNs. Numerical overflow/underflow: exp of large number, log of or division by zeros

DETAILS

Learning algorithms

- Mostly adaptive SGD these days
- Much less using conjugate gradients & L-BFGS due to nonconvexity
- Things to worry about: learning rate, mini-batch size, length normalization

For sequences

- Max sequence length (for fast implementation)
- For discrete domains such as NLP, then vocab size, otherwise, use NCE approximation.

For motifs

• Filter size, stride, number of filters, pooling methods

Dropouts

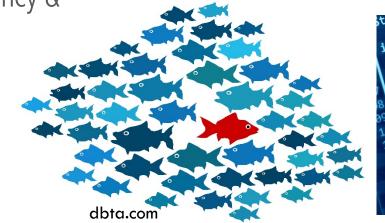
- Hidden is easy: 50% works pretty well
- Input is trickier: larger (up to 20%) for noisy & redundant data

Convergence monitoring

- Always do
- Check overfitting & underfitting

APPLYING TO NON-COGNITIVE DOMAINS

- Where humans need extensive training to do well
- Domains with great diversity but may be small in size
- Domains with great uncertainty, low-quality/missing data
- Domains that demand transparency & interpretability.



Anomaly detection

freewebmentor.com

http://www.bentoaktechnologies.com/Images/code_scrp.jpg

WHAT MAKE NON-COGNITIVE DOMAINS HARD?

Reusable models do not usually exist

Require deep thinking for a reasonable deep architecture

However, at the end of the day, we need few generic things:

- Vector -> DNN (e.g., highway net)
- Sequence -> RNN (e.g., LSTM, GRU)
- Repeated Motifs -> CNN
- Set -> attention (Will visit in Part III)
- Graphs -> Column Networks (Will visit in Part III)

HEALTHCARE

HEALTHCARE: CHALLENGES + OPPORTUNITIES

Long-term dependencies

Irregular timing

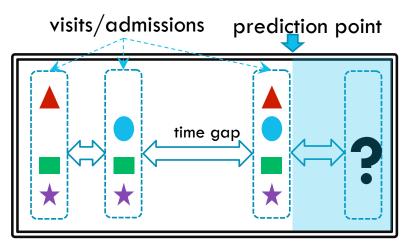
Mixture of discrete codes and continuous measures

Complex interaction of diseases and care processes

Cohort of interest can be small (e.g., <1K) May include textual notes May contain signals (e.g., EEG/ECG) May contain images (e.g., MRI, X-ray, retina) Rich domain knowledge & ontologies

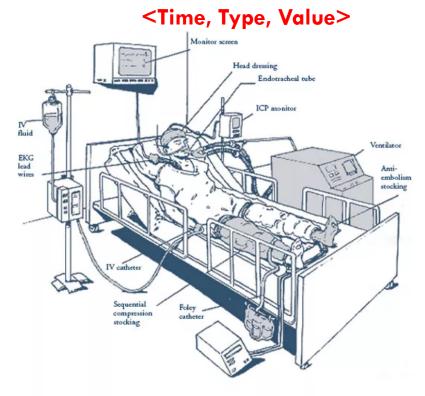
THIS TUTORIAL WILL COVER:

Electronic medical records (EMR)



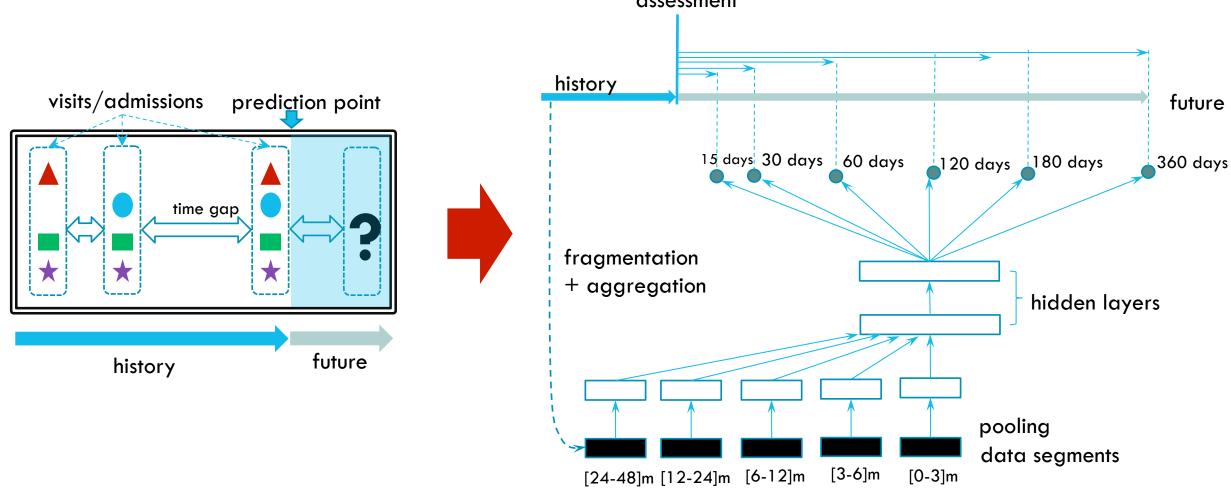
- Time-stamped
- Coded data: diagnosis, procedure & medication
- Text not considered, but in principle can be mapped in to vector using LSTM

