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REVIEW OF PART I: MOSTLY SUPERVISED LEARNING

Neural net as function approximation & feature
detector

Three architectures: FFN — RNN — CNN

Bag of tricks: dropout — piece-wise linear units — skip-connections
— adaptive stochastic gradient — data augmentation
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PART Ill: ADVANCED TOPICS

Unsupervised learning

Complex domain structures: Relations (explicit & implicit), graphs &
tensors

Memory, attention & execution
Learning to learn
How to position ourselves



UNSUPERVISED LEARNING



WHY NEURAL UNSUPERVISED LEARNING?

Motivation: Humans mainly learn by exploring without clear instructions and labelling

Representational richness:
FFN are functional approximator
RNN are program approximator, can estimate a program behaviour and generate a string

CNN are for translation invariance

Compactness: Representations are (sparse and) distributed.
Essential to perception, compact storage and reasoning

Accounting for uncertainty: Neural nets can be stochastic to model distributions

Symbolic representation: realisation through sparse activations and gating mechanisms

3/12/16



APPROACHES TO UNSUPERVISED
LEARNING

Try to explain the data e.g., learning disentangled representations

Generative models — generate authentic samples
Optimizing some objective functions (may be more than one, may not be likelihood)
Preserve some quantities (volumes, variances, flow, local probabilities etc)

Manifold assumption: intrinsic dimensions are smaller and locally linear/smooth

Exploiting the structure of the world, e.g., smoothness, predictiveness, locality.
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OBJECTIVE FUNCTIONS FOR
UNSUPERVISED LEARNING

Data likelihood — classic (RBM, VAE)

Prediction-like:

* Auto-encoding: predicting the data itself

* Pseudo-likelihood: One variable (subset) given the rest. With and without variable ordering.

* Predict whether the input comes from the data generating distribution or some other distribution (as a probabilistic classifier)
(Noise-Constrastive Estimation)

Others

Learn an invertible function such that the transformed distribution is as factorial as possible (NICE, and when considering
approximately invertible functions, the variational autoencoders)

* Learn a stochastic transformation so that if we were to apply it many times we would converge to something close to the data
generating distribution (Generative Stochastic Networks, generative denoising autoencoders, diffusion inversion =
nonequilibrium thermodynamics)

- Learn to generate samples that cannot be distinguished by a classifier from the training samples (GAN = generative adversarial
networks)

https://www.quora.com/Yoshua-Bengio-Apart-from-trying-to-reconstruct-the-input-as-in-Autoencoder-what-other-tasks-could-prove-useful-for-unsupervised-learning-of-deep-networks



PREDICTING NEIGHBOURS AND THEIR
POSITIONS

Word embedding with skip-grams is a kind of pseudo-likelihood within a sliding window
(Mikolov et al, 2013)

Language models — predicting the next word using RNN/LSTM (Mikolov, 2012)
Pixel RNN (van den Oord et al, ICML'16): predicting next pixel

NADE (Larochelle et al, AISTATS'11, IMLR'16): predicting next variable
Multi-prediction training of DBM (Goodfellow et al, NIPS™13)

Pixel video networks (Kalchbrenner, 2016): predicting the next frame.



UNSUPERVISED METHODS

Word embedding
Language model
Pixel RNN

RBM = DBN = DBM + {recurrent,
convolution}

DAE = DDAE = Generative Stochastic Nets
Deconvolutional nets

Helmholtz machine = Variational AE

Generative Adversarial Nets (GAN)
NADE = MADE

Skip-thought

Variational RNN

Deep topic models

Sum-product networks

Deep CCA



WE WILL BRIEFLY COVER

Word embedding
Deep autoencoder
RBM - DBN - DBM

Variational AutoEncoder (VAE)
Generative Adversarial Net (GAN)
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DEEP AUTOENCODER — SELF
RECONSTRUCTION OF DATA

\/

Feature detector

- Reconstruction *
B Decoder =
A
-~ Representation - * -




GENERATIVE MODELS

Many applications:
* Text to speech

* Simulate data that are hard to obtain/

share in real life (e.g., healthcare)

* Generate meaningful sentences
conditioned on some input (foreign
language, image, video)

* Semi-supervised learning
* Planning
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A FAMILY: RBM - DBN - DBM

p(v,h;1) oc exp [—\E (v, h; 1}/})]

energy

Restricted Boltzmann Machine
(~1994, 2001)
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APPLICATION: MULTI-MODAL/VIEW/TYPE/
PART MODELS

View 1 View 2

Multimodal DBM



VARIATIONAL AUTOENCODER

(KINGMA & WELLING, 2014)

Two separate processes: generative (hidden => visible) versus recognition
(visible => hidden)

mean vector
. sampled
Gaussian latent vector
hidden
E variables A N
/ Encoder Y Decoder
R ../ Network Network
ecognising Generative N ” q
net \ net (conv) (deconv)
\
\
\
‘ Data standard deviation
vector

http://kvfrans.com /variational-autoencoders-explained /



GAN: GENERATIVE ADVERSARIAL NETS

(GOODFELLOW ET AL, 2014)

Yann LeCun: GAN is one of best idea in past 10 years!

