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Machine learning basics
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Applications in Astronomy
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Machine learning settings

Supervised learning
(mostly machine)

A  B

Unsupervised learning
(mostly human)

Will be quickly solved for “easy” 
problems (Andrew Ng)
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Anywhere in between: semi-
supervised learning, 

reinforcement learning, 
lifelong learning, meta-

learning, few-shot learning, 
knowledge-based ML 



Best tricks in machine learning
Best classifiers
Deep Neural Networks
 XGBoost
Random Forests

Choosing right priors
 Extensive feature engineering
Model architecture
 Loss functions
Hyper-parameter tuning
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Managing uncertainty
Data augmentation
 Ensemble methods
Bayesian methods

Model reuse
Domain adaptation
 Transfer learning
Multitask learning



Feature engineering learning
In typical machine learning projects, 80-90% effort 
is on feature engineering
A right feature representation doesn’t need fancy 
classifiers to work well.

Text : BOW, n-gram, POS, topics, stemming, tf-idf, 
etc.
Image: Histogram, SIFT, HOG, Filter banks, LBP, 
whitening, centring, color correction, denoising, 
etc. 
Try yourself on Kaggle.com!
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Why ML works?
Expressiveness
Can represent the complexity of the world
Can compute anything computable
Learnability
Have mechanism to learn from the training signals
Generalizability
Work on unseen data
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What ML can do

Filling the slot
 In-domain (intrapolation), e.g., an alloy with 

a given set of characteristics
 Out-domain (extrapolation), e.g., 

weather/stock forecasting
 Classsification, recognition, identification
 Action, e.g., driving
 Mapping space, e.g., translation
 Replacing expensive simulations
 Novelty detection
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Estimating semantics, e.g., concept/relation 
embedding

Assisting experiment designs

Finding unknown, causal relation, e.g., 
disease-gene

Predicting experiment results, e.g., alloys -> 
phase diagrams -> material characteristics



Deep learning
Deep learning page:
https://truyentran.github.io/deep.html
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https://truyentran.github.io/deep.html


2012

Geoff Hinton

2006

Yann LeCun

1988

1986
http://blog.refu.co/wp-content/uploads/2009/05/mlp.png

2016-2017

Rosenblatt’s 
perceptron

1958

http://redcatlabs.com/2016-07-30_FifthElephant-DeepLearning-Workshop/#/



Deep learning in cognitive domains
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http://media.npr.org/

http://cdn.cultofmac.com/

Where human can 
recognise, act or 
answer accurately 
within seconds

blogs.technet.microsoft.com



What is deep 
learning?
Quick answer: multilayer perceptrons (aka deep 
neural networks) of the 1980s rebranded in 2006
 Same backprop trick, as of 2017.
 Has a lot more hidden layers (100-1000X).
Much bigger labelled datasets.
 Lots of new arts (dropout, batch-norm, Adam/RMSProp, 

skip-connections, Capsnet, external memory, GPU/TPU, 
etc.).
 Lots more people looking at lots of (new) things (VAE, 

GAN, meta-learning, continual learning, fast weights, etc.)
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andreykurenkov.com



2016

Much has changed

http://blog.refu.co/wp-content/uploads/2009/05/mlp.png

1986
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Deep learning as feature learning

Integrate-and-fire neuron

andreykurenkov.com

Feature detector

Block representation21/06/2018 14



Convolutional nets

adeshpande3.github.io
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Learnable convolution

http://colah.github.io/posts/2015-09-NN-Types-FP/

Learnable kernels

andreykurenkov.com

Feature detector, 
often many



Skip-connections
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http://qiita.com/supersaiakujin/items/935bbc9610d0f87607e8

Theory
http://torch.ch/blog/2016/02/04/resnets.html

Practice



https://medium.com/@culurciello

CapsNet (Hinton’s group)



Attention mechanisms

Need attention model to select or ignore 
certain inputs
Human exercises great attention capability –
the ability to filter out unimportant noises
 Foveating & saccadic eye movement

In life, events are not linear but interleaving.
Pooling (as in CNN) is also a kind of attention
Routing (as in CapsNet) is another example.

http://distill.pub/2016/augmented-rnns/



Show, Attend and Tell
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Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, K. Xu , J. 
Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio



Supervised deep learning: steps

Step 0: Collect LOTS of high-quality data
Corollary: Spend LOTS of time, $$ and compute power

Step 1: Specify the computational graph Y = F(X; W)

Step 2: Specify the loss L(W; D) for data D = {(X1,Y1), (X2,Y2), … }
Step 3: Differentiate the loss w.r.t. W (now mostly automated)
Step 4: Optimize the loss (a lot of tools available)
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Deep learning as new electronics (or 
LEGO?)
Analogies:
 Neuron as feature detector  SENSOR, FILTER
 Multiplicative gates  AND gate, Transistor, Resistor
 Attention mechanism  SWITCH gate
 Memory + forgetting  Capacitor + leakage
 Skip-connection  Short circuit
 Computational graph  Circuit
 Compositionality Modular design

Relationships
 Now: Electronics redesigned to support tensors in deep 

learning
 Prediction: Deep learning helps to design faster electronics
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Deep generative models
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Many applications:

• Text to speech

• Simulate data that are hard to 
obtain/share in real life (e.g., healthcare)

• Generate meaningful sentences 
conditioned on some input (foreign 
language, image, video)

• Semi-supervised learning

• Planning



A family: RBM  DBN  DBM
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energy

Restricted Boltzmann Machine
(~1994, 2001)

Deep Belief Net
(2006)

Deep Boltzmann Machine
(2009)



Variational Autoencoder
(Kingma & Welling, 2013)

Two separate processes: generative (hidden  visible) versus 
recognition (visible  hidden)

http://kvfrans.com/variational-autoencoders-explained/

Gaussian 
hidden 
variables

Data

Generative 
net

Recognising
net



Generative Adversarial Networks
(Goodfellow et al, NIPS 2014)
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GAN architecture. Source: DL4J 



GAN: implicit density models
(Adapted from Goodfellow’s, NIPS 2014)
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Progressive GAN: Generated images
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Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved 
quality, stability, and variation. arXiv preprint arXiv:1710.10196.



Why DL works: theory
Expressiveness
 Can represent the complexity of the world Feedforward nets are universal 

function approximator

 Can compute anything computable Recurrent nets are Turing-complete

Learnability
Have mechanism to learn from the training signals  Neural nets are highly 

trainable

Generalizability
Work on unseen data Deep nets systems work in the wild (Self-driving cars, 

Google Translate/Voice, AlphaGo)
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Why DL works: practice 
Strong/flexible priors (80-90% gain):
 Have good features  Feature engineering (Feature learning)
 Respect data structure  HMM, CRF, MRF, Bayesian nets (FFN, RNN, CNN)
 Theoretically motivated model structures, regularisation & sparsity SVM, compressed sensing 

(Architecture engineering + hidden norm)
 Respect the manifold assumption, class/region separation  Metric + semi-supervised learning

(Sesame net)
 Disentangle factors of variation  PCA, ICA, FA (RBM, DBN, DBM, DDAE, VAE, GAN, multiplicative 

neuron)

Uncertainty quantification (1-5% gain):
 Leverage Bayesian, ensemble  RF, GBM (Dropout, batch-norm, Bayesian neural nets)

Sharing statistical strength (1-10% gain):
 Encourage model reuse  transfer learning, domain adaption, multitask learning, lifelong learning (Column Bundle, 

Deep CCA, HyperNet, fast weight)



Two major views of “depth” in DL
[2006-2012] Learning layered representations, from raw data to abstracted goal (DBN, 
DBM, SDAE, GSN). 

 Typically 2-3 layers. 

 High hope for unsupervised learning. A conference set up for this: ICLR, starting in 2013.

[1991-1997] & [2012-2016] Learning using multiple steps, from data to goal (LSTM/GRU, 
NTM/DNC, N2N Mem, HWN, CLN). 

 Reach hundreds if not thousands layers. 

 Learning as credit-assignment. 

 Supervised learning won. 

 Unsupervised learning took a detour (VAE, GAN, NADE/MADE).

Today’s view: Differentiable programming.
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When does deep learning work?

Lots of data (e.g., millions)

Strong, clean training signals (e.g., when human can provide 
correct labels – cognitive domains).
Andrew Ng of Baidu: When humans do well within sub-second.

Data structures are well-defined (e.g., image, speech, NLP, video)
Data is compositional (luckily, most data are like this)

The more primitive (raw) the data, the more benefit of using deep 
learning.
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Applications in astrophysics
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https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge



Galaxy Zoo challenge: Categorization
(joint work with Tu Nguyen)
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Our solution

Reduce data variances
Pre-processing: cropping and down-sampling
Augmentation: rotation, flipping, zooming, translation

Right “prior” architecture: CNN
OverFeat for feature extraction & prediction
MLP on top to improve further

Ensemble methods
Simple averaging of many models
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Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and 
detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).



Network architecture
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Model: https://github.com/tund/kaggle-galaxy-zoo/blob/master/report/gz_report.pdf?raw=true
Code: https://github.com/tund/kaggle-galaxy-zoo

https://github.com/tund/kaggle-galaxy-zoo/blob/master/report/gz_report.pdf?raw=true
https://github.com/tund/kaggle-galaxy-zoo


Deep generative models 
for astronomical imaging
DGM achieved excellent results on various 
tasks
 Image generation (GAN [1], VAE[2], SAGAN[3])
 Image super resolution (SRGAN [4])
 Image denoising 
 Image inpainting

Source: Regier et al, ICML’15

Source: TFLayer

Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D. and Prabhat, M., 2015, June. Celeste: 
Variational inference for a generative model of astronomical images. In International Conference on Machine Learning (pp. 
2095-2103). 

SAGAN: self attention GAN
SRGAN: super resolution GAN



DGM for 
cosmology 

DGM can be used to speed 
up/replace complex 
experiments/computation:
 Fast Cosmic Web Simulations with 
Generative Adversarial Networks. 
Rodriguez et al.
 Enabling Dark Energy Science with 
Deep Generative Models of Galaxy 
Images. Ravanbakhsh et al.
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