<u>Physiological measures in Intensive</u> <u>Care Unit (CU)</u>

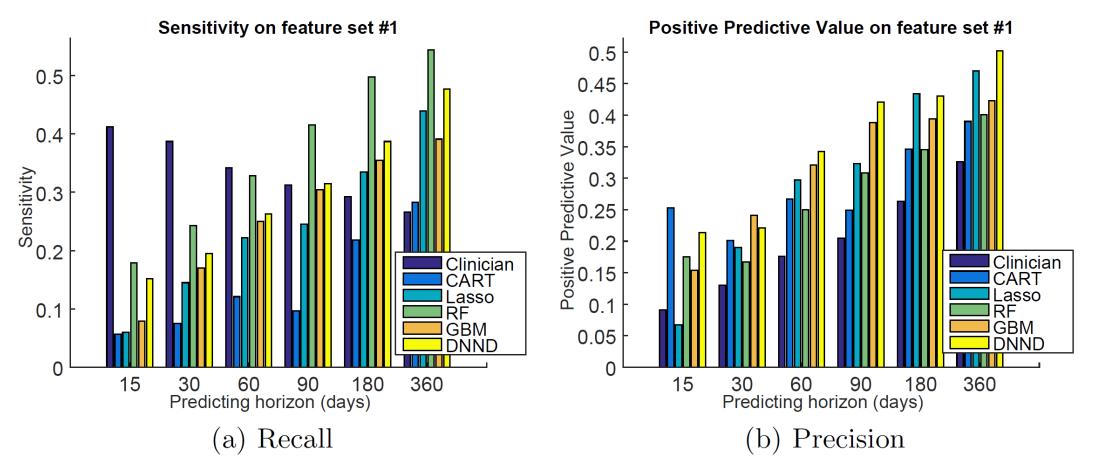


http://www.healthpages.org/brain-injury/brain-injury-intensive-care-unit-icu/

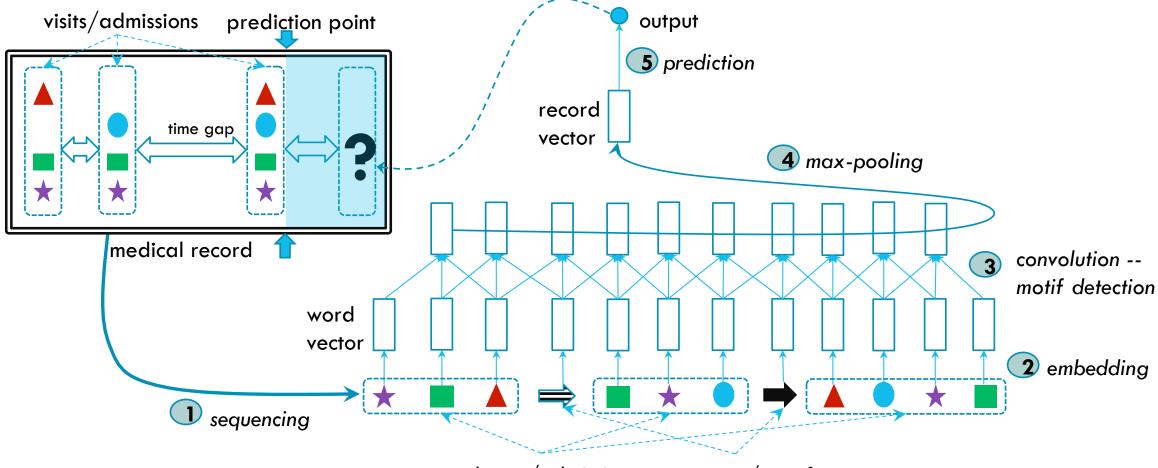
MEDICAL RECORDS: FEEDFORWARD NETS



SUICIDE RISK PREDICTION: MACHINE VERSUS CLINICIAN



DEEPR: CNN FOR REPEATED MOTIFS AND SHORT SEQUENCES (NGUYEN ET AL, J-BHI, 2016)



phrase/admission time gaps/transfer

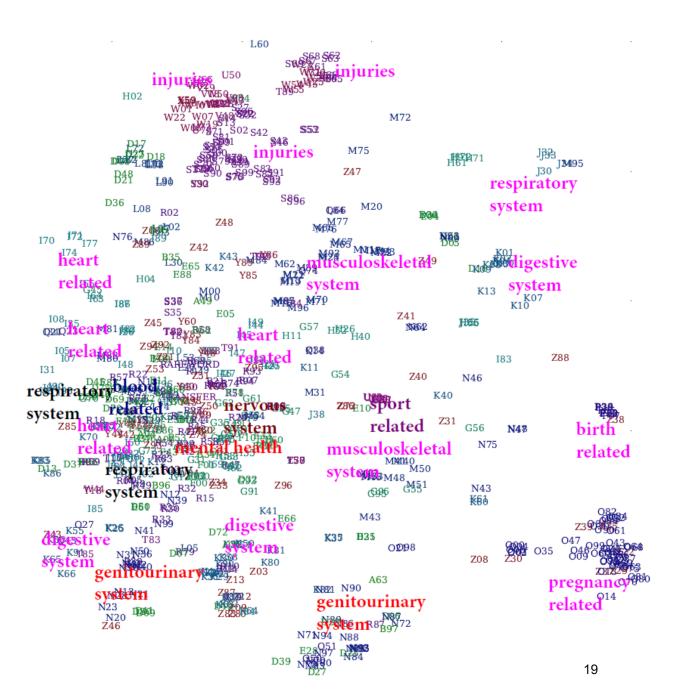
DISEASE EMBEDDING & MOTIFS DETECTION

E11 I48 I50

Type 2 diabetes mellitus Atrial fibrillation and flutter Heart failure

E11 I50 N17

Type 2 diabetes mellitus Heart failure Acute kidney failure



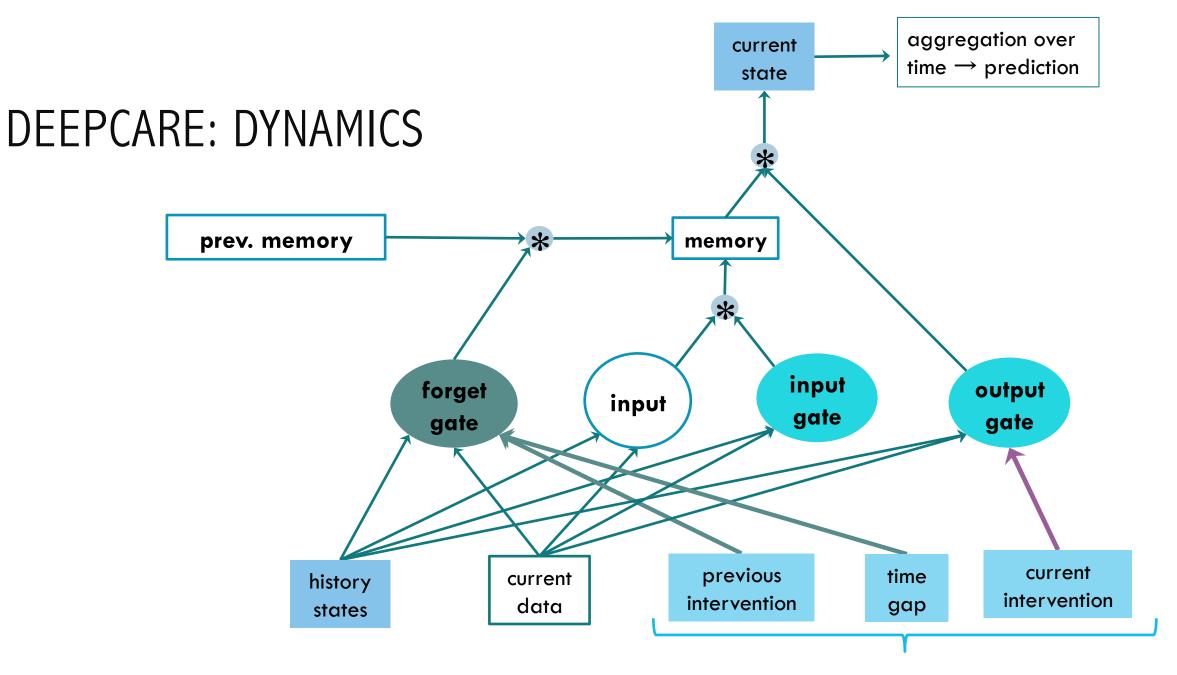
DEEPCARE FOR INTERVENED LONG-TERM MEMORY OF HEALTH (PHAM ET AL, ICPR'16)

Illness states are a dynamic memory process \rightarrow moderated by time and intervention

