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A: Intro to drug discovery pipeline & ML tasks
B1: Molecular representation and property prediction

Agenda B2: Protein representation and protein-drug binding
C1: Molecular optimisation & generation

C2: Knowledge graph reasoning & Drug synthesis
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Intro to drug discovery pipeline
Part A
ar & ML tasks
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Al Industry Shifts Focus
to Drug Discovery

Global investment spikes in reaction to pandemic.

GLOBAL PRIVATE INVESTMENT IN Al BY FOCUS AREA, 2019 VS 2020

Autonomous
driving, Road
Students, Courses, Edtech, English language
Open Source, Compute, Hadoop, Devops

I 2019

Speech Recognition, Computer interaction, .-2':'2"'3lI
Dialogue, Machine translation

o 5,000 10,000 15,000

Total Investment (in Millions of U.S. Dollars)
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Eroom's law (inverse of Moore’s)

FDA tightens
regulation
post-thalidomide
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FDA clears backlog
following PDUFA
regulations plus small
bolus of HIV drugs
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First wave of
biotechnology-
derived therapies

Number of drugs per billion US$ R&D spending™®
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Drug discovery and development

DRUG DISCOVERY PRECLINICAL CLINICAL TRIALS FDA REVIEW
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The fourth paradigm of science
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= Drug discovery is the process through which potential new medicines are
identified. It involves a wide range of scientific disciplines, including biology,
chemistry and pharmacology (Nature, 2019).

free drug free target bound drug-target
ligand protein co-complex

= Drug is a small molecule that binds to a bio target (e.g., protein) and
modifies its functions to produce useful physiological or mental effects.

= Proteins are large biomolecules consisting of chains of
amino acid residues.
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Lipinski’s Rule of Five (RO5)

. 1. No more than 5 hydrogen bond donors
Drug'l | keness (the total number of nitrogen—
hydrogen and oxygen—hydrogen bonds)
Solubility in water and fat, e.g., measured 2. No more than 10 hydrogen
by LogP. Most drugs are admitted orally = bond acceptors
pass through membrance. (all nitrogen or oxygen atoms)

_ . 3. A molecular mass less than 500 daltons
Potency at the bio target = target-specific 4. An octanol-water partition

binding. coefficient (log P) that does not exceed 5

Ligand efficiency (low energy binding) and
lipophilic efficiency.

Small molecular weight = affect diffusion

25/09/2021 10


https://en.wikipedia.org/wiki/Lipinski%27s_rule_of_five

Drug discovery

target identification, drug lead discovery

- Identification of disease causal factors
or targets

- Identification of drug of interest

(average duration: 5 yrs)

\.

by

Preclinical
phase

drug effect
& processing
by the body

Phase O:

- Assessment of drug
properties
(ADMET)

- In Vitro Trials (cellular
models)

- In Vivo Trials (animal
models or human

subjects)
duration: 1-3 years

IND: Investigational New Drug
NDA: New Drug Application

BLA: Biologics License Application

NI 4O uolissiwgns

Clinical
development

Phase|l Phasell Phaselll

Phase | dose-toxicity & drug
safety and kinetics

Phase Il drug efficacy & testing
drug combinations

Phase lll drug comparison
with standard-of-care
drug or placebo
(confirmatory clinical trial)

\(average: 18 mo.) )

duration: 2-10 years
(average: 5 yrs)

- /

(‘ow ¢ :98eiane)

Phase IV

JO uoissiugns

Pharmacovigilance

N

3

3 monitoring long-
@ | lasting side effects
~

<

[¢]

Y
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Réda, Clémence, Emilie Kaufmann, and Andrée Delahaye-Duriez. "Machine learning
applications in drug development." Computational and structural biotechnology
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Drug discovery as reasoning

Reasoning is to deduce new knowledge from previously acquired
knowledge in response to a query (or a cues)

Practical setting: (query, database, answer) triplets

* Classification: Query = Is this a drug? Database = atomic structure of drug.
= Regression: Query = how toxic is this drug? Database = drug.

= QA: Query = NLP question. Database = context/image/text.

= Multi-task learning: Query = task ID. Database = drug/protein.

= Zero-shot learning: Query = task description. Database = data.

* Drug-protein binding: Query = drug. Database = protein.

* Recommender system: Query = Target (drug). Database = {CCl, PPI, Drug-target, gene-
diseases};

25/09/2021



Drug discovery as learning to reason

Learning is to improve itself by experiencing ~
acquiring knowledge & skills

Learning to reason is to improve the ability to
decide if a knowledge base entails a predicate.

E.g., given a disease and a knowledge base,
determines if a drug will have treatment effect.

See our IJCAI'21 tutorial for more detail:
https://neuralreasoning.github.io (Dan Roth; ACM Fellow; 1/CAI

John McCarthy Award)
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https://neuralreasoning.github.io/

The three basic questions in drug discovery

Given a molecule, is this drug? Aka properties/targets/effects prediction.
* Drug-likeness

* Targets it can modulate and how much

* |Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?

* If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g.,
using Bayesian Optimization.

* If no molecule is found, need to generate from scratch = generative models + Bayesian
Optimization, or Reinforcement Learning.

* How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
* Synthetic tractability
= Reaction planning, or retrosynthesis

25/09/2021 14



We need powerful machine learning for
drug discovery

Expressiveness

= Can represent the complexity of the biomedical world
*|deally, can represent all the chemical space

= Can compute anything computable

Learnability

* Have mechanism to learn from the training signals (or lack of)
Generalizability

= \Work on unseen data

25/09/2021



Will neural networks be
suitable for drug-discovery
reasoning?

Reasoning is not necessarily achieved by making

Iogical inferences “When we observe a visual scene, when we
hear a complex sentence, we are able to
explain in formal terms the relation of the

There is a continuity between [algebraically rich objects in the scene. or the precise meaning
inference] and [connecting together trainable of the sentence components. However, there
. is no evidence that such a formal analysis
learni Ng systems] necessarily takes place: we see a scene, we
hear a sentence, and we just know what they
Central to reasoning is composition rules to guide mean. This suggests the existence of a

. . middle layer, already a form of reasoning, but
the combinations of modules to address new tasks not yet formal or logical.” °

25/09/2021 16



On suitability of deep learning for drug
discovery

Theoretical Practical
Expressiveness: Neural nets Generality: Applicable to many
can approximate any function. domains.
Learnability: Neural nets are Competitive: DL is hard to beat
trained easily. as long as there are data to
Generalisability: Neural nets train.
generalize surprisingly well to Scalability: DL is better with
unseen data. more data, and it is very

scalable.



Dart B1 Molecular rep're.sentatlon and
property prediction
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Agenda

25/09/2021

Molecular representation learning
Fingerprints
String representation
Graph representation
Self-supervised learning

Molecular property prediction
Approximating quantum chemistry computation
Graph regression and classification
Graph multitask learning
Explanation
Data efficient learning



Neural representation of the world

Vector 2 Embedding, MLP
Sequence & Tree =2 RNN (LSTM, GRU), Tree-RNN

Unordered set 2 Word2vec, Attention, Transformer

Graph =2 GNN (node2vec, DeepWalk, GCN, Graph
Attention Net, Column Net, MPNN etc)

*Grid is a special case = CNN (AlexNet, VGG, ResNet,
EfficientNet, etc)

“Transformer is a special case of GNN on fully connected graph.

25/09/2021



Molecule =
fingerprints

architecture

Fingerprint Fingerprint

Crug
concentration

Drug
concentration

Input layer Encoder Decoder Output layer

25/09/2021
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Graph = hashing = vector. Mostly
discrete. Substructures coded.

Vectors are easy to retrieve & manipulate.

* Ready for use in classical ML algorithms (e.g.,
SVM, RF, kNN)

Very difficult to reconstruct the graphs
from fingerprints.

