Deep Learning for Astronomy: An introduction

Deakin University

Ballarat, June 2017

truyentran.github.io

truyen.tran@deakin.edu.au

@truyenoz

letdataspeak.blogspot.com

Agenda

Machine learning basics Deep learning Applications in Astronomy

Machine learning settings

Supervised learning

(mostly machin

 \rightarrow

Anywhere in between: semisupervised learning, reinforcement learning, lifelong learning, metalearning, few-shot learning, knowledge-based ML

Will be quickly solved for easy problems (Andrew Ng)

Linsupervised learning

nan)

 $\mathbf{v} \sim P_{model}(\mathbf{v})$ $(\mathbf{v}) \approx P_{data}(\mathbf{v})$

Best tricks in machine learning

Best classifiers

- Deep Neural Networks
- XGBoost
- Random Forests

Choosing right priors

- Extensive feature engineering
- Model architecture
- Loss functions
- Hyper-parameter tuning

Managing uncertainty

- Data augmentation
- Ensemble methods
- Bayesian methods
- Model reuse
- Domain adaptation
- Transfer learning
- Multitask learning

Feature engineering learning

In typical machine learning projects, 80-90% effort is on <u>feature engineering</u>

 A right feature representation doesn't need fancy classifiers to work well.

Text : BOW, n-gram, POS, topics, stemming, tf-idf, etc.

Image: Histogram, SIFT, HOG, Filter banks, LBP, whitening, centring, color correction, denoising, etc.

Try yourself on Kaggle.com!

Why ML works?

Expressiveness

Can represent the complexity of the world

Can compute anything computable

Learnability

•Have mechanism to learn from the training signals

Generalizability

Work on unseen data

What ML can do

Filling the slot

- In-domain (intrapolation), e.g., an alloy with a given set of characteristics
- Out-domain (extrapolation), e.g., weather/stock forecasting
- Classification, recognition, identification
- Action, e.g., driving
- Mapping space, e.g., translation
- Replacing expensive simulations
- Novelty detection

Estimating semantics, e.g., concept/relation embedding

Assisting experiment designs

Finding unknown, causal relation, e.g., disease-gene

Predicting experiment results, e.g., alloys -> phase diagrams -> material characteristics

Deep learning

Deep learning page: https://truyentran.github.io/deep.html

Yann LeCun **1988**

Rosenblatt's perceptron

1958

Geoff Hinton **2006**

2012

2016-2017

http://redcatlabs.com/2016-07-30_FifthElephant-DeepLearning-Workshop/#/

(GoogLeNet-v4)

Deep learning in cognitive domains

Where human can recognise, act or answer accurately within seconds

What is deep learning?

Quick answer: multilayer perceptrons (aka deep neural networks) of the 1980s rebranded in 2006

- Same backprop trick, as of 2017.
- Has a lot more hidden layers (100-1000X).
- Much bigger labelled datasets.
- Lots of new arts (dropout, batch-norm, Adam/RMSProp, skip-connections, Capsnet, external memory, GPU/TPU, etc.).
- Lots more people looking at lots of (new) things (VAE, GAN, meta-learning, continual learning, fast weights, etc.)

Much has changed

http://blog.refu.co/wp-content/uploads/2009/05/mlp.png

Deep learning as feature learning

Block representation

Convolutional nets

adeshpande3.github.io

Learnable convolution

http://qiita.com/supersaiakujin/items/935bbc9610d0f87607e8

http://torch.ch/blog/2016/02/04/resnets.html

CapsNet (Hinton's group)

Attention mechanisms

Need attention model to select or ignore certain inputs

Human exercises great attention capability – the ability to filter out unimportant noises
Foveating & saccadic eye movement

In life, events are not linear but interleaving. <u>Pooling</u> (as in CNN) is also a kind of attention Routing (as in CapsNet) is another example.

http://distill.pub/2016/augmented-rnns/

Show, Attend and Tell

21/06/2018

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu, J.

Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio

Supervised deep learning: steps

Step 0: Collect LOTS of high-quality data
Corollary: Spend LOTS of time, \$\$ and compute power

Step 1: Specify the **computational graph** Y = F(X; W)

Step 2: Specify the loss L(W; D) for data $D = \{(X1,Y1), (X2,Y2),...\}$

Step 3: Differentiate the loss w.r.t. W (now mostly automated)

Step 4: Optimize the loss (a lot of tools available)

Deep learning as new electronics (or LEGO?)