Instead of modeling the entire distribution of data, learns to map ANY random distribution into the

region of data, so that there is no discriminator that can distinguish sampled data
from real data.

11}111 max V(D,G)=Epp@llogD(x)| + E, ) (2)log(l — D(G(2)))]

Binary discriminator,
usually a neural Neural net that maps

classifier Any random distribution Z X

in any space



GAN: LEARNING DYNAMICS

(ADAPTED FROM GOODFELLOW’S, NIPS 2014)

pp(data) Data distribution
l / Model distribution

T I N

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium
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GAN: GENERATED SAMPLES

The best quality pictures generated thus far!

Generated

http:/ /kvfrans.com/generative-adversial-networks-explained /
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PART Ill: ADVANCED TOPICS

Complex domain structures: Relations (explicit & implicit), graphs &
tensors



EXPLICIT RELATIONS

Canonical problem: collective classification, a.k.a. structured outputs, networked classifiers

\

JBAS-7 .

. 0
JBAS-15 JBOP-1

JBIDE-1469 JBAS-14

@ Existing task

Stacked inference

Neural conditional random fields

Column networks

® Delayed task

O Non-delayed task
Each node has its own atiributes
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 STACKED INFERENCE

es €2 7 ” Y Depth is achieved by stacking
- |® /. & /‘ several classifiers.
] NP )
1 h .) \‘ K‘J \. Lower classifiers are frozen.
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Relation graph Stacked inference
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NEURAL CONDITIONAL RANDOM FIELDS

{'Sky’, ‘Water’, ‘Animal’, ‘Car’, ‘Tree’, ‘Building’, ‘Street’}

Background: probabilistic graphical models, a semi-

formal way to encode (probabilistic) relations: /T /

» Conditional dependence between local variables (Bayesian ?‘ ‘ ® ‘
networks) { / /T {

* Local potential functions (Markov random fields) / ‘ / ‘ /T e/ ‘

A CRF is a Markov random field conditioned on input
variable

* Deep nets are for feature extraction -
= Collective inference is principled but difficult

= Mean-field approximation can be seen as a RNN
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MORE BACKGROUND ON GRAPHICAL MODELS &
STATISTICAL RELATIONAL LEARNING

INTR30UCTION T0
STATISTICAL RELATIONAL LEARNING

1CAL SCIENCE SERIES * 17

Graphical
Models

ISE OETOOR AND BEN TASKAR

PROBABILISTIC GRAPHICAL MODELS

STEFFEN L. LAURITZEN

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy
OXFORD SCIENCE PUBLICATIONS

Coursera course by D. Koller
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COLUMN NETWORKS

(PHAM ET AL, @ AAAI'16)

Thin column
/\

Ya

)
I
—

Relation graph Stacked learning Column nets
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IMPLICIT RELATIONS IN CO-OCCURRENCE
OF MULTI-[X] WITHIN A CONTEXT

X can be:
A &

“Labels
The common principle is to

“ Tasks
“Views/parts

Much of recent exploit the shared statistical
machine learning! strength

*Instances
=Sources




(M

COLUMN BUNDLE FOR N-TO-M MAPPING

(PHAM ET AL, WORK IN PROGRESS)

] S~
~—| |

o [

» label 1 label 2

~___ |

Column l/\\i

Cross-sectional star topology
Part A Part B



GRAPHS AS DATA

Goal: representing a graph as a vector

Many applications
Drug molecules
Object sub-graph in an image
Dependency graph in software deliverable

Recent works:
Graph recurrent nets, similar to column nets (Pham et al, 2017).

Graph variational autoencoder (Kipf & Welling, 2016)
Convolutions for graph (LeCun, Welling and many others)
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RBM FOR MATRIX DATA (TRAN ET AL,
2009, 2012)

column-specific model
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TENSOR EXAMPLE: EEG-BASED ALCOHOLIC
DIAGNOSIS
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EEG dataset collected by Zhang et al. |2]
= 122 subjects

= 64 electrodes placed on the scalp
= Data small, big supervised models won't work!
= Solution: Unsupervised learning + nearest neighbor

64x64x64
N ____ 3D Spectrogram
/ " e -
e . —
[ —
»
=

transform 2
STFT (64, 54)
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TENSOR RESTRICTED
BOLTZMANN MACHINE (TV.RBM,

NGUYEN ET AL, AAAI'1 5)