2



(Circular) fingerprints can be
learnt

.
2
a\
_

%
A NCK
Algorithm 1 Circular fingerprints Algorithm 2 Neural graph fingerprints f'i.l E m
[: Input: molecule, radius R, fingerprint 1: Input: molecule, radius R, hidden weights b T
length S H| ... H3, output weights Wy ... Wp, l l'.
2: Initialize: fingerprint vector f < Og 2: Initialize: fingerprint vector f < Og S =;1h‘ | ._4_}.15
3: for each atom a in molecule 3: for each atom a in molecule i; "'F e < 1
4. r, < gla) > lookup atom features 4: r, < g(a) > lookup atom features > lﬂ" X
5: forL=1t0R > for each layer 5: for L=1to R > for each layer l ' 'I
6: for each atom a in molecule 6: for each atom « in molecule S 'rd} .,_‘_..q
T ri...ry = neighbors(a) T ri...ry = neighbors(a) Jer— PN
. S o L  Bad’ S
8: V& [BaPiseecs ry| ©concatenate 8: Ve To+ D T > sum A .
9: r, < hash(v) > hash function 9. r, < o(vH;')  >smooth function I '
10: i <= mod(r,,S) > converttoindex i0; i < softmax(r,W7p,) > sparsify > | ‘h‘-"'d
it f; « 1 > Write 1 at index 11: f—f+1 > add to fingerprint s ! "‘-1-'.-_,1
12: Return: binary vector f 12: Return: real-valued vector f '

25/09/2021 7



N OH
[} \
Molecule = string S \
@]
.
SMILES = Simplified Molecular-Input Line-Entry <.:a
System 3
B N \ 4 O
Ready for encoding/decoding with sequential 3\ _\—(
models (seg2seq, MANN, RL). 1N1_/N =/ 2 ; 7
2
BUT .. F
= String = graphs is not unique! 3
* Lots of string are invalid C <3
. . . . N 0
* Precise 3D information is lost X _\4_‘
= Short range depdendencies in graph may become long N _/“ e
range in string ! A 0
D

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)O
-

25/09/2021 Source: Wikipedia.org



Molecule = graphs

No regular, fixed-size structures

Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized
over all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space
Agreement with or optimization of multiple “drug-like”
objectives



Graphs are natural representation

Molecule as graph: atoms as nodes, chemical bonds as edges
Computing molecular properties as graph classification/regression
Drug-target binding as graph-in-graph interaction
Chemical-chemical interaction as graph-graph relation

Molecular optimisation as graph edit/translation

Chemical reaction as graph morphism

25/09/2021 25



| Graph filtering: Refining node
embedding

P A

A c {07 1}’n><n7X c Rnxd A c {O, 1}n><njxf c Rnanew




Input projection  output

r T
exp (Uw() ‘Uwf)

Prelim: Skip-gram plwoluwr) =

W ;T
szl exp ("U,w ‘ij,)

Loss function | H /
. | \
=D D, logp(wejlw)

t=1 —c<j<c,j#0

Predicting neighbors

Negative sampling

k
log J(ﬂiﬂf:} Tv“lL-'I) + Z EH"-.E""PH (”lL"] |:10g J(_U’Lj TUT-UI ):|

T
1=1

w(t-2)

w(t-1)

w(t+1)

w(t+2)



| DeepWalk

Algorithm 1 DEEPWALK(G, w, d, v, t)
Input: graph G(V, E)
window size w

embedding size d
walks per vertex -y Embedding matrix
walk length ¢
Output: matrix of vertex representations ® € RIVI*4
1: Initialization: Sample @ from V>4
2: Build a binary Tree T from V<———— For Hierarchical Softmax
Iterate over each epoch = 3: for i =0 to v do
4: O = Shuffle(V)
for each v; € Odo _ —— Finding neighbours of each node
W, = RandomW alk(G, vi,t)

5
6:
T SkipGram(®, W,,, w) «<—— Update embedding of this node
8.
9:

Considered as #epochs

end for
end for

Neighbour nodes Window size



Node2Vec

Similar to DeepWalk in using Skip-gram model for unsupervised learning.

Only modifies the search for neighboring nodes that balance between BFS and DFS.

Defines edge embedding based on node embedding

= Can solve link prediction problem
a P Consider random walk that just

travelled edge (t, v). The walk
2"d order Random Walk will decide which is the next

node x that it should go from v
by computing Tyz

Trfug; — prq (t7 ZE) : wfu_q;*

Loirg
P ?fdm 0 p and q are
apg(t, ) = 41 ifdi =1 hyper-parameters
o ifd =2



Graph convolutional nets

GCN update rule, vector form
Data graph

e, €2 (1) _ L owo
_ h, _U(Z(}'hﬂjw )
g Y
€,
€4 GCN update rule, matrix form

1

fHD A) =0 (DEADEH”)W“))
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Graph attention
networks

concat/avg

Figure 1: Left: The attention mechanism a(Wh;, Wh;) employed by our model, parametrized by a

weight vector a € R?F ". Right: An illustration of multi-head attention (with K = 3 heads) by node
1 on its neighborhood. Different arrow styles and colors denote independent attention computations.

swmn The aggregated features from each head are concatenated or average to obtain i_{’l 3



. B4l Y2 Y3 YVa
Message passing GNN " A B
o
o h'mm /
Relation graph / /‘( X1 X X3 X,
€1 \

84 . . .
Collecting messages Refining node embedding
m§k+1) — Z M, (h§k),h§-’“),eij) hgkﬂ) = Uy (hfgk)amf;kﬂ))

v; €N (v;)

#REF: Pham, Trang, et al. "Column Networks for Collective
Classification." AAA[. 2017.

25/09/2021

Gilmer, Justin, et al. "Neural
message passing for guantum
chemistry.” arXiv preprint
arXiv:1704.01212 5017}\2




| Graph pooling & readout

Graph pooling generates a smaller graph

s i
v

A €{0,1}"" X € R"*4 A, € {0, 1}>" X, € RMXdnew n < n
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RDMN: A graph processing machine

/

o A

Query—»[

Controller ]—> Output

Read Z\m\ Write

Memory

#REF: Pham, T., Tran, T., & Venkatesh, S. (2018).
Relational dynamic memory networks. arXiv
preprint arXiv:1808.04247.

25/09/2021

Unrolling

Output
process
Memory
process \_ Controller
process
Message
passing
Input " | ‘

pProcess
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Self-supervised - .
representation learning for /Q%/}\
drugs : ; 7
Early works for node embedding: DeepWalk & S Encoder
Node2vec He\ad H;Ld e
BERT-like through masking and reconstructi T

of parts: 57k

SMILES sequence: ChemBERTa
Molecule graph: GROVER

Contrastive learning (local manifold
smoothness):
Graph contrastive learning: GCC

25/09/2021 35



Input [CLSIW my || dog is {cute| [SEP] he (Iikes ” playw ##ingl [SEP]
. E?#:gddings E[CLS] Emy Edog E\s Ecute E[SEP] Ehe Elikes Eplay E==|ng E[SEP]
BERT-like self- — R e
. E
e ° Embeddings A A A A A A B B B B B
supervised learning . e e e e e e e e e
E%st;tcie%r;ings E, E, E, E3 E, Es E6 E, Es E9 E10
ChemBERTa (Chithrananda, S et.al) uses pretraining
procedure from RoBERTa with 10M unique SMILES from
PubChem.
BBBP ClinTox (CT_TOX) HIV Tox21 (SR-p53)
2,039 1,478 41,127 7,831
ROC PRC ROC PRC ROC PRC ROC PRC
ChemBERTa 1I0M 0.643 0.620 0.733 0.975 0.622 0.119 0.728 0.207
D-MPNN 0.708 0.697 0.906 0.993 0.752 0.152 0.688 0.429
RF 0.681 0.692 0.693 0.968 0.780 0.383 0.724 0.335
SVM 0.702 0.724 0.833 0.986 0.763 0.364 0.708 0.345

25/09/2021
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BERT-like self-supervised learning

ChemBERTa (Chithrananda, S et.al) uses pretraining procedure from RoBERTa
with 10M unique SMILES from PubChem.

0.14 4 Dataset Metric
BBBP — ROC-AUC mean
ClinTox -== PRC-AUC mean
0.12 4 Tox21
0.10 A
0.08 A
)
3
0.06 A
0.04 A
0.02 A
0.00 A
10° 10° 107

PubChem pretraining size (log scale)
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Sub-graph masking
self-supervised
learning

GROVER pretrains with contextual

property prediction and graph level
motif prediction using

GNNTransformer architecture.

25/09/2021

Node Embed Edge Embed
LayerNorm LayerNorm
Feed Forward Feed Forward
Concat Concat
Aggregate2Node Aggregate2Edge
B B
l
LayerNorm

Multi-Head Attention

Q Kt v
Node Node Node
DyMPN DyMPN DyMPN
I
Linear

|
Input Graph

Long-range
residual
connection
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Sub-graph masking self-supervised
learning

GROVER pretrains with contextual property prediction and graph level motif
prediction using GNNTransformer architecture

Contextual property prediction (node/edge level task)

oY

-~ o
[nput molecule

I3t

Molecular graph

Contextual property extraction Subgraph masking P e

i node-based k=1! b e Y

: : 7 A
: sew ! L

! i node/edge
- R spresentation
! edge-based =

1

1

1

..........................................
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Key: C_N-DOUBLE1_O-SINGLE1
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Contrastive learning self-supervised

q
Graph
Graph x9 Encoder -
f;
/ Contrastive

Similarity— Loss

GCC (Qiu, Jiezhong, et al.)
use subgraph instance
discrimination (SID) as
pretraining task and InfoNCE

. . . . Granh k
as training objective. A

Graph
Graph x*1 | Encoder
fi

SID performs two random
walks with restart to
sampling from a k-
neighbour subgraph to use
as positive pair and samples
from other k-neighbour
subgraph as negative pair.

ko, Ky, k2

k2

Graph x
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| GCC (Qiu, Jiezhong, et al)

Table 2: Node classification.

