deep learning and applications in non-cognitive domains

part 3

truyen tran

deakin university

truyen.tran@deakin.edu.au prada-research.net/~truyen

Al'16, Hobart, Dec 5th 2016

3/12/16

REVIEW OF PART I: MOSTLY SUPERVISED LEARNING

Neural net as function approximation & feature detector

- Three architectures: $FFN \rightarrow RNN \rightarrow CNN$
- **Bag of tricks**: dropout \rightarrow piece-wise linear units \rightarrow skip-connections \rightarrow adaptive stochastic gradient \rightarrow data augmentation

PART III: ADVANCED TOPICS

Unsupervised learning

Complex domain structures: Relations (explicit & implicit), graphs & tensors

Memory, attention & execution

Learning to learn

How to position ourselves

UNSUPERVISED LEARNING

WHY NEURAL UNSUPERVISED LEARNING?

Motivation: Humans mainly learn by exploring without clear instructions and labelling

Representational richness:

- FFN are functional approximator
- RNN are program approximator, can estimate a program behaviour and generate a string
- CNN are for translation invariance

Compactness: Representations are (sparse and) distributed.

- Essential to perception, compact storage and reasoning

Accounting for uncertainty: Neural nets can be stochastic to model distributions

Symbolic representation: realisation through sparse activations and gating mechanisms

APPROACHES TO UNSUPERVISED LEARNING

Try to explain the data e.g., learning disentangled representations

Generative models – generate authentic samples

Optimizing some objective functions (may be more than one, may not be likelihood)

Preserve some quantities (volumes, variances, flow, local probabilities etc)

Manifold assumption: intrinsic dimensions are smaller and locally linear/smooth

Exploiting the structure of the world, e.g., smoothness, predictiveness, locality.

. . . •

OBJECTIVE FUNCTIONS FOR UNSUPERVISED LEARNING

Data likelihood - classic (RBM, VAE)

Prediction-like:

- Auto-encoding: predicting the data itself
- Pseudo-likelihood: One variable (subset) given the rest. With and without variable ordering.
- Predict whether the input comes from the data generating distribution or some other distribution (as a probabilistic classifier) (Noise-Constrastive Estimation)

Others

- Learn an invertible function such that the transformed distribution is as factorial as possible (NICE, and when considering approximately invertible functions, the variational autoencoders)
- Learn a stochastic transformation so that if we were to apply it many times we would converge to something close to the data generating distribution (Generative Stochastic Networks, generative denoising autoencoders, diffusion inversion = nonequilibrium thermodynamics)
- Learn to generate samples that cannot be distinguished by a classifier from the training samples (GAN = generative adversarial networks)

PREDICTING NEIGHBOURS AND THEIR POSITIONS

Word embedding with skip-grams is a kind of pseudo-likelihood within a sliding window (Mikolov et al, 2013)

Language models – predicting the next word using RNN/LSTM (Mikolov, 2012)

Pixel RNN (van den Oord et al, ICML'16): predicting next pixel

NADE (Larochelle et al, AISTATS'11, JMLR'16): predicting next variable

Multi-prediction training of DBM (Goodfellow et al, NIPS'13)

Pixel video networks (Kalchbrenner, 2016): predicting the next frame.

UNSUPERVISED METHODS

Word embedding

Language model

Pixel RNN

 $RBM \rightarrow DBN \rightarrow DBM + \{recurrent, convolution\}$

DAE \rightarrow DDAE \rightarrow Generative Stochastic Nets

Deconvolutional nets

Helmholtz machine \rightarrow Variational AE

Generative Adversarial Nets (GAN)

NADE \rightarrow MADE

Skip-thought

Variational RNN

Deep topic models

Sum-product networks

Deep CCA

WE WILL BRIEFLY COVER

Word embedding

Deep autoencoder

 $\mathsf{RBM} \to \mathsf{DBN} \to \mathsf{DBM}$

Variational AutoEncoder (VAE)

Generative Adversarial Net (GAN)

(Mikolov et al, 2013)

DEEP AUTOENCODER — SELF RECONSTRUCTION OF DATA

GENERATIVE MODELS

Many applications:

- Text to speech
- Simulate data that are hard to obtain/ share in real life (e.g., healthcare)
- Generate meaningful sentences conditioned on some input (foreign language, image, video)
- Semi-supervised learning
- Planning

 $\mathbf{v} \sim P_{model}(\mathbf{v})$ $P_{model}(\mathbf{v}) \approx P_{data}(\mathbf{v})$

A FAMILY: RBM \rightarrow DBN \rightarrow DBM

(~1994, 2001)

Deep Belief Net (2006)

Deep Boltzmann Machine (2009)

APPLICATION: MULTI-MODAL/VIEW/TYPE/ PART MODELS

Multimodal DBM

Multimodal DBN

VARIATIONAL AUTOENCODER (KINGMA & WELLING, 2014)

Two separate processes: generative (hidden \rightarrow visible) versus recognition (visible \rightarrow hidden)

http://kvfrans.com/variational-autoencoders-explained/

GAN: GENERATIVE ADVERSARIAL NETS (GOODFELLOW ET AL, 2014)

Yann LeCun: GAN is one of best idea in past 10 years!