- )/ )
. W\ p(v,h;Y) < exp [—\E (v, h; 1}#)] V
v saol) eneYrgy @sor-variate RBM (TVRBMy
—[F(v)+a'v+b'h+v Wh] —[F(¥) (V) +b T h(¥ #)Xx11h)]
F

L h
Wdids...dnk = E E Wd f Wdeka

RBM = Stochastic ' f=1 dids...dxk
Autoencoder [Parameter space (’)(NN) *
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EEG-BASED ALCOHOLIC DIAGNOSIS WITH
UNSEEN SUBJECTS

36 subjects for testing

Vary the rest for training

Classification error (%)

Method 5% 10% 25% 50% | 100%
Pixel 52.78 | 41.67 | 38.89 | 37.24 | 36.11
Tucker 52.78 | 44.44 | 44.44 38.89 | 33.33
PARAFAC | 58.33 | 52.78 | 52.78 | 48.67 | 44.44
RBM — — — — —
TvRBM  47.22 | 36.11 | 27.78 25.00 | 19.44

32



PART Ill: ADVANCED TOPICS

Memory, attention & execution



WHY MEMORY & ATTENTION?

Long-term dependency
E.g., outcome depends on the far past
Memory is needed (e.g., as in LSTM)

Complex program requires multiple computational steps
Each step can be selective (attentive) to certain memory cell

Operations: Encoding | Decoding | Retrieval



MEMORY TYPES

Short-term/working (temporary storage)
Episodic (events happened at specific time)

Long-term/semantic (facts, objects, relations)

Procedural (sequence of actions)

EXECUTIVE
FUNCTIONS
l' \
/WORKING,
« MEMORY
ATTENTION ' MEMORY
\J
CENTRAL EXECUTIVE (ac-tlve manilpulauon
SYSTEM of information pulled
from stora ge)
/' ‘\
» 4
VISUOSPATIAL PHONOLOGICAL
SKETCH PAD SKETCH PAD
(storage)

http:/ /www.rainbowrehab.com/executive-functioning /



ATTENTION MECHANISM

Need attention model to select or ignore @_} @_}@
certain inputs

Human exercises great attention capability —
the ability to filter out unimportant noises

“Foveating & saccadic eye movement @_'

http:/ /distill.pub /2016 /augmented-rnns/

In life, events are not linear but interleaving.

Pooling (as in CNN) is also a kind of attention




APPLICATIONS

Machine reading & question answering
Attention to specific events/words/sentences at the reasoning stage

Machine translation
Word alignment — attend to a few source words
Started as early as IBM Models (1-5) in early 1990s

Speech recognition
A word must be aligned to a segment of soundwave

Healthcare
Diseases can be triggered by early events and take time to progress
liness has memory — negative impact to the body and mind



EXAMPLE: MACHINE READING

(HERMANN ET AL, 2015)

by ent423 ,ent261 correspondent updated 9:49 pmet ,thu
march 19,2015 (ent261) aent114 was killedina parachute
accidentinent45 ,ent85 ,nearent312 ,aent119 official told
ent261on wednesday .he was identified thursday as
special warfare operator 3rd c.of ent187 ,
ent265 . ent23 distinguished himself consistently
throughout his career .he was the epitome of the quiet
professionalinallfacets of his life ,and he leaves an

inspiring legacy of naturaltenacity andfocused

by ent270 ,ent223 updated 9:35 amet ,monmarch?2 ,2015
(en.ﬁ familial for fall at its fashion show in
ent231on sunday ,dedicatingits collectionto " mamma"
with nary a pair of " mom jeans "insight .ent164 andent21,
who are behindthe ent196 brand,sent models down the
runway indecidedly feminine dresses and skirts adorned
with roses ,lace and even embroidered doodles by the
designers 'own nieces and nephews .many of the looks

featured saccharine needlework phrases like " ilove you,

ent119 identifies deceased sailor as X ,who leaves behind

awife

X dedicated their fall fashion show to moms

3/12/16
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EXECUTION (RNN) + MEMORY + ATTENTION

Memory networks of Facebook: (Weston et al,
Facebook, 2015); (Sukhbaatar et al, 2015) —

associative memory

Neural Turing machine of DeepMind (Graves et al.
2014) -- tape (LeCun, 2015)

A
[
Dynamic memory networks of MetaMind: (Kumar et - | .
al, 2015) — episodic memory LA |

Stacked-augmented RNN for learning algorithmic
sequences (Joulin & Mikolov, 2015) -- stack



END-TO-END MEMORY NETWORKS

(SUKHBAATAR ET AL, 2015)