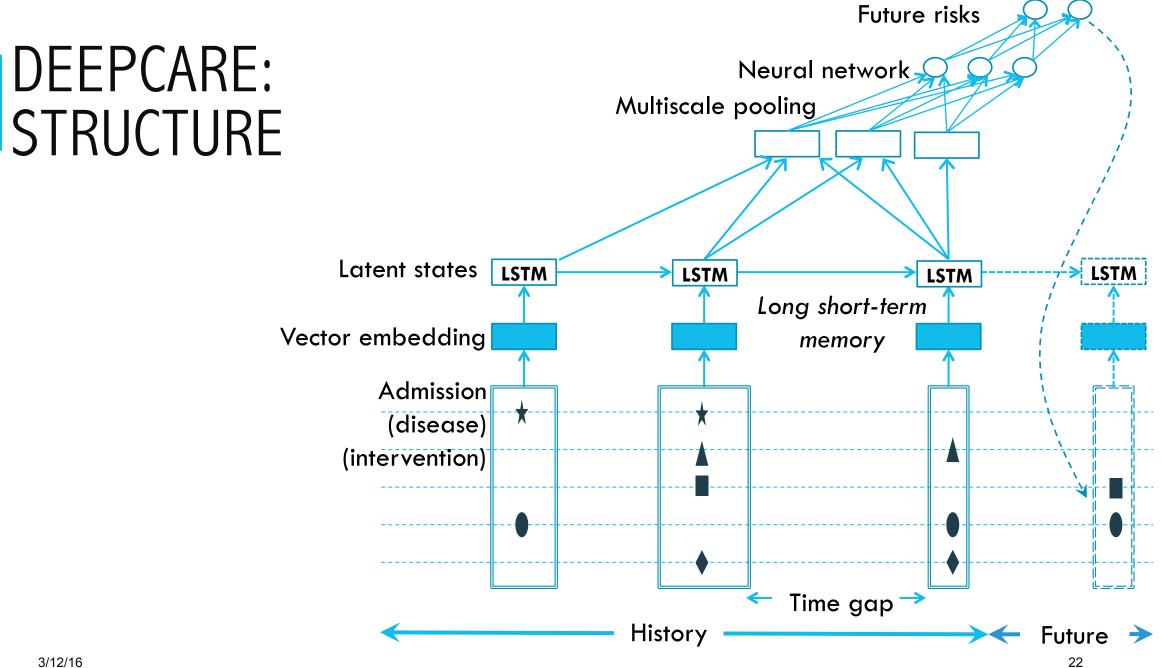
Discrete admission, diagnosis and procedure \rightarrow vector embedding

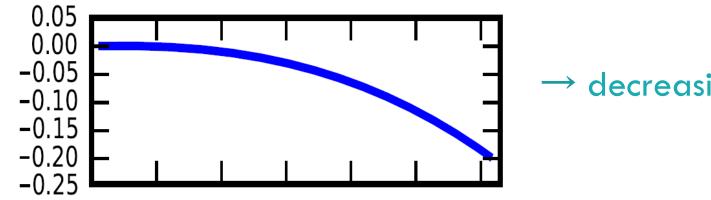
Time and previous intervention \rightarrow "forgetting" of illness

Current intervention \rightarrow controlling the risk states



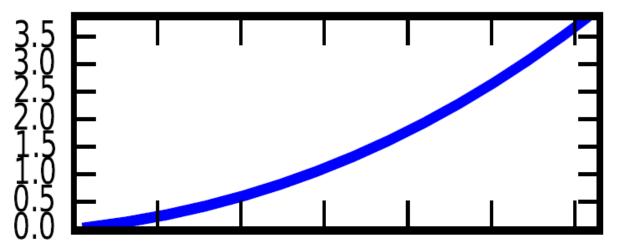
New in DeepCare 21





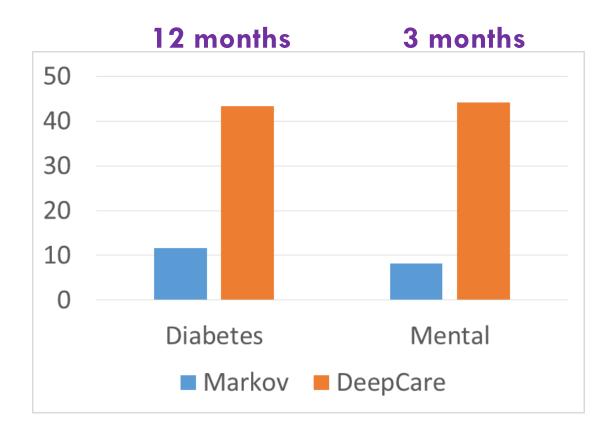
 \rightarrow decreasing illness

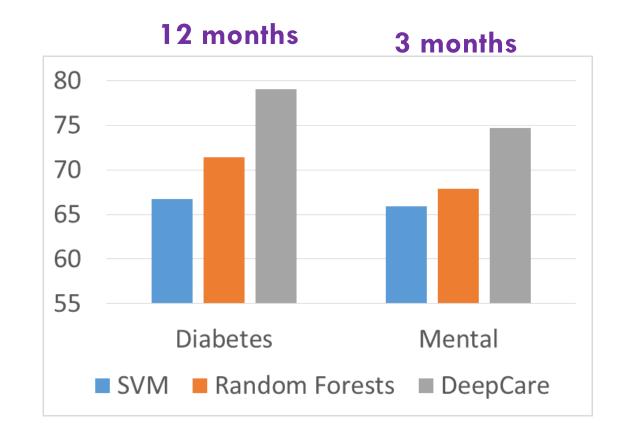
\rightarrow Increasing illness



DEEPCARE: TWO MODES OF FORGETTING AS A FUNCTION OF TIME

DEEPCARE: PREDICTION RESULTS





Unplanned readmission prediction (F-score)

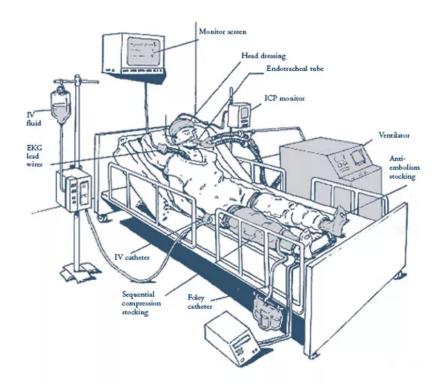
DEEPIC: MORTALITY PREDICTION IN INTENSIVE CARE UNITS (WORK IN PROGRESS)

Existing methods: LSTM with missingness and time-gap as input.