Analogies:

- Neuron as feature detector \rightarrow SENSOR, FILTER
- Multiplicative gates \rightarrow AND gate, Transistor, Resistor
- Attention mechanism \rightarrow SWITCH gate
- Memory + forgetting \rightarrow Capacitor + leakage
- Skip-connection ightarrow Short circuit
- Computational graph ightarrow Circuit
- Compositionality ightarrow Modular design

Relationships

- Now: Electronics redesigned to support tensors in deep learning
- Prediction: Deep learning helps to design faster electronics

Deep generative models

Many applications:

- Text to speech
- Simulate data that are hard to obtain/share in real life (e.g., healthcare)
- Generate meaningful sentences conditioned on some input (foreign language, image, video)
- Semi-supervised learning
- Planning

$$\mathbf{v} \sim P_{model}(\mathbf{v})$$
$$P_{model}(\mathbf{v}) \approx P_{data}(\mathbf{v})$$

A family: $RBM \rightarrow DBN \rightarrow DBM$

(~1994, 2001)

Variational Autoencoder (Kingma & Welling, 2013)

Two separate processes: generative (hidden \rightarrow visible) versus recognition (visible \rightarrow hidden)

http://kvfrans.com/variational-autoencoders-explained/

Goodfellow et al, NIPS 2014)

GAN architecture. Source: DL4J

GAN: implicit density models (Adapted from Goodfellow's, NIPS 2014)

Progressive GAN: Generated images

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Why DL works: theory

Expressiveness

- Can represent the complexity of the world → Feedforward nets are universal function approximator
- Can compute anything computable \rightarrow Recurrent nets are Turing-complete

Learnability

 Have mechanism to learn from the training signals → Neural nets are highly trainable

Generalizability

 Work on unseen data → Deep nets systems work in the wild (Self-driving cars, Google Translate/Voice, AlphaGo)

Why DL works: practice

Strong/flexible priors (80-90% gain):

- Have good features → Feature engineering (Feature learning)
- Respect data structure → HMM, CRF, MRF, Bayesian nets (FFN, RNN, CNN)
- Theoretically motivated model structures, regularisation & sparsity → SVM, compressed sensing (Architecture engineering + hidden norm)
- Respect the manifold assumption, class/region separation → Metric + semi-supervised learning (Sesame net)
- Disentangle factors of variation → PCA, ICA, FA (RBM, DBN, DBM, DDAE, VAE, GAN, multiplicative neuron)

Uncertainty quantification (1-5% gain):

Leverage Bayesian, ensemble → RF, GBM (Dropout, batch-norm, Bayesian neural nets)

Sharing statistical strength (1-10% gain):

 Encourage model reuse → transfer learning, domain adaption, multitask learning, lifelong learning (Column Bundle, Deep CCA, HyperNet, fast weight)

Two major views of "depth" in DL

[2006-2012] Learning layered representations, from raw data to abstracted goal (DBN, DBM, SDAE, GSN).

- Typically 2-3 layers.
- High hope for unsupervised learning. A conference set up for this: ICLR, starting in 2013.

[1991-1997] & [2012-2016] Learning using multiple steps, from data to goal (LSTM/GRU, NTM/DNC, N2N Mem, HWN, CLN).

- Reach hundreds if not thousands layers.
- Learning as credit-assignment.
- Supervised learning won.
- Unsupervised learning took a detour (VAE, GAN, NADE/MADE).

Today's view: Differentiable programming.

When does deep learning work?

Lots of data (e.g., millions)

- Strong, clean training signals (e.g., when human can provide correct labels cognitive domains).
- Andrew Ng of Baidu: When humans do well within sub-second.
- Data structures are well-defined (e.g., image, speech, NLP, video)

Data is compositional (luckily, most data are like this)

The more primitive (raw) the data, the more benefit of using deep learning.