Table 3: Graph classification.

Datasets US-Airport H-index
V] 1,190 5,000
|E| 13,599 44,020
ProNE 62.3 69.1
GraphWave 60.2 70.3
Struc2vec 66.2 >1Day
GCC (EZ2E, freeze) 64.8 78.3
GCC (MoCo, freeze) 65.6 75.2
GCC (rand, full) 64.2 76.9
GCC (EZ2E, full) 68.3 80.5
GCC (MoCo, full) 67.2 80.6

#REF: Qiv, Jiezhong, et al. "

Datasets |IMDB-B IMDB-M COLLAB RDT-B RDT-M
# graphs 1,000 1,500 5000 2,000 5,000
# classes 2 3 3 2 5
Avg. # nodes 19.8 13.0 745 429.6 508.5
DGK 67.0 44.6 73.1 78.0 41.3
graph2vec 71.1 50.4 - 758 47.9
InfoGraph 73.0 49.7 - 825 53.5
GCC (E2E, freeze) 71.7 49.3 74.7 87.5 52.6
GCC (MoCo, freeze) 72.0 49.4 789 89.8 53.7
DGCNN 70.0 47.8 73.7 - -
GIN 75.6 51.5 80.2 894 54.5
GCC (rand, full) 75.6 50.9 79.4 87.8 52.1
GCC (EZ2E, full) 70.8 48.5 79.0 864  47.4
GCC (MoCo, full) 73.8 50.3 81.1 876  53.0

SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.

25/09/2021

GCC: Graph contrastive coding for graph neural network pre-training." Proceedings of the 26th ACM
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Agenda

25/09/2021

Molecular property prediction
Approximating quantum chemistry computation
Graph regression and classification
Graph multitask learning
Explanation
Data efficient learning
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The three basic questions in drug discovery

Given a molecule, is this drug? Aka properties/targets/effects prediction.
* Drug-likeness

* Targets it can modulate and how much

* Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?

* If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g.,
using Bayesian Optimization.

* If no molecule is found, need to generate from scratch = generative models + Bayesian
Optimization, or Reinforcement Learning.

* How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
= Synthetic tractability
= Reaction planning, or retrosynthesis

25/09/2021 43




Quantum chemistry

In chemistry we mostly need to know about
electronic structure (e.g., electron density and
electronic energy).

The density can be inferred from the wave
function. But solving wave equation is very
difficult.

Density Functional Theory (DFT): electron o (0 P ot
density is a function of space and time. Hu%;ﬁ:;‘;‘::élmmm 5
= Hohenburg-Kohn theorem: the density of any system
determines its ground-state properties. Aspuru-Guzik, Aldn, Roland Lindh, and Markus
* Electron density functional = total energy of our Reiher. "The matter simulation (r) evolution." ACS
system. central science 4.2 (2018): 144-152.

25 09202 Ref: http:/ /newton.ex.ac.uk /research /qsystems /people /coomer /dft_intro.html u



Approximating DFT

Targets
DFT y
~ 10?% seconds |&,wo., ...

Message Passing Neural Net
N ¢

v—r=t m /_\ =

=\_4 =\ W

~ 1072 seconds
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Molecule property prediction

* A fundamental task in many stages of drug discovery
e E.g., virtual screening and lead optimisation

* Molecule properties
* Binding affinity
Have effects on cell expression
Toxicity, ADME property ( Absorption, Distribution, Metabolism and Excretion)
Interacting with other molecules
Easy to synthesize



Activity as
query

Molecular activity prediction -~

Collecting messages

m = N My (hgk),h§k),6¢j)

i
v; EN(v;)

Refining node embedding

k1) U, (h(k) m(kﬂ))

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph
Memory Networks for Molecular Activity Prediction." ICPR18.
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Directed message
passing neural network

\

new bond
vector

concat

§

arge scale predictions
(upper limit 108 +)

.

\

Training set
(10* molecules)

A 4

Machine learning

A 4

Predictions &
model validation

Growth

[antibiotic]

/

J

lterative
model
re-training

—_—

7

Lead
identification
& optimization

<

Conventional small
molecule screening

Example: Antibiotic discovery of halicin

Chemical landscape

r

Chemical screening
(upper limit 10° - 10°)

]

Hit validation
(1 - 3% hit rate)

\
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| GAML for drug multi-target prediction

Scale linearly with number of targets + efficient processing through
message factoring.

(yla Y2, yS) mi_l
:ctl_l
U2
. i1 wg_l . t—1
. 1 s
1 " /
. . /@
i1 ~ - T2 oy ’:// -
- —1
@ 2 R~ =
/ N
! AN
V4 3 /7
|
V3 Ty
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels
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o Model MicroF1  MacroF1 Average AUC
More flexible drug- SVM 66.4 67.9 85.1
- RF 65.6 66.4 84.7
disease response CB 655 669 83,7
. NeuralFP [19] 68.2 67.6 85.9
with RDMN MT-NN [51] 75.5 78.6 90.4
[ RDMN 77.8 80.3 92.1 |
1.0- ! | i .'
/ (-\ \ ‘\ : ggm: E/r;;::iatio.n
Query—|  Controller |~ output oy — ROMN: e vt
Read ’ \ Write 3‘0_6_:.‘ S
AN j%
Memory i
L= G
K & Graph /
25/09/2021



Tying param helps multiple diseases

response with RDMN

mmm RDMN-Sep

90 - M RDMN-Joint

G

\'3 \ &\g

25/09/2021

Query—»[ Controller ]—>Output
Read ’ \ Write
Memor
T\";\\yk\\ y
K &Graph /




Drug-drug interaction as graph-graph
reasoning

Expert Advice

2017 Drug Interactions Report: A
Growing and Deadly Threat

By Marina Noble MD, MPH - November 7, 2017 ® 1810 0™ o Comments
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Attention-based
explanation

Internal attention can provide
certain capability of explanation

External counter -factual methods
can be more precise by
generating small changes to the
molecules and see the effect.

More on this later. 3“°3=~33~=

.......
COOOWNNMMRKCCCCCCC

o o
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GNNExplainer

GNNExplainer explains DL model by providing a small subgraph of the input
graph together with a small subset of node features that are most influential
for the prediction.

.E GNN's & message Aca| .r.rg,gmj Er I — Bative slidad
’/1 Important for i Unimportant for i vector from explanation

max MI(Y,(Gs, Xs)) = H(Y) - HY|G = Gs, X = X5)
S
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GNNExplainer (2)

Computation graph GNNExplainer Grad Ground Truth

o : Ring
.g 3 ‘E»:ﬂ i ::z structure
= ° :
: O.CD NO, group
O
o« W ®
- Sy

Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural

—— networks.” Advances in neural information processing systems 32 (2019): 9240.



GNNExplainer (3)

25/09/2021

Input to
GNN

GNN’s
Prediction

Molecular
graph with
node
features

Molecule’s mutagenicity

Ground Truth
Feature Importance

GNNExplainer
Grad

Att

®® OO
COCIHN FBrSP I NaKLiCa

Not applicable
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Few-shot learning for drug property
prediction

Compound LaIIJeI Structure
f Lithium = 4
Some ideas are in place: e z
. Ethanol =] ~om g' Té H
Prototype, distance : Nf—*~ ................ = . 5 s
i i 5 NN i vl W
metric learning. B amme w ] ] p——o GegaEz
. . - ’ T o, 0 —{ —
Joint feature learning of e ¥, —
many small tasks, then b /©/
fine-tuning on new task. cousie. @ »
g T

f!

E S, 1

g st ? prediction
£ yrene 09— 00 0~ o 1l T e

5 oide O T T 111 O o

=

o0

=
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Dart B? Prote.in repres.ent'ation and
protein-drug binding
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Agenda

25/09/2021

Protein representation learning
Embedding, BERT
2D contact map
3D structure
Protein folding

Drug-target binding prediction
Multi-target prediction
Drug-protein binding as graph-graph interaction
Cold-start problem
Explanation
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Background on protein

Proteins are large biomolecules.

Long chains of amino acids (residue). There are 20 types of
amino acids.

Residues are attracted to each other by physical and chemical
forces.

Residue chain folds to form the 3D structure.
Proteins 3D structure determine their function.

Performing many different functions in the organisms such as
transportation (hemoglobin), hormonal (insulin), protection
(immunoglobulin), etc.

25/09/2021 https://en.wikipedia.org/wiki/Hemoglobin.

3D structure of hemoglobin
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Background on protein (cont.)

. . H
e Amino acid structure

* Amine (-NH»)
* C,-Rside chain R
e Carboxyl (-COOH)

Fig 2. General structure of amino acid [2]

* Dipeptide (two amino acids bounded together) backbone

H R H O H R H O

I I \_/ | Il

H\ /C\ /O\ T H\
N C H H/N\C/C\O/H —_—

/A
H O R H H O R H

Bounding between two adjacent amino acids + H H

Available at https://en.wikipedia.org/wiki/Amino_acid.



| Background on protein (cont.)