New method: Deepic

Steps:

- Measurement quantization
- Time gap quantization
- Sequencing words into sentence
- CNN

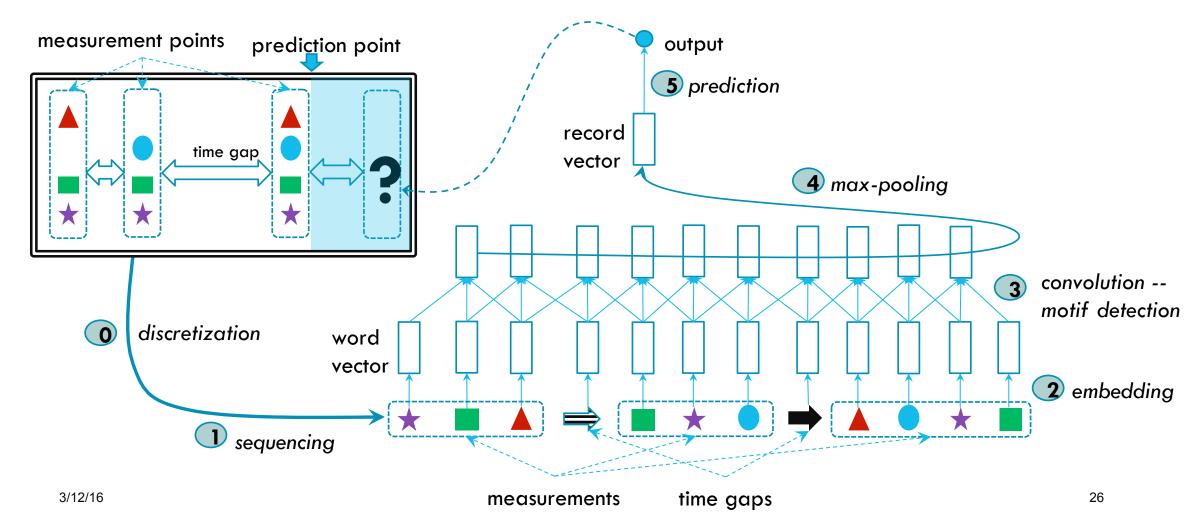


http://www.healthpages.org/brain-injury/brain-injury-intensive-care-unit-icu/

Time,Parameter,Value 00:00,RecordID,132539 00:00,Age,54 00:00,Gender,0 00:00,Height,-1 00:00,ICUType,4 00:00,Weight,-1 00:07,GCS,15 00:07,HR,73 00:07,NIDiasABP,65 00:07,NIMAP,92.33 00:07,NISysABP,147 00:07, Resp Rate, 19 00:07,Temp,35.1 00:07,Urine,900 00:37,HR,77 00:37,NIDiasABP,58 00:37,NIMAP,91 00:37,NISysABP,157 00:37, Resp Rate, 19 00:37,Temp,35.6 00:37,Urine,60

Data: Physionet 2012

DEEPIC: **SYMBOLIC** & TIME GAP REPRESENTATION OF DATA



parameters contains ("age")) { SOFTWARE ANALYTICS DATA-DRIVEN SOFTWARE ENGINEERING query query

Science Society

amoton("age",

v+1ist()),

if(parameters.contains(

hq1 += " 000 0 0000 * ".name"

ANALYTICS FOR AGILE SOFTWARE PROJECT MANAGEMENT



http://www.solutionguidance.com/?page_id=1579

TOWARDS INTELLIGENT ASSISTANTS

Goal: To model code, text, team, user, execution, project & enabled business process \rightarrow answer any queries by developers, managers, users and business

- End-to-end
- Compositional
- For now:
- DeepSoft vision
- LSTM for code language model
- LD-RNN for report representation
- Stacked/deep inference (later)

CHALLENGES: LONG-TERM TEMPORAL DEPENDENCIES IN SOFTWARE

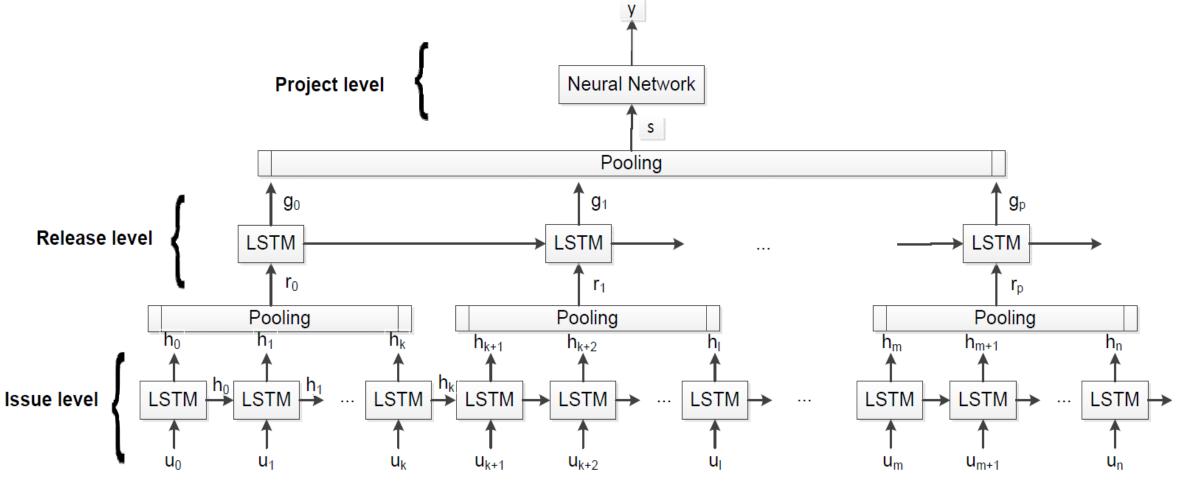
Software is similar to an evolving organism

- What will happen next to a software system depends heavily on what has previously been done to it.
- E.g. the implementation of a functionality may constraint how other functionalities are implemented in the *future*.
- E.g. a *previous* change (to fix a bug or add a new feature) may inject *new* bugs and lead to further changes.
- E.g. refactoring a piece of code may have *long-term* benefits in *future* maintenance.

Today's software products undergo rapid cycles of development, testing and release

- A software **project** typically has many **releases**
- A release requires the completion of some tasks (i.e. resolution of some issues).
- An issue is described using natural language (*raw data*).
- The resolution of an issue may result in code patches (*raw data*).

DEEPSOFT: COMPOSITIONAL DEEP NET FOR SW PROJECT (DAM ET AL, FSE'16)



A DEEP LANGUAGE MODEL FOR SOFTWARE CODE (DAM ET AL, FSE'16 SE+NL)

A good language model for source code would capture the long-term dependencies The model can be used for various prediction tasks, e.g. defect prediction, code duplication, bug localization, etc.

The model can be extended to model software and its development process.

CHARACTERISTICS OF SOFTWARE CODE

Repetitiveness

• E.g. for (int i = 0; i < n; i++)

Localness

• E.g. for (int size may appear more often that for (int i in some source files.

Rich and explicit structural information

• E.g. nested loops, inheritance hierarchies

Long-term dependencies

• *try* and *catch* (in Java) or file *open* and *close* are not immediately followed each other.

A LANGUAGE MODEL FOR SOFTWARE CODE

Given a code sequence $s = \langle w_1, ..., w_k \rangle$, a language model estimate the probability distribution P(s):

$$P(s) = P(w_1) \prod_{t=2}^{k} P(w_t \mid \boldsymbol{w}_{1:t-1})$$

where $\boldsymbol{w}_{1:t-1} = (w_1, w_2, ..., w_{t-1})$ is the historical *context* used to estimate the probability of the next code token w_t .