Answer/

}Ha

|] Predicted /

o :(@—»w -
—_

A
Weighted Sum A u - Predicted
r N\ .- Answer
Embedding C o |
S P; 5 !
entences [ TIT ) - L1 LI 11 “g-. I {x.}
{x;} Softmax A _ @ : )
( A I
‘T _ Sentences
>
- m; 2 |
Embedding A -
Inner Product I
u , I
Embedding B
I B
Question | Question g
(a) d (b)
I

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
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DYNAMIC MEMORY NETWORKS

(KUMAR ET AL, 2015)

Semantic Memory Episodic Memory ., s s , s s , s Answer module
Module Module € € B € & € & € ?
0.0 go3 0.0 0.0 0.0 I 0.9 0.0 00 gm
l ’l
1 T 1 1 T 1 ] 1
e, e, e, e, e, e, e, e,
0.3 0.0 0.0 0.0 0.0 0.0 00 Im'

A
Q
N\ J 3
]
a
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NEURAL TURING MACHINE (DEEPMIND, GRAVES ET AL,
2014)

External Input External Output

N

Controller

SN

Read Heads Write Heads

T |

Figure 1: Neural Turing Machine Architecture. During each update cycle, the controller
network receives inputs from an external environment and emits outputs in response. It also
reads to and writes from a memory matrix via a set of parallel read and write heads. The dashed
line indicates the division between the NTM circuit and the outside world.



NTM: DIFFERENTIABLE COMPUTER

Learn to program.
All operations are differentiable.

Back to the basic of computer primitives:
Arithmetic

Data movements
Control jumps

Computer architectures:
CPU with very-limited memory (registers).
RAM to hold rapidly-created variables.

Hard-disks to hold large-scale static data (missing in NTM, present in Memory Nets).



PART Ill: ADVANCED TOPICS

Learning to learn



SMARTER LEARNING

_earn more than one thing at a time
_everage what is known

ifelong, interleaved learning

_earn to program to program

3/12/16
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HYPERNETWORKS: NETWORK TO
GENERATE NETWORKS (HA ET AL, 2016)

— [

(FFN)

(RNN)




' SEQUENTIAL, LIFELONG LEARNING (o eraL,

WORK IN PROGRESS)
? ? ? ? Boosting
Transfer learning
24 7 Curriculum learning
Domain adaptation
Syllabus learning
i i i l Interleaved learning

Step1 Step2 Step3 Step 4

W
\
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PART Ill: ADVANCED TOPICS

Ultimate

GUIDE

SOCCER
POSITIONS

How to position ourselves



IN CASE YOU'RE WORRIED ABOUT WHAT 1S
LEFT

Current deep learning is pre-Newtonian mechanics

Equivalent to demonstrating that heavier-than-air
flying possible, without figuring out aerodynamics

We need to find law of physics (intelligence), not
building flapping wings (simulating neurons)

http:/ /aero.konelek.com/aerodynamics/aerodynamic-analysis-and-design
http:/ /www.foolishsailor.com/Sail-Trim-For-Cruisers-work-in-progress/Sail-Aerodynamics.html




POSITION YOURSELF

“[...] the dynamics of the game will evolve. In the long run, the right way of
playing football is to position yourself intelligently and to wait for the ball to
come to you. You'll need to run up and down a bit, either to respond to how the
play is evolving or to get out of the way of the scrum when it looks like it might

flatten you.” (Neil Lawrence, 7/2015, now with Amazon)

http:/ /inverseprobability.com /2015 /07 /12 /Thoughts-on-ICML-2015/ 50
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THE ROOM IS WIDE OPEN

Architecture engineering
Non-cognitive apps

Going Bayesian

Unsupervised learning

Graphs

Reinforcement learning

Modelling of invariance

Learning while preserving privacy

Integrating with cognitive neuroscience

Better data efficiency

Learning under adversarial stress
Mixing learning and reasoning
Multimodality

Better optimization

Non-gradient learning

Symmetry, group theory and all that

From distributed to symbolic
representation

http:/ /smerity.com/articles /2016 /architectures_are_the_new_feature_engineering.html



DO SOMETHING HARDER

#Ref: http://www.inference.vc/deep-learning-is-easy/

Advances that make it easy:
Effective adaptive SGDs like Adagrad, Adam, RMSProp — less worries about convergence speed and learning scheduling.
Automatic differentiation — no worries about getting the gradient right.
Packages like Keras, Lasagne make things supper easy
Trained models for vision and NLPs are powerful — off-the-shelf feature extractor works well.

Building a complicated network is like building a Lego structure

“There is also a feeling in the field that low-hanging for deep learning is disappearing.”
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“A NEW IDEA IS JUST RE-PACKAGING OF OLD IDEAS”



OPEN QUESTIONS

|s this just yet-another-toolbox or a way of thinking?

|s this a right approach to Al?
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Thank youl!

http://ahsanqawl.com/2015/10/qa/
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