* Local structure: torsion angle

H R H O HRITICI? HHRFI!CI?

C.\ ~ /N\ /C\ /H

| By E— /N f———— / N\ g
7/QRH H\oRH H o R_H

phi angle (¢) osi angle (1)) omega angle (w)




S
44E T
B-Sheet (3 strands) a-helix

Background on protein (cont.)

* Local structure: secondary structure:

* Local folded structure due to the interaction
between atoms in the backbone chain.

* Eight types of secondary structure. a helix and the
B pleated sheet are two most common secondary

structure.
* Tertiary structure:
* The overall 3D structure of protein sequence
* R group interactions between residues also
contribute to form the tertiary structure
* Quaternary structure:
* The arrangement of multiple polypeptide chains ‘ﬁ“at'emary b o A

https://en.wikipedia.org/wiki/Protein_structure.

Secondary structure

Tertiary structure

Y



Representing proteins

1D sequence (vocab of size 20) — hundreds
to thousands in length

2D contact map — requires prediction

3D structure — requires folding
information, either observed or predicted.
Only a limited number of 3D structures are
known.

NLP-inspired embedding (word2vec,
doc2vec, glove, seq2vec, ELMo, BERT, etc).

25/09/2021

Unsupervised learning

Step 1:Break sequences into k-mers

lm:l'_", IVA, VET
ADTIVAVET 20T, VAV

123 IPIV,AVE

Step 2:Train embedding model

1 . _ _
ADT . IVA,VET
ADT, IVA, ﬁ_,
DTT, VAV - 'mh' 9} 5 embedding
madel
dpIv, AVE
N TV

doc2vec: .
&
ADT,IVA ,VET | predict
W w 1 jBvernge
= & Ry
P _ .
| | 1 | 1
ADTIVAVET ADT VET

Supervised learning
Step 3: Break sequences into k-mers

1
GFD,ELA, KGA
‘FDE, LAK
'DEL, ARG

GFDELAKGA
123

Step 4: Infer embeddings

‘GFD,ELA, KGB
2 ' e I/J‘;*"d ambadding X
FDE,LAK * embedding n x84
DEL, ARG ool
Step 5: GP regression
X, y—» GP modal » Trained GP modal
X ¥ Trained GP modal # predictions
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Sequential representation

= One-hot encoding: simple, but inherently
sparse, memory-inefficient, contains no prior

knowledge and contextual information.
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Sequential representation (cont.)

= One-hot encoding: simple, but inherently
sparse, memory-inefficient, contains no prior
knowledge and contextual information.

= Evolutionary information: search for related
proteins to for multiple sequence alignment
(MSA) and extract evolutionary information.
Can be effective (AlphaFold2) but
computational costly and requires sufficient
data and diversity.

25/09/2021

—  — A

GRU Cells

LEERLGLIEVQAPILSRVG

-EISRAVGLEYIPSPMFVRDM
-SLSKNLNLYRVTAPVFLKSK
-ALSEALNLTEVQAPLLTDPS

LAKRLELFRVSAPLFVTKK

11/ 07/10 1514 18 02 10 06 15|11 0710 15/14 18/02 1.0 06 15
05 16 04 16 01 06 0.6 13 00 1.1 059 16 04 1.6 0.1 06 06 13 0.0 1.1
04 10 0.1 0518 09 0.2 03 02 13 04 10 01 0518|059 0.2 0.3 02 13
08 09051601 1.2 06 06 1.2 09 08 09 051601 1206 06 1.2 09

PERYTETNTENEFRTELEY

09 1002 0811 00 1.3 06 14 1.2 09 1.0 0.2 0.8/1.1 /00 1.3 06 14 12

08 13 050509 10 01 03 0B 0.7 08 13 050509 10 01 03 0B 0.7
1810160702 1812 10 13 16 /18 1016 0.7T/02 1.8/12 1.0 13 16

Multiple Sequence Alignment
[MSA)
(22,N,1)

Per-column embeddings

(512,1)

Final embedding of MSA
(512,L)
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Sequential representation (cont.)

=Evolutionary information: search for related proteins to for multiple sequence alignment (MSA)
and extract evolutionary information. Can be effective (AlphaFold2) but computational costly

and requires sufficient data and diversity.
- > (G Trret 11 22 N G P44 ) High
S (Dot 8 e § G ~ s
Genetic |y SEEEEE —®—> representation| —e- — ‘ i
database | i % (s.ne) % |
(searcn ) (RPT7H
MSA P
1 dh il S < Evoformer S':EEELE - P
Input sequence 48 Bocks) (8 blocks) f%‘ﬁﬁ
‘ [RETSE. [RETSRY i)
. (Pare) - i
Pl - Pair Pair
— 4®—p 4 representation] —p — # representation | ——a= 30 structure
& . T 'y {r.r.c) {r,r.c)
\__,.| Structure ¢ . +
o — —
\_search J
Templates
« Recycling (three times)

67
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NLP-inspired
embedding

*NLP-inspired embedding:
protein sequence as a
sentence and residues as
tokens then apply language
modelling (word2vec,
doc2vec, glove, seq2vec,
ELMo, BERT, etc ).

25/09/2021

L amino acid
embeddings

|

Y 1 A A
F F 1 F F
Concatenate
1024 1024 1024 1024 0
SR
I T T
..................................................................................... ean

e NPT ARP.

Stack of N self-

attention layers |

!

Tokenization &
Encoding

JT
Input
of length L

CRNCINCRNE

______

Pooling

|

Protein

embedding
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Spatial representation

= 2D contact/distance map: distance between
residues pairs of 3D protein structure.

= 3D structure: coordinate of residues in 3D
space.

= Graph representation: residues as nodes and
distance as edges. Can combine with
sequential representation via attributed graph.

25/09/2021 69



Protein sequence
...AKLMMAATTAGVVVTTH. ..

Pretraining

Protein sequence
embedding

Protein contact map

)

v

Protein graph
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| Protein folding prediction progress

CASP: MEDIAN ACCURACY of PREDICTIONS in FREE-MODELING by THE BEST TEAM, 2006-20

Source: DeepMind, 2020 | Chart: 2021 Al Index Report

100
ALPHAFOLD 2

80

ALPHAFOLD
60
40

Global Distance Test (GDT_TS)

o

o

CASP7(2006) CASP8(2008) CASP9(2010) CASP10(2012) CASP11(2014) CASP12(2016) CASP13(2018) CASP14 (2020)

25092071 Source: Al Index 2021, HAI Stanford )



Protein 3D structure prediction

* Input: protein amino acid sequence X = (x1x3 ...x;) where L s
protein sequence length, x; is residue type at position {.

e Qutput: the 3D coordinate of residues in protein sequence.

..M FMWKRR...

Amino acid sequence




Approaches

* Template-based

* Using known structure of proteins that have high sequence similarity with
target protein as the initial structure template.

* From the the initial structure, protein fragments are inserted or deleted to
minimize the global free energy.

* An effective method if the target protein sequence has at least 30%
sequence identity with the template protein.

* Template-free
* Without using solved protein structure
* Main goal is to find a conformation that has minimum free energy

* Require a vast computational resource such as powerful super computer or
distributed computing projects (Rosetta@Home, Folding@Home)



AlphaFold

 State-of-the-art in protein structure prediction
* Template-free approach

e Construct a potential mean force which can accurately describe the
protein 3D structure

Sequence
* Y Torsion Sample .l Initialization |‘
; Distributions (AT
HHblits & ~ MSA H Deep *
PSI-BLAST Features ResNet o
4 Distance Potential Gradient 'g
Sequence Distributions V(d,w) Descent §
Database Van Der *
Waals Structure
Pool |_

The pipeline of AlphaFold to predict the 3D structure of a protein sequence



AlphaFold 2

e > (@rr1ttt) 11132 U Tereey —— High
: m— confidence
C__  [Barrers | e >
AR Qi aans 5 ~ 5t |
ﬁ%’r ? " 1; ™ - =
MSA
Rl i / Evoformer Sm"lm
) (48 blocks) L
Input sequence (8 blocks)
Embed & outer sum < FEEEE ) AEAEA4 i LTLLRLL
with relative position 441 " e e 3D structure
A (rre) {rr.c)
-=-0 | —
search
Templates
Y ¥
Template angle feature & \
P 9 | « Recycling (three times)
template pair feature

s REF:Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly

accurate nrotein structure orediction with AlohaFold. Nature. 596(7873) 583-589.
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AlphaFold 2 — Evoformer block

a /- 48 blocks (no shared weights) \
n @
MSA MSA
, [T RRgetaton | — attention > 3 [TORgeniation
% o) with pair % Ere)
bias
F 3
Outer
product
mean
Triangle Triangle |
Pair update update Pair
representation < {(+) using e using —» | representation
(r.r,c) outgoing incoming . . {r.,r.c)
edges edges |
b Pair representation Corresponding edges c Triangle multiplicative update Triangle multiplicative update Triangle self-attention around Triangle self-attention around
(r,r,c) in a graph using ‘outgoing’ edges using ‘incoming’ edges starting node ending node

77 fz?@ L
BeP & o & \D &
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AlphaFold 2 — Structure module

Pair Gl o o i
representation B“ﬂpﬁu ol
(r,r.c) P ;ﬂi
o¢
4
-~ | 8 blocks (shared weights) 1 «\1
Predict ¥ angles
. |
Update single repr. aar;grﬁoprggﬁitgnasl

IPA

@ |Single repr. (r,c)

i,

module

)

rotations and

., [ Predict relative
translations

|

Backbone frames
(r, 3x3) and (r,3)
(initially all at the origin)

-

JL

» () |Single repr. (r,)|

&

N\

Backbone frames

e <

r.)
4 __*

(r, 3x3) and (r,3) J/‘

(Euclidean transformation)
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Agenda

25/09/2021

Drug-target binding prediction
Multi-target prediction
Drug-protein binding as graph-graph interaction
Cold-start problem
Explanation
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Bipartite network operations

Link prediction

Recommendation techniques, e.g., SVD, random walks, nearest
neighbours.