Instead of modeling the entire distribution of data, learns to map ANY random distribution into the region of data, so that **there is no discriminator that can distinguish sampled data from real data**.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

Binary discriminator, usually a neural classifier

Any random distribution in any space

Neural net that maps $z \rightarrow x$

equilibrium

GAN: GENERATED SAMPLES

The best quality pictures generated thus far!

Generated

Real Gen

PART III: ADVANCED TOPICS

Unsupervised learning & Generative models

Complex domain structures: Relations (explicit & implicit), graphs & tensors

Memory, attention & execution Learning to learn How to position ourselves

EXPLICIT RELATIONS

Canonical problem: collective classification, a.k.a. structured outputs, networked classifiers

STACKED INFERENCE

Depth is achieved by stacking several classifiers.

Lower classifiers are frozen.

Relation graph

Stacked inference

NEURAL CONDITIONAL RANDOM FIELDS

Background: probabilistic graphical models, a semiformal way to encode (probabilistic) relations:

- Conditional dependence between local variables (Bayesian networks)
- Local potential functions (Markov random fields)

<u>A CRF is a Markov random field conditioned on input</u> <u>variable</u>

- Deep nets are for feature extraction
- Collective inference is principled but difficult
- Mean-field approximation can be seen as a RNN

MORE BACKGROUND ON GRAPHICAL MODELS & STATISTICAL RELATIONAL LEARNING

INTRODUCTION TO STATISTICAL RELATIONAL LEARNING

EDITED BY LISE GETOOR AND BEN TASKAR

Coursera course by D. Koller

COLUMN NETWORKS (PHAM ET AL, @ AAAI'16)

IMPLICIT RELATIONS IN CO-OCCURRENCE OF MULTI-[X] WITHIN A CONTEXT

X can be: Labels Tasks Views/parts Instances Sources

Much of recent machine learning!

The common principle is to exploit the shared statistical strength

COLUMN BUNDLE FOR N-TO-M MAPPING (PHAM ET AL, WORK IN PROGRESS)

GRAPHS AS DATA

Goal: representing a graph as a vector

Many applications

- Drug molecules
- Object sub-graph in an image
- Dependency graph in software deliverable

Recent works:

- Graph recurrent nets, similar to column nets (Pham et al, 2017).
- Graph variational autoencoder (Kipf & Welling, 2016)
- Convolutions for graph (LeCun, Welling and many others)

RBM FOR MATRIX DATA (TRAN ET AL, 2009, 2012)

TENSOR EXAMPLE: EEG-BASED ALCOHOLIC DIAGNOSIS

64x64x64 diamel frequency

EEG dataset collected by Zhang *et al.* [2]

3D Spectrogram

EEG-BASED ALCOHOLIC DIAGNOSIS WITH UNSEEN SUBJECTS

36 subjects for testing

Vary the rest for training

9	Classification error $(\%)$				
Method	5%	10%	25%	50%	100%
Pixel	52.78	41.67	38.89	37.24	36.11
Tucker	52.78	44.44	44.44	38.89	33.33
PARAFAC	58.33	52.78	52.78	48.67	44.44
RBM	—	—	—	—	—
TvRBM	47.22	36.11	27.78	25.00	19.44

PART III: ADVANCED TOPICS

Unsupervised learning & Generative models

Complex domain structures: Relations (explicit & implicit), graphs & tensors

Memory, attention & execution

Learning to learn

How to position ourselves

WHY MEMORY & ATTENTION?

Long-term dependency

• E.g., outcome depends on the far past

• Memory is needed (e.g., as in LSTM)

Complex program requires multiple computational steps • Each step can be selective (attentive) to certain memory cell

Operations: Encoding | Decoding | Retrieval

MEMORY TYPES

Short-term/working (temporary storage) Episodic (events happened at specific time) Long-term/semantic (facts, objects, relations) Procedural (sequence of actions)

http://www.rainbowrehab.com/executive-functioning/

ATTENTION MECHANISM

Need attention model to select or ignore certain inputs

Human exercises great attention capability –
the ability to filter out unimportant noises
Foveating & saccadic eye movement

In life, events are not linear but interleaving. Pooling (as in CNN) is also a kind of attention

http://distill.pub/2016/augmented-rnns/
APPLICATIONS

Machine reading & question answering

Attention to specific events/words/sentences at the reasoning stage

Machine translation

- Word alignment attend to a few source words
- Started as early as IBM Models (1-5) in early 1990s

Speech recognition

• A word must be aligned to a segment of soundwave

Healthcare

- Diseases can be triggered by early events and take time to progress
- Illness has memory negative impact to the body and mind

EXAMPLE: MACHINE READING (HERMANN ET AL, 2015)

by ent423, ent261 correspondent updated 9:49 pm et ,thu march 19,2015 (ent261) a ent114 was killed in a parachute accident in ent45, ent85, near ent312, a ent119 official told ent261 on wednesday .he was identified thursday as special warfare operator 3rd class ent23,29, of ent187, ent265.`` ent23 distinguished himself consistently throughout his career .he was the epitome of the quiet professional in all facets of his life, and he leaves an inspiring legacy of natural tenacity and focused

ent119 identifies deceased sailor as ${\bf X}$, who leaves behind a wife

. . .