N-GRAMS MODEL

Truncates the history length to n-1 words (usually 2 to 5 in practice)

Useful and intuitive in making use of repetitive sequential patterns in code

Context limited to a few code elements

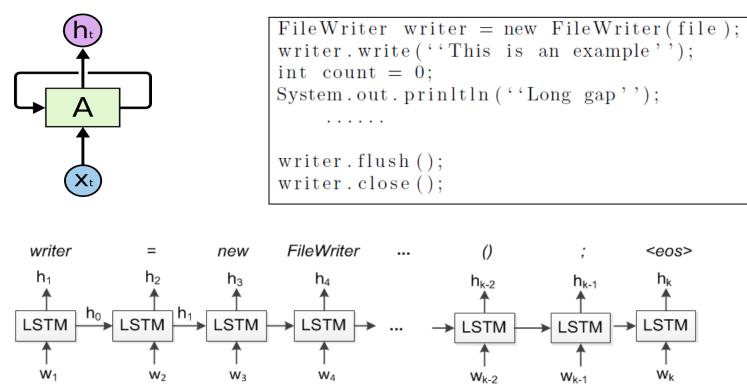
• Not sufficient in complex SE prediction tasks.

As we read a piece of code, we understand each code token based on our understanding of previous code tokens, i.e. the information persists.

CODE LANGUAGE MODEL

FileWriter

writer



...

close

0

Previous work has applied RNNs to model software code *(White et al, MSR 2015)* RNNs however do not capture the long-term dependencies in code

new

=

EXPERIMENTS

Built dataset of 10 Java projects: Ant, Batik, Cassandra, Eclipse-E4, Log4J, Lucene, Maven2, Maven3, Xalan-J, and Xerces.

Comments and blank lines removed. Each source code file is tokenized to produce a sequence of code tokens.

- Integers, real numbers, exponential notation, hexadecimal numbers replaced with <num> token, and constant strings replaced with <str> token.
- Replaced less "popular" tokens with <unk>

Code corpus of 6,103,191 code tokens, with a vocabulary of 81,213 unique tokens.

EXPERIMENTS (CONT.)

Datasets: training, validation/development, test

The size of the memory cell (c_t) is the same as the embedding dimension.

RMSprop used for tuning.

Two experimental settings:

- Varied the maximum sequence length from 10 to 500 tokens
- Varied the embedding dimensionality from 20 to 500

EXPERIMENTS (CONT.)

sent-len	embed-dim	RNN	LSTM	improv $\%$
10		13.49	12.86	4.7
20		10.38	9.66	6.9
50	50	7.93	6.81	14.1
100		7.20	6.40	11.1
200		6.64	5.60	15.7
500		6.48	4.72	27.2
	20	7.96	7.11	10.7
100	50	7.20	6.40	11.1
100	100	7.23	5.72	20.9
	200	9.14	5.68	37.9

Table 1: Perplexity on test data (the smaller the better).

Both RNN and LSTM improve with more training data (whose size grows with sequence length).

LSTM consistently performs better than RNN: 4.7% improvement to 27.2% (varying sequence length), 10.7% to 37.9% (varying embedding size).

STORY POINT ESTIMATION

Traditional estimation methods require experts, LOC or function points.

- Not applicable early
- Expensive

Feature engineering is not easy!

Needs a cheap way to start from just a documentation.

Spring XD / XD-2970

Standardize XD logging to align with Spring Boot Title

Туре:	Story	Status:	DONE
Priority:	🕈 Major	Resolution:	Complete
Affects Version/s:	1.2 GA	Fix Version/s:	1.2 RC1
Story Points:	8		
Sprint:	Sprint 49		

Description

In XD today we use commons-logging or slf4j APIs bound to log4j at runtime (configured with log4j.properties).

Boot uses slf4j APIs backed by logback. This causes some build incompatibilities building a component that depends on spring-xd-dirt and spring-boot, requiring specific dependency exclusions. In order to simplify building and troubleshooting log dependencies, XD should standardize on

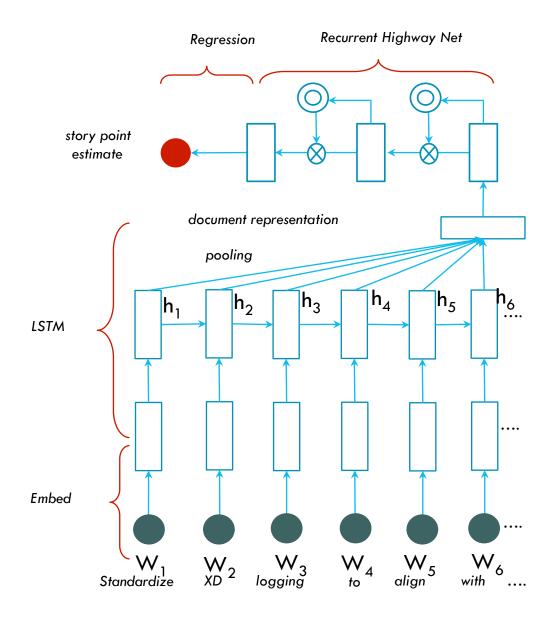
slf4j APIs (replace any commons-logging Loggers with Slf4j). This is internal only, and would not impact users who are used to seeing log4j.properties. An additional step is to replace log4j with logback. This change would be visible to end users but will provide us greater affinity with boot and improve the developer experience. If we make this change it should go into 1.2 GA.

LD-RNN FOR REPORT REPRESENTATION (CHOETKIERTIKUL ET AL, WORK IN PROGRESS)

LD = Long Deep

LSTM for document representation

Highway-net with tied parameters for story point estimation



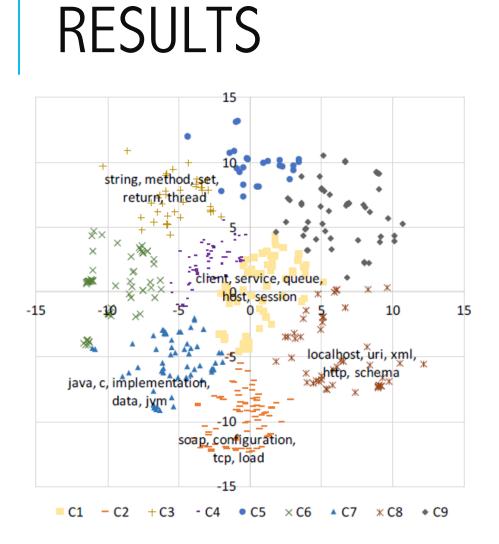


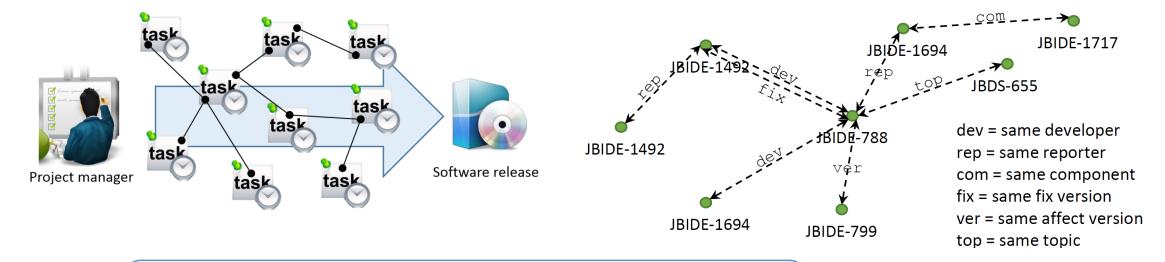
Fig. 4. Top-500 word clusters used in the Apache's issue reports