Knowledge graph completion techniques, e.g., TransE

More on this later in Part C2.

25/09/2021
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Multi-target binding

Scale linearly with number of targets + efficient processing through
message factoring.

(yla Y2, y3) mi_l
:cﬁ_l
V2 1
. li—l ar:g /. 333_1
U1
/ ~ t l:tl / -
x —
15t =~ N = 1 A
2 — x ’:\.,_._ - i
- 7 O @
O \
® " ¢ ®
t—1
V3 Ty
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels
#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing

25/09/2021 approach." Machine Learning, 2019. .



Drug and protein

25/09/2021

Drug molecule

A small molecule
that binds to
biological
macromolecules
(e.g., protein) to
alter its activity
or function

Protein

A macromolecules
consists of chains of
amino acid residues
forming a 3D shape.
Proteins perform
many functions in
living organism
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Drug and protein (2)

Drug molecule

- Binds to protein
binding site

- Changes its target
activity

- Binding strength is the
binding affinity

25/09/2021

Protein

- May change its
conformation due to
interaction with drug
molecule

- Its function is altered due
to the present of drug
molecule at its binding site
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Drug and protein (3)
L

Drug O Protein
®

We need to understand drug-target
interaction because:

Mefuparib

e Fast and safe drug repurposing

and discovery/repurposing process (
for swift pandemic reaction 0

e Find solutions for challenging ¢ - Uéb
diseases Bl | 7 oL

Baricitinib

Image credit: Lancet

25/09/2021 84



Drug-target binding as
guestion-answering

= Context/database: Binding targets (e.g.,
RNA/protein sequence, or 3D structures), as a
set, sequence, or graph + existing binding,
interaction databases.

*Query: Drug (e.g., SMILES string, or molecular
graph)

= Answer: Affinity, binding sites, modulating
effects, conformation changes.

#REF: Nguyen, T, Le, H., & Venkatesh, S. (2019).
GraphDTA: prediction of drug—target binding affinity
25/09/2021 using graph convolutional networks. BioRxiv, 684662.

Graph pooling

1

GCN layer 3

1

| |
| |
| GCN layer 2 |
| |

)

GCN layer 1

%

¢

%

'O=C(NC1CCNCC1)c1[nH]ncc1NC(=0)c1c(Cl)ccec1Cl!

SMILES

| Max pooling |

| Convolution layer 3 |

T

| Convolution layer 2 |

T

| Convolution layer 1 |

2N

Embedding layer

A

Label encoding

%

'MVSYWDTG\éfIS_LCALLSCLLLTGSSS._.'

Protein sequence



GEFA: Drug-protein binding as graph-in-
graph interaction
Protein graph

Drug graph Graph-in-Graph

interaction

Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). “GEFA: Early Fusion Approach in Drug-Target Affinity
Prediction”. IEEE/ACM Transactions on Computational Biology and Bioinformatics
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GEFA (cont.)

We designed a model for
detailed interaction between
drug and protein residues.

The architecture is a new
graph-in-graph.

This results in more accurate
and precise prediction of
binding site and strength.

Drug SMILES
Cc1cce2nc(NCCN)e3ncee(Cin3c2c1.Cl

GCN layer 1 |
Graph 3
refinement | [ GoN layer2 |
phase 7
Residual blocks |
-
Refined drug graph
L
Graph puoiing_J
Feature . 4 :
extraction4 | Linear layer1 |
phase v

Linear layer 2 |

" Graph-based drug
representation

Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). “GEFA: Early Fusion Approach in Drug-Target Affinity
Prediction”. IEEE/ACM Transactions on Computational Biology and Bioinformatics

Protein sequence Protein contact map

[ Feature vector MKKEEDSRREQGGSGL
Graph structure l

1 Meural network layer

Embedding feature+

GCN layer 1
¥ Graph
GCN layer 2 refinement

phase
Residual blocks

Linear layer Refined drug-protein graph
s o 0
Drug node Drug node )
feature feature Poen
before fusion || | after fusion, =~ 9P
Comi_ining Graph pooling
dri 3 Feature
lateat ) Linear layer 1| (“oyiraction
featlre
| Max poolmg | |Linearlayer2 phase
| Drug Graph-based protein
L representation representation
| Combined representation | |
Linear layer 1 icti
[ Feature vector y ’-Prneigg:iﬁgg
Graph structure Linear layer 2 affinity
Neural network layer
Linear Iayer 3

Output [:I -



GEFA (cont.): Drug-target graph

[ Feature vector
Graph structure
| Neural network layer

Drug SMILES
Cclcece2ne(NCCN)c3nce(Cindc2c1 . Cl

AR

\’C"—’ o Protein sequence Protein contact map
~ @ MKKFFDSRREQGGSGL
GCN layer 1 | ’
Graph v Embedding feature +
refinement GCN layer 2 ‘
phase 3
Residual blocks |
"‘_ i
. . (Er—rt
Refined drug graph . Nodes features | <3 K AN :
"{:L' ¥ \Q:({“ 4?
Graph pooling | | Attention mask | P ;f
Feature B ' L
extraction | Linear layer 1 |
phase v

Linear layer 2 |

L

" Graph-based drug
representation

(Drug'.
—>\aode/

L

-
Drug-target graph



Protein sequence Protein contact map
1 Feature vector ——

Graph struciur MKKFFDSHfEGGGSEL , G E FA ( CO n t . ) : G C N + fu S i O n

[ 1 Meural network layer
Embedding feature +

feature feature
before fusion || | after fusion, 92PN

2 )
Combining Graph pooling

drug

- Feature
latent ) Linear layer 1| (aytraction

feature v
Max pooling Linear layer 2 phase
-

Drug | [Graph-nased protein |

Nodes features ﬁ r \
l <:I K _,:J Drug node ]_[Drug node S

Attention mask F

L representation | representation
GCN layer 1 {} _ {} X
v Graph | Combined representation |
GCN layer 2 - refinement <
¥ pnase Linear layer 1 Predicting
S —— [ Feature vector _ - binding
esldual Dlocks J Graph structure Linear layer 2 affinity
+ 0, MNeural network layer _
Linear layer 3
Linear layer Refined drug-protein graph v _
Output [II
Drug node Drug node
feature feature Protein graph

before fusion aiter fusion




Cold-start problem

Train set Test set |

« »

! Drug Protein

Drug Protein ‘ 1 1
1 2
l l

‘ — Deep learning model

Protein ¢

: s =63 Q)
Affinity = 6.8




Cold-start problem

Test set |
Novel Drug Novel Protein
Protein ] e 1

- Deep learning model — Deep learning model

[ Affinity = 5.0 @ [ Affinity = 5.0 }@




Results visualization

0 10 20 30 40 50 60 70 80 90 100

Attention values at predicted binding sites of
MST1 target. Residues ASP 167.A has highest
attention score.

|

ASP167

GLU103
o
_CYS105

Residue-ligand interaction predicted
by simulation. Residue ASP 167.A is on:
of binding site "



| Explaining DTA deep learning model:

feature attribution
‘ Show the contribution of

q

@ each part of input to the
Dru g Protein model decision

Explainer ¢ i Does not show the

q ‘ causal relationship
Q Q o Deep learning model between the input and

— the output of model

{ Affinity = 6.8 }
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Explaining DTA deep learning model: counterfactual

What

if...? .
Drug Protein

Observed data | ‘

Drug Protein

— Deep learning model — Deep learning model

[ Affinity = 5.0 } [ Affinity = 6.8 ]

— Deep learning model

[ Affinity = 6.8 }

Causal

relationship @
Drug Protein
94
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| Counterfactual explanation generation