by ent270 ,ent223 updated 9:35 am et ,mon march 2 ,2015 (ent223) ent63 went familial for fall at its fashion show in ent231 on sunday ,dedicating its collection to `` mamma'' with nary a pair of `` mom jeans '' in sight .ent164 and ent21 , who are behind the ent196 brand ,sent models down the runway in decidedly feminine dresses and skirts adorned with roses ,lace and even embroidered doodles by the designers ' own nieces and nephews .many of the looks featured saccharine needlework phrases like `` ilove you ,

X dedicated their fall fashion show to moms

EXECUTION (RNN) + MEMORY + ATTENTION

Memory networks of Facebook: (Weston et al, Facebook, 2015); (Sukhbaatar et al, 2015) – associative memory

Dynamic memory networks of MetaMind: (Kumar et al, 2015) – episodic memory

Neural Turing machine of DeepMind (Graves et al. 2014) -- tape

Stacked-augmented RNN for learning algorithmic sequences (Joulin & Mikolov, 2015) -- stack

END-TO-END MEMORY NETWORKS (SUKHBAATAR ET AL, 2015)

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

DYNAMIC MEMORY NETWORKS (KUMAR ET AL, 2015)

NEURAL TURING MACHINE (DEEPMIND, GRAVES ET AL, 2014)

Figure 1: Neural Turing Machine Architecture. During each update cycle, the controller network receives inputs from an external environment and emits outputs in response. It also reads to and writes from a memory matrix via a set of parallel read and write heads. The dashed line indicates the division between the NTM circuit and the outside world.

NTM: DIFFERENTIABLE COMPUTER

Learn to program.

All operations are differentiable.

Back to the basic of computer primitives:

- Arithmetic
- Data movements
- Control jumps

Computer architectures:

- CPU with very-limited memory (registers).
- RAM to hold rapidly-created variables.
- Hard-disks to hold large-scale static data (missing in NTM, present in Memory Nets).

PART III: ADVANCED TOPICS

Unsupervised learning & Generative models

Complex domain structures: Relations (explicit & implicit), graphs & tensors

Memory, attention & execution

Learning to learn

How to position ourselves

SMARTER LEARNING

Learn more than one thing at a time Leverage what is known Lifelong, interleaved learning Learn to program to program

HYPERNETWORKS: NETWORK TO GENERATE NETWORKS (HA ET AL, 2016)

SEQUENTIAL, LIFELONG LEARNING (DO ET AL, WORK IN PROGRESS)

Boosting

Transfer learning

Curriculum learning

Domain adaptation

Syllabus learning

Interleaved learning

PART III: ADVANCED TOPICS

Unsupervised learning & Generative models

Complex domain structures: Relations (explicit & implicit), graphs & tensors

Memory, attention & execution

Learning to learn

How to position ourselves

Ultimate GUIDE SOCCER POSITIONS CR

IN CASE YOU'RE WORRIED ABOUT WHAT IS LEFT

Current deep learning is pre-Newtonian mechanics

Equivalent to demonstrating that *heavier-than-air flying* possible, without figuring out **aerodynamics**

We need to find **law of physics** (intelligence), not building flapping wings (simulating neurons)

Sources: http://aero.konelek.com/aerodynamics/aerodynamic-analysis-and-design_ http://www.foolishsailor.com/Sail-Trim-For-Cruisers-work-in-progress/Sail-Aerodynamics.html

POSITION YOURSELF

"[...] the dynamics of the game will evolve. In the long run, the right way of playing football is to position yourself intelligently and to wait for the ball to <u>come to you</u>. You'll need to run up and down a bit, either to respond to how the play is evolving or to get out of the way of the scrum when it looks like it might flatten you." (*Neil Lawrence, 7/2015, now with Amazon*)

THE ROOM IS WIDE OPEN

Architecture engineering Non-cognitive apps Going Bayesian Unsupervised learning Graphs Reinforcement learning Modelling of invariance Learning while preserving privacy Integrating with cognitive neuroscience Better data efficiency Learning under adversarial stress Mixing learning and reasoning Multimodality Better optimization Non-gradient learning Symmetry, group theory and all that From distributed to symbolic representation

http://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html

DO SOMETHING HARDER

#Ref: http://www.inference.vc/deep-learning-is-easy/

Advances that make it easy:

- Effective adaptive SGDs like Adagrad, Adam, RMSProp less worries about convergence speed and learning scheduling.
- Automatic differentiation no worries about getting the gradient right.
- Packages like Keras, Lasagne make things supper easy
- Trained models for vision and NLPs are powerful off-the-shelf feature extractor works well.

Building a complicated network is like building a Lego structure

"There is also a feeling in the field that low-hanging for deep learning is disappearing."

"A NEW IDEA IS JUST RE-PACKAGING OF OLD IDEAS"

OPEN QUESTIONS

Is this just yet-another-toolbox or a way of thinking?

Is this a right approach to AI?

Thank you!