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge

Applications in astrophysics

Galaxy Zoo challenge: Categorization (joint work with Tu Nguyen)

(i) https://www.kag	ggle.com/c/galaxy	-zoo-the-ga	alaxy-challenge/lead	derboard						☆
	Overview	Data	Discussion	Leaderboard	Rules					
	#	∆pub	Team Name		Kernel	Team Members	Score 😮	Entries	Last	
	1	_	sedielem				0.07491	43	4у	
	2		Maxim Milak	(OV			0.07752	11	4y	
	3	—	6789				0.07869	62	4y	
	4	▲1	simon			Truyen Tran	0.07951	4	4у	
	5	▼ 1	Julian de Wit	t			0.07952	19	4y	
	6	_	2numbers 2	many			0.07963	11	4y	
	7	_	Ryan Keisler			1	0.08072	20	4y	
	8	_	Voyager				0.08083	7	4y	

Our solution

Reduce data variances

- Pre-processing: cropping and down-sampling
- Augmentation: rotation, flipping, zooming, translation

Right "prior" architecture: CNN

- OverFeat for feature extraction & prediction
- MLP on top to improve further

Ensemble methods

Simple averaging of many models

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).

Network architecture

Layer	1	2	3	4	5	6	7	8	9
Stage	conv+max	conv+max	conv	conv	conv	conv+max	full	full	full
# channels	48	96	192	192	384	384	2048	2048	37
Filter size	5×5	5×5	3×3	3×3	3×3	3 × 3	-	-	-
Conv. stride	1×1	1×1	1×1	1×1	1×1	1×1	-	-	-
Pooling size	3 × 3	2×2	-	-	-	3 × 3	-	-	-
Pooling stride	3 × 3	2×2	-	-	-	3 × 3	-	-	-
Zero-padding size	-	-	-	-	-	-	-	-	-
Spatial input size	120×120	39 × 39	18×18	16×16	14×14	12×12	4×4	1×1	1×1

Model: <u>https://github.com/tund/kaggle-galaxy-zoo/blob/master/report/gz_report.pdf?raw=true</u> Code: <u>https://github.com/tund/kaggle-galaxy-zoo</u>

Deep generative models for astronomical imaging

DGM achieved excellent results on various tasks

- Image generation (GAN [1], VAE[2], SAGAN[3])
- Image super resolution (SRGAN [4])
- Image denoising
- Image inpainting

SAGAN: self attention GAN SRGAN: super resolution GAN

Source: Regier et al, ICML'15

LG Image

Source: TFLayerGenerated Image

Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D. and Prabhat, M., 2015, June. Celeste: Variational inference for a generative model of astronomical images. In *International Conference on Machine Learning* (pp. 2095-2103).

DGM for cosmology

DGM can be used to speed up/replace complex experiments/computation:

- Fast Cosmic Web Simulations with Generative Adversarial Networks. Rodriguez et al.
- Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. Ravanbakhsh et al.

Generative Adversarial Network (GAN) samples

Figure 1: Samples from N-body simulations (top two rows) and from our GAN model (bottom two rows) for a box size of 500 Mpc. Note that the transformation in Equation 3.1 with k = 20 was applied to the images shown above for better readability.

References

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).

[2] Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

[3] Zhang, H., Goodfellow, I., Metaxas, D. and Odena, A., 2018. Self-Attention Generative Adversarial Networks. arXiv preprint arXiv:1805.08318.

[4] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W., 2017. Photo-realistic single image super-resolution using a generative adversarial network. *arXiv preprint*.

[5] Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D. and Prabhat, M., 2015, June. Celeste: Variational inference for a generative model of astronomical images. In *International Conference on Machine Learning* (pp. 2095-2103).

[6] Andres C Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphael Sgier, Janis Fluri, Thomas Hofmann, Alexandre Réfrégier. Fast Cosmic Web Simulations with Generative Adversarial Networks. arXiv preprint arXiv:1801.09070v2

[7] Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J.G. and Poczos, B., 2017. Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. In AAAI (pp. 1488-1494).

[8] Abeer Alsaiari, Manu Mathew Thomas, Ridhi Rustagi. Image Denoising Using a Generative Adversarial Network

[9] Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, M.K., Zhang, Y., Sun, L. and Wang, G., 2018. Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. *IEEE transactions on medical imaging*.

[10] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X. and Huang, T.S., 2018, January. Generative Image Inpainting with Contextual Attention. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 5505-5514).