Minimizing drug and
protein dissimilarity

« » « »

. Counterfactual )
Drug Protein —> —> Drug Protein

instance generator
— Deep learning model — Deep learning model

[ Affinity = 6.8 } Maximizing A Affinity { Affinity = 8.8 }
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Counterfactual explanation generation objective

Minimizing drug Minimizing protein
hg\/hg
Counterfactual

instance generator

I

Maximizing A Affinity

25/09/2021
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MACDA: MultiAgent Counterfactual Drug-target

Affinity framework
Drug agent

@ Actions:
0 Removing atoms, bonds

Add atoms, bonds
Drug-Target Environment

Communicate to form a

: DTA model
common action

Protein agent ‘

Actions: Reward

SupStltUtmg one + Drug representation similarity
residue of other + Protein representation similarity

types with Alanine + A Affinity

I 97




Protein agent

¢ Actor ™

MACDA: MUItlAgent [ B — ) Action
rotein Poli ]
Counterfactual Drug- cne | vestepaams
ta rget Afflnlty l~—E_ F'rntein;-ualue y » Q loss
fra mEWOrk Update params
Drug agent
Actor :
Action

)

[ Drug Policy L

] Lpdate params
Crtic g P

w| Drug Q-value > (1 loss
S

Lpdate params

-~

Priotein seq.

state, reward | Drug-target complex

Drug molecule environment

state, reward .




Dart C1 IVIoIecu!ar optimisation &
generation
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Agenda

25/09/2021

Molecular optimisation
Bayesian optimisation in latent space
Goal-directed reinforcement learning

Generative molecular generation
Deep generative models for molecules
Recurrent models for molecules
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The three basic questions in drug discovery

Given a molecule, is this drug? Aka properties/targets/effects prediction.
* Drug-likeness

* Targets it can modulate and how much

* |Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?

* If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g.,
using Bayesian Optimization.

* If no molecule is found, need to generate from scratch = generative models + Bayesian
Optimization, or Reinforcement Learning.

= How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
= Synthetic tractability
= Reaction planning, or retrosynthesis

25/09/2021 101



Traditional combinatorial chemistry

Generate variations on a template

Returns a list of molecules from this template that
Bind to the pocket with good pharmacodynamics?
Have good pharmacokinetics?
Are synthetically accessible?

25/09/2021
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Exploring the space of drugs

The space of drugs is estimated to be 1e+23 to 1e+60
Only 1e+8 substances synthesized thus far.
It is impossible to model this space fully.

The current technologies for graph generations are constantly
refined.

Search-based: Start from somewhere, search for better graphs (need no
data, but need reliable graph evaluator)

Generative models: Build an ambitious model of the chemical space (needs
lot of data).

Combination of both.
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Drug design as structured machine
translation, aka conditional generation

Can be formulated as structured machine translation:

"Inverse mapping of (knowledge base + binding properties) to
(query) = One to many relationship.

Representing graph as string Sequences

(e.g., SMILES), and use “Iterative methods

sequence VAEs or GANS. Reinforcement learning
Generative graph models *Discrete objectives

“Model nodes & interactions Any combination of these +

*Model cliques memory.
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Molecular optimisation

We optimize a starting molecule towards desirable properties. Often we need to
balance among multiple objectives, including similarity to the original molecule.

Strategy 1: Sequentially move in the discrete chemical space (e.g., atom & bond
addition/deletion), making sure the results are chemically valid.

Molecule o

C

S N/
O " :> C C—C C:C/

Cl

Strategy 2: Mapping the discrete structure into continuous space, search in the
latent space, then map back to the discrete space.

Molecule o Molecule o

s - |||Iiii"’ do’ s 21////
LB g X

=

25/09/2021
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Black-box optimisation

This applies to any process that we do not have detailed
knowledge but can be sure of objective function.

Typical methods:
Bayesian optimisation
Reinforcement learning
Active learning
Evolutionary algorithms

25/09/2021
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Reinforcement learning for molecular
optimisation

State: Current molecule ) Atom addition ) Bond addition (c) Bond removal

Actions: Atom/Bond addition/removal O_ O_ C>
Rewards: the properties of molecules O: O:O @ (

(final reward) and chemical validity
(intermediate and final reward)

Learning:
* Policy gradient
= Q-value function with TD learning
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Graphs + Reinforcement learning

Generative graphs are very hard to get it right: The space is too large!

Reinforcement learning offers step-wise construction: one piece at a time
= A.k.a. Markov decision processes

= As before: Graphs offer properties estimation

{5)

© Hggz:g Act | gpy 0.1 | Step reward
EdgeType update 0 | Final reward
(1) NodelD 0 |Stop
(:) Mode
— Edge
%. Eﬂaesssﬁgge Sgple :ggz:g Act | Eny rger G 0.1 | Step reward
Node Etdc?;wpe update 1 | Final reward
embedding
(d) Dynamics

(a) State — G, Scaffold—C  (b) GCPN —my(a;|G, U C) (C)Action —a, ~mg  p(Gpyq|Gray) (e) State — G,y (f) Reward —
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| Searching in the latent space

Discrete Structure ENCODER CONTINUQUSMOLECULAR - DECODER Discrete Structure
SMILES Neural Network REPRESENTATION Neural Network SMILES
Latent Space

b

"

Property
f(z)

Most Probable Decoding
argmax p(*lz)

Model: SMILES - VAE+RNN

LATENT

MOLECULAR

SPACE

SPACE

kNEUHAL NeTwork

EsTiMATED

TooFt
CALCULATED

(us

(us) = 0.067  oprimization 0.795 0.804

@ . EEECEEEEE L > @

1 "'1

‘E’Q‘E’ oy

= 0.004 0.080 0.000

0.580
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Molecular optimization as machine translation

o/(o|(® 0 /Q
L L JIL .
ole//e
PR N
ol(e|® H
see ce
S~ Attention Ct
{z,}
Decoded Junction Tree Decoded Graph
. . o o . ,’ ---------- \\ - !l,;_’;\w, NI;::~\~_
"It is easier to modify existing [ Qe oy L YO 2O Yo O .
y " L-ﬁv.hl,w__-u\ N.f-i____.- y l,f-l‘_:l‘\lJ,NH,.--' a == F’Jl;;;j:_,. N | {ﬁ:mwjfv\]’ LN |,_HU’N__MA_V__ I-&;l
m0|ecu |eSI a ka m Olecular : Source Molecule [DFIHD2=D.1]UB:| i DRO2=0.933 DRD2=0.881 "’ DRD2=0.553 DRO2=0.978
V4 |
paraphrases - 9 - g 0 L 0
1 e A I~ i "’L'NH "\?‘:"JL NH r HJ: ‘E’cﬂ -0 '“'N"L‘NH
.. : LA 4 GO I '“‘rl(“;' AN IS I U X
*Molecular optimization as graph- | & (&7 1 T (& Qen S R~
. I‘ Source Malacula (QED=0.784) II QED=0.924 QED=0.942 QED=0.907 QED=0.918
to-graph translation U v

#REF: Jin, W., Yang, K., Barzilay, R., & Jaakkola, T. (2019). Learning multimodal graph-to-graph

translation for molecular optimization. ICLR.
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Agenda
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Generative molecular generation
Deep generative models for molecules
Recurrent models for molecules
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Create dataset offline

Inve rse dESign Paran;eters

Output
properties(y)

Randomly sample

édeSiQHVariables(x) » Simulator

Referring to designing structure given
desirable properties/performance.

: : Training
Leverage the existing data and query Machine learning + +
the simulators in an offline mode
Approach 1: optimization to search for co/Predict ¥y B x=gly) § B x?
the best structures (i.e., moledular
optimization)
Approach 2: Learning the inverse mtarget — ( ta;rget)
design function g(y) =f-1(y) g Y

Predict design variables in a single step



Background: Variational Autoencoder

Learning density function P(x) of design structures.

Two separate processes: generative (hidden = visible) versus
recognition (visible = hidden)

. mean vector
Gaussian
sampled
hidden latent vector
4 variables
// ” N
e o/ Encoder Decoder
Recognls'mg Generative E _. Network B Network
net \ net R, el N -
N \ s (conv) (deconv)
N\ S
N Vv
‘ Data . .
standard deviation
vector

http:/ /kvfrans.com /variational-autoencoders-explained /




VAE for drug space a )
modelling O l%b
Mapping SMILES into vector space S meﬁ e — eumd; SV

(recognition RNN) h E

Ol

Explore the vector space, e.g. random
sampling or BO for searching.

Mapping back to the SMILES space
(generative RNN)

Most Probable Decoding
argmax p(*|z)
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GraphVAE

Eliminates the need for sequential rep of molecules.

Handles irregular structures
Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph
Bounded by the size of the largest graph in training data.

