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AGENDA
Introduction
Our engagement in health
Deep learning

Discovery
Stable discovery of risk factors with 
Autoencoder
Deepr - Discovery of predictive EMR motifs 
using CNN
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Diagnosis
EEG-based diagnosis with CNN + 
matrix-LSTM 

Prognosis 
DeepCare - Health trajectory modelling
Symbolic ICU - a symbolic 
representation of ICU time-series + 
deep nets



SOLVING HEALTH PROBLEMS IS 
VERY REWARDING
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Partnership Startups



AlexNet, 2012

Geoff Hinton
DBN,2006

Yann LeCun

CNN, 1988

FFN,1986

2016-2017

http://redcatlabs.com/2016-07-30_FifthElephant-DeepLearning-Workshop/#/

Jurgen Schmidhuber

LSTM, 1997



2016

DEEP LEARNING IS NEURAL NETS, BUT 
MUCH HAS CHANGED

http://blog.refu.co/wp-content/uploads/2009/05/mlp.png

1986
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THE LEARNING IS ALSO CHANGING
Supervised learning
(mostly machine)

A  B

Unsupervised learning
(mostly human)

Will be quickly solved for 
“easy” problems (Andrew Ng)
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Anywhere in between: 
semi-supervised learning, 
reinforcement learning, 

lifelong learning. 



DEEP LEARNING IN COGNITIVE 
DOMAINS
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http://media.npr.org/

http://cdn.cultofmac.com/

Where human can 
recognise, act or 
answer accurately 
within seconds

blogs.technet.microsoft.com



dbta.com

DEEP LEARNING IN NON-COGNITIVE 
DOMAINS
 Where humans need extensive training to do well
 Domains that demand transparency & interpretability. 

… healthcare
… security

… genetics, foods, water …
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TEKsystems

http://www.teksystems.com/resources/teksavvy-blog/2013/august/healthcare-analytics-present-opportunities-poses-challenges
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http://www.pc.gov.au/news-media/pc-news/pc-news-may-2015/improving-australia-health-system

Australian health expenditure
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http://www.commonwealthfund.org/publications/issue-briefs/2015/oct/us-health-care-from-a-global-perspective



HEALTHCARE ENGAGEMENT: SPEAK 
THEIR LANGUAGE(S)

Information system Theory

Health informatics

Symbolic AI

Database

Probabilistic AI

Old machine learning

Statistical machine learning

Hard core data mining

Current data mining

Clinical statistics

Theoretical statistics

Bioinformatics

Statistical epidemiology

Biomedical engineering

Deep learning



HERITAGE HEALTH PRIZE ($3M, 2012-2013)

13



14

• Heavy feature 
engineering

• Feature conjunction
• Gradient boosting
• No medical knowledge



Source: Sun & Reddy, Big Data Analytics for Healthcare, Tutorial at SDM’13



FEATURE ENGINEERING (2012-2014)



ENTER DEEP LEARNING AS FEATURE 
LEARNING

Integrate-and-fire neuron

andreykurenkov.com

Feature detector

Block representation2/04/2019 17



ARCHITECTURE ENGINEERING: 
RECURRENT NEURAL NETWORKS

Classification
Image captioning

Sentence classification

Neural machine translation

Sequence labelling

Source: http://karpathy.github.io/assets/rnn/diags.jpeg
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ARCHITECTURE ENGINEERING: CNN IS 
(CONVOLUTION  POOLING) REPEATED
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F(x) = 
NeuralNet(Pooling(Rectifier(Conv(x)))

classifier max/mean nonlinearity feature detector

can be repeated N times - depth

adeshpande3.github.io

Design parameters:
• Padding
• Stride
• #Filters (maps)
• Filter size
• Pooling size
• #Layers
• Activation function



LEARNABLE CONVOLUTION AS MOTIFS DETECTOR
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http://colah.github.io/posts/2015-09-NN-Types-FP/

Learnable kernels

andreykurenkov.com

Feature detector, 
often many



HOW DOES AI WORK FOR HEALTH?

Diagnosis PrognosisDiscovery

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s, http://www.ctrr.net/journal/
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http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal/


PREDICTIVE HEALTH USING 
ELECTRONIC MEDICAL RECORDS (EMR)
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visits/admissions

time gap ?

prediction point • Time-stamped
• Coded data: diagnosis, procedure & 

medication
• Numerical measurements
• Signals & imaging
• Text not considered, but in principle 

can be embedded into vector 
(LSTM/GRU, para2vec, word2vec)



DISCOVERY OF STABLE RISK FACTORS
(S. GOPAKUMAR ET AL, ADMD’16)

In medicine, transparent models are results. In ML, it is 
performance.
 Decision trees
 Linear models (sometimes with integer coefficients)

Modern healthcare data is high-dimensional and 
correlated, redundant.

Automatic feature selection, e.g., lasso, in such data 
causes model instability
We can’t ship different models from time to time!