MAE = Mean Absolute Error	SA =
---------------------------	------

$$\left(1 - \frac{MAE}{MAE_{rguess}}\right) \times 100$$

Proj	Technique	MAE	SA	Proj	Technique	MAE	SA
ME	LD-RNN	1.02	59.03	Л	LD-RNN	1.38	59.52
	LSTM+RF	1.08	57.57		LSTM+RF	1.71	49.71
	BoW+RF	1.31	48.66		BoW+RF	2.10	38.34
	Mean	1.64	35.61		Mean	2.48	27.06
	Median	1.73	32.01		Median	2.93	13.88
UG	LD-RNN	1.03	52.66	MD	LD-RNN	5.97	50.29
	LSTM+RF	1.07	50.70		LSTM+RF	9.86	17.86
	BoW+RF	1.19	45.24		BoW+RF	10.20	15.07
	Mean	1.48	32.13		Mean	10.90	9.16
	Median	1.60	26.29		Median	7.18	40.16
AS	LD-RNN	1.36	60.26	DM	LD-RNN	3.77	47.87
	LSTM+RF	1.62	52.38		LSTM+RF	4.51	37.71
	BoW+RF	1.83	46.34		BoW+RF	4.78	33.84
	Mean	2.08	39.02		Mean	5.29	26.85
	Median	1.84	46.17		Median	4.82	33.38
AP	LD-RNN	2.71	42.58	MU	LD-RNN	2.18	40.09
	LSTM+RF	2.97	37.09		LSTM+RF	2.23	38.73
	BoW+RF	2.96	37.34		BoW+RF	2.31	36.64
	Mean	3.15	33.30		Mean	2.59	28.82
	Median	3.71	21.54		Median	2.69	26.07

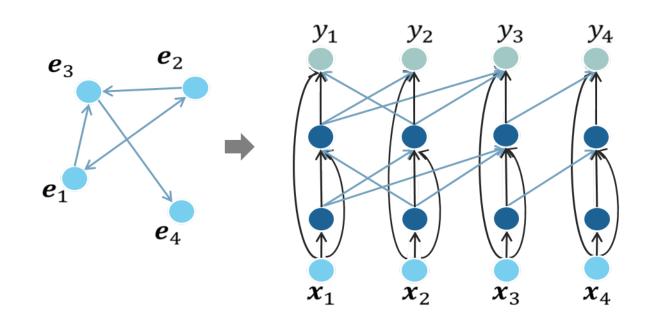
TASK DEPENDENCY IN SOFTWARE PROJECT (CHOETKIERTIKUL ET AL, WORK IN PROGRESS)

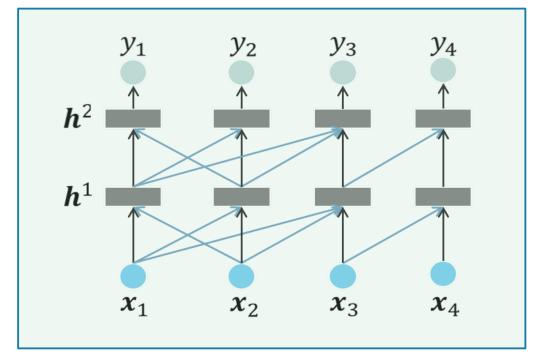


Approximately, one-third of IT projects went over the scheduled time

82% software projects missed schedules

TASK DEPENDENCY IN SOFTWARE PROJECT (MORE ON PART III)





Stacked Inference

Column networks

Advanced search Language tools

Google Search I'm Feeling Lucky

INFORMATION RETRIEVAL

KEY PROBLEM: RANKING

- Raking web documents in search engines
- Movie recommendation
- Advertisement placement
- Tag recommendation
- Expert finding in a community network
- Friend ranking in a social network

∎ ŚŚŚ

LEARNING-TO-RANK

Learn to rank responses to a query

A ML approach to Information Retrieval

Instead of hand-engineering similarity measures, learn it

Two key elements

- Choice model \rightarrow rank loss (how right/wrong is a ranked list?)
- Scoring function \rightarrow mapping features into score (how good is the choice?)

- Web documents in search engines
 - query: keywords
- Movie recommendation

query: an user

- Advertisement placement
 - query: a Web page
- Tag recommendation
 - query: a web object
- Friend ranking in a social network
 - query: an user

CHOICE BY ELIMINATION

Forward selection does not fit competitive situations

Sport tournament, grant selection

Choice by elimination:

- Given a set of items with associated utility
- For each step, identify the worst item and remove it
- Repeat until one item is left
- Rank the items by the reverse order of removal

$$(\boldsymbol{\pi}) = Q(\boldsymbol{\pi}_N) \prod_{i=1}^{N-1} Q(\boldsymbol{\pi}_i \mid \boldsymbol{\pi}_{i+1:N})$$
$$\pi_i | \boldsymbol{\pi}_{i+1:N}) = \frac{\exp\left(-f(\boldsymbol{x}_{\pi_i})\right)}{\sum_{j=1}^{i} \exp\left(-f(\boldsymbol{x}_{\pi_j})\right)}$$

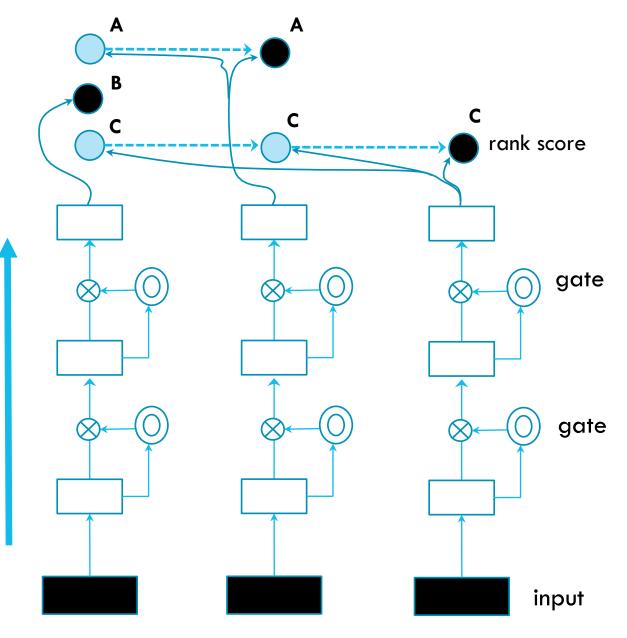
P

HIGHWAY NETS FOR RANKING

The networks represent the scoring function

All networks are linked through the rank loss – neural choice by elimination

It is a structured output problem (permutation)



Parameter-tying highway networks 49

YAHOO! L2R CHALLENGE (2010)

CHALLENGE from YAHOO!

Home Datasets Instructions Registration Submission Leaderboard FAQs Workshop

Tasks

The competition is divided into two tracks:

- 1. A standard learning to rank track, using only the larger dataset.
- A transfer learning track, where the goal is to leverage the training set from set1 better ranking function on set2.

You can compete in one or both tracks. The relevance labels on the validation and test not given. The goal is to train a ranking function on the training set and to predict a rank urls for each query on the validation and test sets.