Handles permutation invariance
Matching every pair of nodes in 2 graphs

Partially promotes diversity

25/09/2021
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Th h si
Latent vector for e graph size

whole grqph are bounded k>n
Adjacency matrix
P(G|G) by graph match ng
Y
: D
A " €
o
q5(2|G) =
~F gl
po(G|z) o

argmax

y/ y d C\)f

Edge types  Node types

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.
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QOO Oy e

Molecule Tree decomposition

Junction tree VAE

Graphs are expressive but S \T.
difficult. Strings are easier, but @/ . oo

can model invalid molecules.

Molecular Junction
Tree T |

C;
._(/\/
Cj

Encode l (Sec 2.3)

Junction tree is a way to build
“thick-tree” out of a graph

Cluster vocab:
" rings

" bOﬂdS S _~  Decode |
O & — N,
= atoms

(Sec 2.5)

ZT AN .
Decode l (Sec 2.4)

Cl
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Algorithm 2 Tree decomposition of molecule G = (V, F)

V1 < the set of bonds (u, v) € F that do not belong to any rings.
V5 < the set of simple rings of GG.
for 1,75 in V5 do
Merge rings 1, 2 into one ring if they share more than two atoms (bridged rings).
end for
Vi < atoms being the intersection of three or more clusters in V7 U V5.
YV« VouUVi UV
E+—{(1,4,¢) e VXV xR||inj| >0}. Setc=oc0ifi € Vyorj e Vp, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, £).

Method Reconstruction Validity
CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE? 76.2% 43.5%
GraphVAE - 13.5%

JT-VAE 76.7 % 100.0%
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GraphRNN

h3 h4 h5 hﬁ
| o o—0 O——06B_
o e s
L | @@ | O—@
A case of graph | 1 j
dynamics: nodes and SOS— |1 1] 0 0
edges are added S7 10 A 0| |
Sequentia”y' Sg — 1 1 Sample + Edge-level Update
Solve tractability using 54 * ] Node-level Update

BFS S5
Figure 1. GraphRNN at inference time. Green arrows denote the
graph-level RNN that encodes the “graph state” vector h; in its
hidden state, updated by the predicted adjacency vector S; for
node 7(v;). Blue arrows represent the edge-level RNN, whose
hidden state 1s 1nitialized by the graph-level RNN, that 1s used to
predict the adjacency vector S;° for node 7 (v;).
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Problems with VAE + BO style

It is still an interpolation problem

Searching beyond the high density region in the training data will
result really bad generation.

We need a more intrinsic exploration strategy
Compositionality
Grammar/syntax
Network that generates generative networks (on going)

25/09/2021
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Grammar VAE

Proposed method
1) Define a grammar

2) Take a valid sequence and parse it into a sequence of production rules

)
)
3) Learn a VAE that produces sequences of grammar production rules
4) Use this VAE to generate valid sequences of production rules

)

5) Applying these rules in order will yield the original sequence

25/09/2021
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Encoding

SMILES grammar input SMILES form parse tree
® f ©,

smiles — chain 2 smiles
chain — chain, branched atom |

. chain
chain — branched atom

N
branched atom — atom, ringbond L branched
chain atom
branched atom — atom

1 L]
atom — aromatic organic clcceccl branched
atom — aliphatic organic atom
ringbond — digit / \
atom ringbond

aromatic organic — 'c’

aliphatic organic — 'C' ) )
aromatic

aliphatic organic — 'N' organic digit
digit —'1'
digit —— 2" e "

map to latent space

G ra m m a r @ extract rules - convert to 1-hot vectors

J vy
smiles —= chain . | | |
chain ——wchain, b":t”{f:;“d H EE

: branched
—_—
chain atom

branched
atom

— atom, ringbond

aromatic

atom arganic

—_—

ringbond =—— digit

digit —= "1
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Grammar -
VAE (3)

25/09/2021

Decoding

map from latent space

convert to logits

©

Jnax length

®

Il—llllill
LT T T

Ma,k eXP(ftk)

K 3
2 j=1 Mk exp(fe;)

p(x: = kla,z) =

[T T T where fy, is the (¢, k)-element of the logit matrix

pop first
non-terminal

mask out invalid rules

4
---smiles---glllll|I|||||I

4-=""""""

= = = =chain = = =[] | . |

stack
chain
chain branched
n, atom

sample rule & concatenate
push non-terminals terminals
onto stack @ 'clcccecl’

smiles — chain

chain hai branched

¢ a|:|, atom
....... ="
branched

chain ——
. == atom

e et - -Pranched T T OB T T T T T T 1] | nched—s atom, ringbond
wom._ringbond, o R S qom + - T T T T BT T T T T 1| *om— e

rganie. ringbond, > gion ==t - bT T T T T T T WL T T T | o — ranclate
ringbond, "0 1< ==ringbond ==p-{ T [ T [ [ [ O [ [ T[] | ringbond — dioi molecule
g, Pranched o - T T T TTTTTT | doe—s @



Other works

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular
Graph Generation." International Conference on Learning Representations. 2019.

Mahmood, Omar, et al. "Masked graph modeling for molecule generation." Nature
communications 12.1 (2021): 1-12.

25/09/2021
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Dart C2 Knowledge graph reasoning &
Drug synthesis

2222222222



Agenda

25/09/2021

Reasoning on biomedical knowledge graphs
Recommendation
Drug repurposing

Retrosynthesis
Chemical planning
Chemical reaction as graph morphism

Wrapping up
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Biomedical knowledge graphs

Has symptom
Causes or contributes to

Substance that treats m

Interacts with

Causes or
contributes to

[ Signs and symptoms}

Participates in

Participates in \
a
Participates in =3 | Biological process | <— Has part Pathway
- J/

Has function —>» | Molecular function | <«— Realizes

Has phenotype

()

Interacts with

. ("
Located in 3 ¢ Has component

Cellular component
" J

25/09/2021
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Some biomedical knowledge graphs

Entity Relation Contains Constituent Version Last
KG Dataset Link Entities Triples Types Types Features Datasets Info Update
Hetionet [56] https://het.io/ 47K 2.2M 11 24 X 29 X 2017
DRKG [65] https://github. 97K 5.7M 13 107 X 34 X 2020
com/gnnédr /DRKG
BioKG [151] https: 105K M 10 17 categorical 13 X 2020

//github.com/
dsi-bdi/biokg
PharmKG [ 164] https: 7.6K S00K 3 29 continuous 7 X 2020
//github.com/
MindRank-Biotech/
PharmKG

OpenBioLink [14]  https: 184K 4.7TM 7 30 X 17 X 2020
//zenodo.org/
record/3834052
Clinical Knowledge https://data. 16M 220M 35 57 X 35 X 2020
Graph [124] mendeley.
com/datasets/
mrcf7f4tc2/1

#REF: Bonner, S., Barrett, I. P., Ye, C., Swiers, R., Engkvist, O., Bender, A,, ... & Hamilton, W. (2021). A review of

15/09/2001 biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062.
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Examples of ontologies suitable for drug discovery

Average # of

Classes with no

Number of

Max

Ontology Name Entities Covered Classes children definition Properties Depth License
) ) Creative
Monarch Disease Ontology Diseases 24K 5 8K 25 16
(MonDO) Commons
Experimental Factor Ontol- Diseases 28K 6 7K 66 20 Apache 2.0
ogy (EFO)
. . Creative
Orphanet Rare Disease Ontol- Rare Diseases 15K 17 8.5K 24 11
ogy [DRDD} Commons
_ i i . UMLS
Medical Subject Headings  Medical Terms 300K 4 270K 38 15 Licens
(MeSH) icense
Human Phentoype Ontology Disease 19K 3 6.5K 0 16 —
Phenotype ; ’ HPO License
(HPO)
Creative
Disease Ontology (DO) Diseases 19K 4 8K 89 33
Commons
Creative
Drug Target Ontology (DTO Drug Targets 10K 4 3K 43 11
g large ology ( ) rug largets Commons
Creative
Gene Ontology (GO) Genes 44K - - 11 - i
Commons

25/09/2021

#REF: Bonner, S., Barrett, I. P, Ye, C., Swiers, R., Engkvist, O., Bender, A,, ... & Hamilton, W. (2021). A review of
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Biomedical knowledge graph construction

= Nodes: Terms within biological ontologies

= Edge: Relationship between terms. Some notable entities relationship resources:

25/09/2021

Dataset First Update Updated < 1 Curation Primary ]
) Released  Frequency Year Ago Method Domain Summary
_ o One of the most commonly used sources for physical
STRING 2003 Monthly 4 Expert & l-‘mtemf(_.:ene and functional protein-protein interactions in existing
’ Automated Interactions
KGs.
) ) Contains interactions between gene, protein and
BioGRID 2003 Monthly / Expert Biological chemical entities with could be included directly in a
; Interactions
KG.
“cul: Contains molecular reactions between gene, protein
IntAct 2003 Monthly v Expert M?lf"‘_"'.lldr‘ ) o ) ‘ & ) p- i
Interactions and chemical entities. Uses UniProt for identifiers.
) An integrator of interaction resources that could be
OmniPath 2016 > Annually v Expert Pathways ) ) o )
included in a KG via its RDF version.
A collection of many resources, including the others
Pathway 2010 Biannually v Experf & d Pathways ) o
Com- Automate discussed in this table.
mons

Table 4: Primary data sources relating to interactions.