Bootstrap 1Bootstrap 2Bootstrap 3

Group 1

Group 2

Group 3
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AUTO-ENCODER AS STABILIZING AGENT
Feature subset stability
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DISCOVERY OF CARE MOTIFS VIA DEEPR
(PHUOC NGUYEN ET AL, IEEE J-BHI 2017)

convolution --
motif detection

3

sequencing

time gaps/transferphrase/admission

1

embedding2

word 
vector

medical record

visits/admissions

time gap

?

prediction point output

max-pooling

prediction

4

5

record 
vector
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DISEASE EMBEDDING & 
MOTIFS DETECTION

E11 . I48 . I50
Type 2 diabetes mellitus
Atrial fibrillation and flutter
Heart failure

E11 .  I50 . N17
Type 2 diabetes mellitus
Heart failure
Acute kidney failure
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HOW DOES AI WORK FOR HEALTH?

Diagnosis PrognosisDiscovery

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s, http://www.ctrr.net/journal/
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http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal/


DIAGNOSIS OF ALCOHOLIC

3D Spectrogram
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CNN  Matrix-LSTM  Matrix-FFN control

alcoholic



MATRIX-LSTM
(KIEN DO, ET AL., 2017)
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Gates

Memory

Output



RESULTS ON WITHIN-SUBJECT TEST TRIALS
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HOW DOES AI WORK FOR HEALTH?

Diagnosis PrognosisDiscovery

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s, http://www.ctrr.net/journal/
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http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s
http://www.ctrr.net/journal/


RISK PREDICTION (PROGNOSIS)

32

readmission
death

toxicity

stress quality-of-life

progression to advanced stages

length-of-stay

side effectssuicide attempts

mental health

cancers

diabetes

COPD

heart failure

heart attack preterm



DEEPCARE: INTERVENED LONG-TERM 
MEMORY OF HEALTH
(TRANG PHAM ET AL, PAKDD’16)

memory

*
input 
gate

forget 
gate

prev. memory

output 
gate

*
*

input

aggregation over 
time → 
prediction

history 
states

current 
data

current 
state

previous 
intervention

time 
gap

current 
intervention

New in DeepCare

ct

it

ft

Input
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DEEPCARE: 
STRUCTURE
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Time gap

LSTM

Admission
(disease)

(intervention)

Vector embedding

Multiscale pooling
Neural network

Future risks

Long short-term 
memory

Latent states

FutureHistory

LSTM LSTM LSTM



DEEPCARE: PREDICTION RESULTS

Intervention recommendation (precision@3) Unplanned readmission prediction (F-score)

12 months 3 months 12 months 3 months
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DEEPICU: MORTALITY PREDICTION IN ICU
(PHUOC NGUYEN ET AL, 2017)

Existing methods: Handcoded
features, LSTM with missingness
and time-gap as input.
New method: Deepic
Steps:
Measurement quantization
 Time gap quantization
Sequencing words into sentence
CNN+LSTM+more

http://www.healthpages.org/brain-injury/brain-injury-intensive-care-unit-icu/

Time,Parameter,Value
00:00,RecordID,132539
00:00,Age,54
00:00,Gender,0
00:00,Height,-1
00:00,ICUType,4
00:00,Weight,-1
00:07,GCS,15
00:07,HR,73
00:07,NIDiasABP,65
00:07,NIMAP,92.33
00:07,NISysABP,147
00:07,RespRate,19
00:07,Temp,35.1
00:07,Urine,900
00:37,HR,77
00:37,NIDiasABP,58
00:37,NIMAP,91
00:37,NISysABP,157
00:37,RespRate,19
00:37,Temp,35.6
00:37,Urine,60

Data: Physionet 2012
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DEEPICU: SYMBOLIC & TIME GAP 
REPRESENTATION OF DATA

Death/survial

Pooling

convolution --
motif detection

embedding

sequencing

time gapsmeasurements

prediction

1

2

3

5

6

record 
vector

word 
vector

discretization
0

Results ~ best 
published methods on 
Physionet 2012, AUC 
~ 0.84
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LSTM/Integrator4

Time,Parameter,Value
00:00,RecordID,132539
00:00,Age,54
00:00,Gender,0
00:00,Height,-1
00:00,ICUType,4
00:00,Weight,-1
.
.
.
00:37,NISysABP,157
00:37,RespRate,19
00:37,Temp,35.6
00:37,Urine,60
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Thank you!

http://ahsanqawl.com/2015/10/qa/



BONUS: HOW DOES AI WORK FOR HEALTH?

Diagnosis PrognosisDiscovery

http://hubpages.com/education/Top-Medical-Inventions-of-The-1950s, http://www.ctrr.net/journal/

dbta.com

Outliers
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MIXED DATA ANOMALY DETECTION
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MIXED-VARIATE RBM
(TRAN ET AL, 2011 & DO ET AL, 2016)


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
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3

Detection threshold

Fee energy surface
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DETECTION RESULTS
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MIXMAD: ABNORMALITY 
ACROSS ABSTRACTIONS
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F1(x1)

F2(x2)

Rank 1 Rank 2

F3(x3)

Rank 3

Rank aggregation

Mv.RBM Mv.DBN-L2 Mv.DBN-L3

WA1 WA1

WA2

WD1

WD2

WD3



RESULTS
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