Evaluation

Submissions will be evaluated using two criteria: the Normalized Discounted Cumulativ (NDCG) and the Expected Reciprocal Rank (ERR), defined as follows:

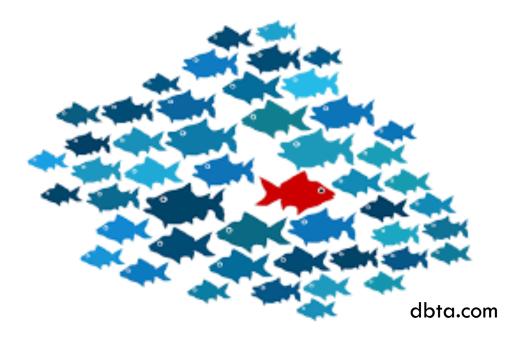
NDCG =
$$\frac{\text{DCG}}{\text{Ideal DCG}}$$
 and $\text{DCG} = \sum_{i=1}^{\min(10,n)} \frac{2^{y_i} - 1}{\log_2(1+i)}$
ERR = $\sum_{i=1}^n \frac{1}{i} R(y_i) \prod_{j=1}^{i-1} (1 - R(y_j))$ with $R(y) = \frac{2^y - 1}{16}$

- 19,944 queries
- 473,134 documents
- 519 unique features
- Performance measured in:
 - Expected Reciprocal Rank (ERR)
 - Normalised Discounted Cumulative Gain (NDCG)

As of 2011 – Forward selection + quadratic rank function

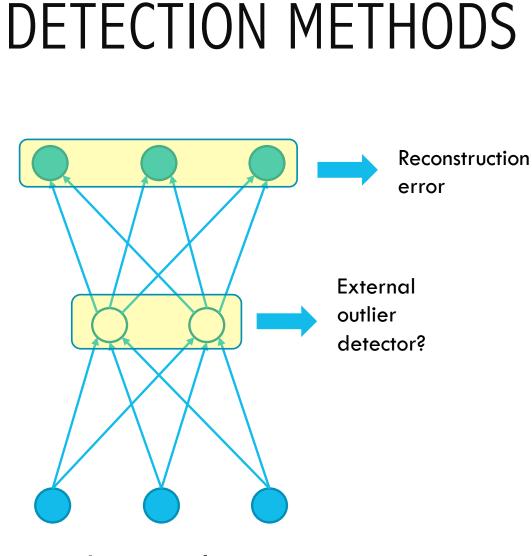
		ERR	NDCG@1	NDCG@5
RESULTS	Rank Regress	0.4882	0.683	0.6672
	RankNet	0.4919	0.6903	0.6698
	Ranking SVM	0.4868	0.6797	0.6662
	ListMLE	0.4955	0.6993	0.6705
	PairTies-D	0.4941	0.6944	0.6725
	PairTies-RK	0.4946	0.6970	0.6716
Rank 41 out of 1500 🔍	PMOP-FD	0.5038	0.7137	0.6762
	PMOP-Gibbs	0.5037	0.7105	0.6792
As of 2016 – Backward elimination + deep nets	PMOP-MH	0.5045	0.7139	0.6790
•				

		Placket-L	uce	Choice by elimination			
Rank function	ERR	NDCG@1	NDCG@5	ERR	NDCG@1	NDCG@5	
SGTB	0.497	0.697	0.673	0.506	0.705	0.681	
Neural nets	0.501	0.705	0.688	0.509	0.719	0.697	– Rank?
							51

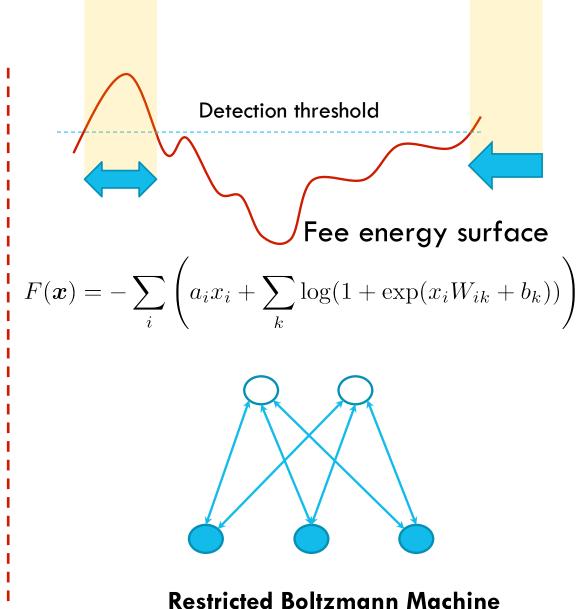


ANOMALY DETECTION USING UNSUPERVISED LEARNING (PART III)

This work is partially supported by the Telstra-Deakin Centre of Excellence in Big Data and Machine Learning



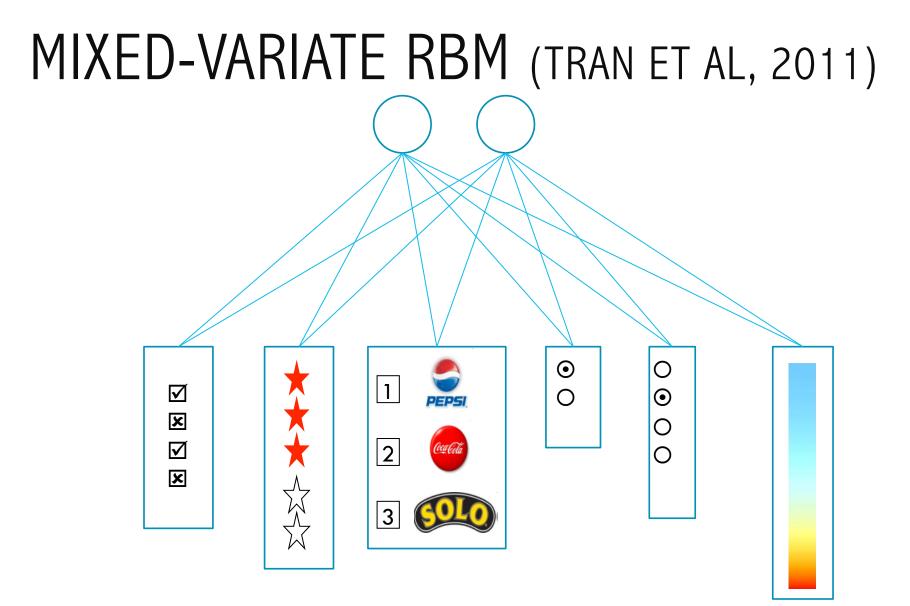
Auto-encoder (deterministic)



(probabilistic)

MIXED DATA

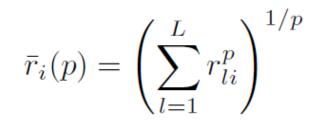
	А	В	С	D	E	F	G	Н	I	J
1	Age	Sex	Chest pain type	Resting blood pressure	Serum cholestoral (mg/dl)	Fasting blood sugar > 120 mg/dl ?	Resting electrocardiographic result	Maximum heart rate achieved	Exercise induced angina	oldpeak = ST depression induced by exercise relative to rest
2	70	male	asymptomatic (4)	130.0	322.0	no	2	109.0	no	2.4
3	67	female	non-anginal pain (3)	115.0	564.0	no	2	160.0	no	1.6
4	57	male	atypical angina (2)	124.0	261.0	no	0	141.0	no	0.3
5	64	male	asymptomatic (4)	128.0	263.0	no	0	105.0	yes	0.2
6	74	female	atypical angina (2)	120.0	269.0	no	2	121.0	yes	0.2
7	65	male	asymptomatic (4)	120.0	177.0	no	0	140.0	no	0.4
8	56	male	non-anginal pain (3)	130.0	256.0	yes	2	142.0	yes	0.6
9	59	male	asymptomatic (4)	110.0	239.0	no	2	142.0	yes	1.2
10	60	male	asymptomatic (4)	140.0	293.0	no	2	170.0	no	1.2
11	63	female	asymptomatic (4)	150.0	407.0	no	2	154.0	no	4.0
12	59	male	asymptomatic (4)	135.0	234.0	no	0	161.0	no	0.5
13	53	male	asymptomatic (4)	142.0	226.0	no	2	111.0	yes	0.0
14	44	male	non-anginal pain (3)	140.0	235.0	no	2	180.0	no	0.0
15	61	male	typical angina (1)	134.0	234.0	no	0	145.0	no	2.6
16	57	female	asymptomatic (4)	128.0	303.0	no	2	159.0	no	0.0
17	71	female	asymptomatic (4)	112.0	149.0	no	0	125.0	no	1.6
18	46	male	asymptomatic (4)	140.0	311.0	no	0	120.0	yes	1.8
19	53	male	asymptomatic (4)	140.0	203.0	yes	2	155.0	yes	3.1
20	64	male	typical angina (1)	110.0	211.0	no	2	144.0	yes	1.8
21	40	male	typical angina (1)	140.0	199.0	no	0	178.0	yes	1.4
22	67	male	asymptomatic (4)	120.0	229.0	no	2	129.0	yes	2.6

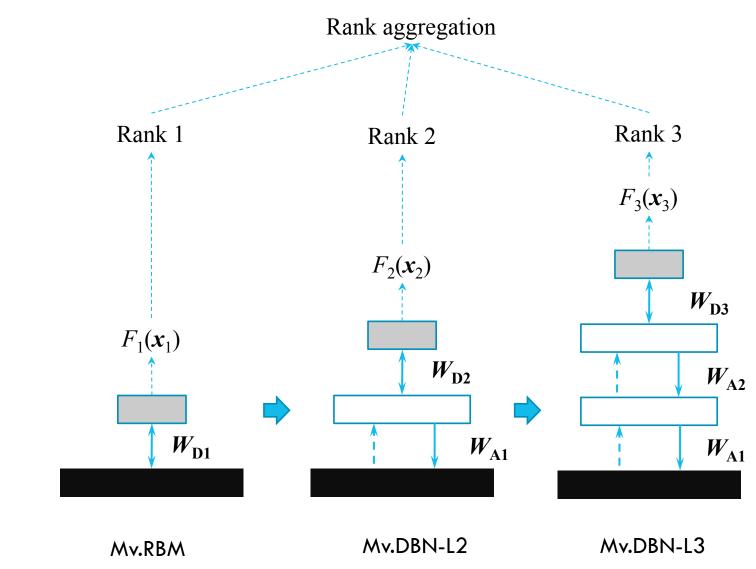


RESULTS OVER REAL DATASETS

Dataset	Single type			mixed-type			
Dataset	GMM	OCSVM	PPCA	BMM	ODMAD	GLM-t	Mv.RBM
KDD99-10	0.42	0.54	0.55	_	_	—	0.71
Australian Credit	0.74	0.84	0.38	0.972	0.942	_	0.90
German Credit	0.86	0.86	0.02	0.934	0.810	_	0.95
Heart	0.89	0.76	0.64	0.872	0.630	0.72	0.94
Thoracic Surgery	0.71	0.71	0.70	0.939	0.879	_	0.90
Auto MPG	1.00	1.00	0.67	0.625	0.575	0.64	1.00
Contraceptive	0.62	0.84	0.02	0.673	0.523	—	0.91
Average	0.75	0.79	0.43	0.84	0.73	0.68	0.91

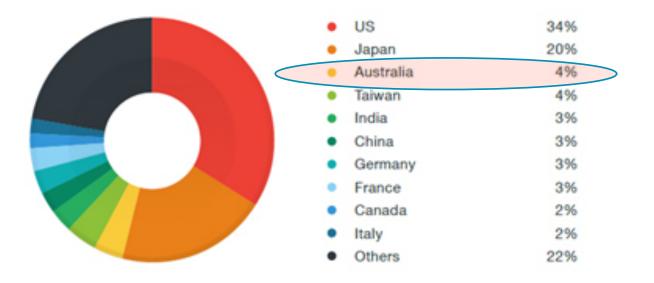
ABNORMALITY ACROSS ABSTRACTIONS



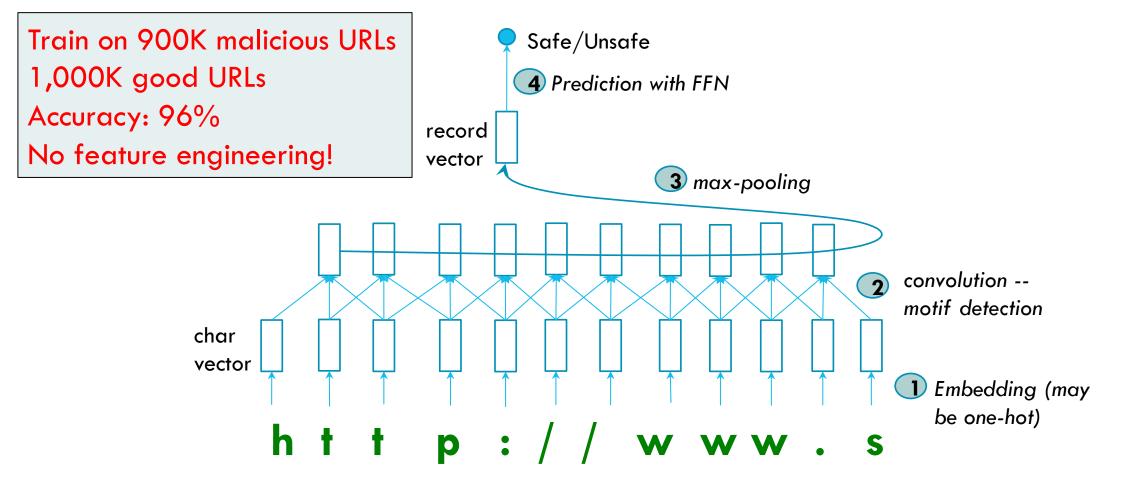


MALICIOUS URL CLASSIFICATION

Countries with the highest number of users who clicked malicious URLs in 2015



MODEL OF MALICIOUS URLS



SUMMARY OF PART II

Hand-on:

 Introducing programming frameworks (Theano, TensorFlow, Mxnet)

Domains how-to:

- Healthcare
- Learning to rank objects
- Software engineering
- Anomaly detection
- Malicious URLs