#REF: Bonner, S., Barrett, I. P, Ye, C., Swiers, R., Engkvist, O., Bender, A,, ... & Hamilton, W. (2021). A review of

biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062. 130



Use cases of reasoning with KGs

Polypharmacy prediction
Drug-target interaction prediction

Gene-disease prioritisation

25/09/2021

PINK1 Sleeping | Disease

Disorder
L] Parkinson's

Disease

B Symptom

] Gene

Language
Development

Anxiety

Tremor
Pervasive
Motor Developmental
Symptom Disorder

#REF:Yuan, J., Jin, Z., Guo, H., Jin, H., Zhang, X., Smith, T., & Luo, J. (2020).
Constructing biomedical domain-specific knowledge graph with minimum
supervision. Knowledge and Information Systems, 62(1), 317-336.
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Polypharmacy prediction

Predicting the adverse side effect when using one or more drugs simultaneously.

E Polypharmacy E
Doxycycline side effects Simvastatin

=

Mo

Ciprofloxacin

Fo

-
s ﬁ Mupirocin

=

A Drug © Protein H  Node feature vector
ry Gastrointestinal bleed side effect A—O Drug-protein interaction
> Bradycardia side effect O—0 Protein-protein interaction

H#REF: Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional
25/09/2021 networks. Bioinformatics, 34(13), i457-i466.
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Polypharmacy prediction

Decagon (Zitnik,M et.al)

A ccen per-layer update for a single drug node (in blue) B Polypharmacy side effect prediction C Abatch of networks for six drugs
{ y
W,(-':) h{® Predictions e
(}) I Query P, A) | B
drug pair

]
1

F1 Gastrointestinal bleed effect —

p(&v ra, A)

Z,

Wk h,(:k) ¢ A—"'

o P

N
] Y

g

p(&! l'3, A)
p(&’ l'4, A)

Zg

% (k) A_b
%‘ hi’F,ll

Fy Bradycardia effect

H@i

z
&

F1. Fo, 3, ... Ty Polypharmacy

rug target relation side effacts p% ’ rn,A) \ /

#REF: Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional
25/09/2021 networks. Bioinformatics, 34(13), i457-i466. 133



Drug-target interaction prediction

Predicting the unknown interaction between drug and target

TriModel (Mohamed, S. K. et.al) learns a low rank vector representation of
knowledge entities and relations.

#REF: Mohamed, S. K., Novacek, V., & Nounu, A. (2020). Discovering protein drug targets using knowledge graph
25/09/2021 embeddings. Bioinformatics, 36(2), 603-610.
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Gene-disease prioritisation

Predicting the relationship between diseases and molecular entities (proteins and
genes).

Rosalind (Paliwal et.al) solve the Gene-disease prioritisation as link prediction
problem.

GeneProtein eO%+ Disease

Pathway/

Compound GO Process

#REF: Paliwal, S., de Giorgio, A., Neil, D., Michel, J. B., & Lacoste, A. M. (2020). Preclinical validation of therapeutic
092001 targets predicted by tensor factorization on heterogeneous graphs. Scientific reports, 10(1), 1-19.
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Gene-disease prioritisation

Predicting the relationship between diseases and molecular entities (proteins and
genes).

A Tensor Factorization e. Update entity embeddings
using reconstruction error

A1 i A1

B r C

2

12| |59 |24
N 06| 04| |-82
A 1,1 1-—)f( 32| [-1.4] |17 ) ComplEx| A 08 09,135,909

—)B I ol * o] - score |

L . . ) B —
el < AEE el |
AB C B I I AB C |
Calculate score from
. b. Tensor Graph c._ . d. Graph
a. Original Graph Representation entity embedding vectors Reconstruction

#REF: Paliwal, S., de Giorgio, A., Neil, D., Michel, J. B., & Lacoste, A. M. (2020). Preclinical validation of therapeutic
092001 targets predicted by tensor factorization on heterogeneous graphs. Scientific reports, 10(1), 1-19.



Drug repurposing

De novo drug discovery is costly, takes
long time without guarantee of success

Market for rare diseases is too small to
warrant commercial development

Urgent, new diseases like COVID-19
can’t wait

Drug repurposing (aka drug
repositioning, reprofiling or re-tasking)
is one of the best ways to go.

* Finding new uses for approved or
investigational drugs designed for other
purposes.

25/09/2021

Drug Repurposing
Reduced time and cost, Quicker to enter clinical trials compared to de novo
drug discovery

\ Step 3: ; Step 4:
» Preclinical and > Registration
Clinical studies and Marketing

Step 1:
Identification of

potential candidates

Step 3

Step1&2 l ' I3y :
Non cancer m Inhalers
i‘e' NSMDSJ corﬁﬂﬂstemidS, . * ibhustr ative axample only
and wortmannin L

N
k!

Existing chemotherapeutics Repurposed into
i.e. cisplatin, doxorubicin, .-~ |inhalable
paclitaxel and gemcitabine \formulation

.
#

Gene and peptide therapies .~

' Solid tumaor

Aerodolized drugs
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Approaches

Signature matching, similarity-based (drug-
disease, drug-drug, adverse effect profile)

Detailed drug-protein binding prediction

Pathway/network mapping 2 Knowledge graph
inference, e.g., link prediction

Retrospective clinical analysis from electronic
health records

Pushpakom, Sudeep, et al. "Drug repurposing: progress,
challenges and recommendations." Nature reviews Drug

discovery 18.1 (2019): 41-58.

25/09/2021

"The general genomic layout and
the general replication kinetics and
the biology of the MERS, SARS and
[SARS-CoV-2] viruses are very
similar, so testing drugs which
target relatively generic parts of
these coronaviruses is a logical
step".

(Vincent Munster, Chief o US
National Institutes of Health Viral
Ecology Unit, as of Feb 2020)
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| Repurposing as multi-target prediction

over molecular graph

Possible | (y;,4,4s) ‘ xi !
targets Vg

. i1 xh !
U1 1
lé_l ~N t—1
4. T,
Molecular \ —— "/
/7

graph

U3

(a) A input graph with 4 (b) Input node update
nodes and 3 labels

25/09/2021

(c) Label node update
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Repurposing as drug-target prediction in
biomedical knowledge graphs

A knowledge graph is a set of triplets (head, tail, relation), where head and tail are
node/entity, and relation is link type. E.g., head = protein, tail = drug, relation = drug-
protein-binding.

Typically a knowledge graph is incomplete, e.g., missing relations between any pair (head,
tail).

Repurposing is finding new links for existing nodes (drugs).

The search typically starts from a target (e.g., a protein) to locate suitable drugs for further
development (e.g., trials or optimization).
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TransE: Translational embedding of relations
(link types)

Head, tail and relation are typically embedded as vectors in the same space.

TranskE assumes a triplet has small
(h,?“,t): Hh+r_tH£1/2 “ . v . P o .
translation distance from head to tail via

relation, captured as an triplet energy.

Loss function in TransF: minimize energy of the known triplets, separate it
from energies of corrupted triplets by a margin.

Loss function £ = Z Z [E(h,1t) + v — E(b, 1", t/)h
(h,rt)eT (' r' t)eT!
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TransF: Translation in the
relation-projected space

M., = » oUW 41
=1

M,: = Z Bﬁi)v(i) +1
1=1

TransF utitlises relation-specific projection of
head and tail.

h, =M,,h, t; =M, t

Triplet energy between projected head/tail is
small w.r.t to relation.

lﬂ(}le,t) — Hlli-'+'1‘__ t—|—|‘£1/2

25/09/2021

o

|| 'Ji!. e ™

e

Entity space

Relaticn basks space
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E Xa m p | e : C OV I D - 1 9 Semantic Predications Preprocessing
drug repurposing publiTed 3 =

using link prediction p LT

Accuracy classification

CORD-19 CORD-19
Biomedical knowledge graph built from | rolations
PubMed and COVID-19 research
literature.

Knowledge Graph Completion f,- A\w /.
Knowledge graph completion methods TransE, DistMut, ComplEx, RotatE, STELP ?ﬁ Y |
for drug repurposing. _ a // /,/'(.” % /.'

Link prediction | celgtid / 2 N
Aim for novel drug recommendation. : isai ¢ /’ ’i_% 0 .o

O ¢ © ®

Zhang, Rui, et al. "Drug repurposing for COVID-

Evalua ik s
19 via knowledge graph completion." Journal of p —REATS * - 5. ) ClinicalTrials.gov
biomedical informatics 115 (2021): 103696. COVID literature
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Retrosynthesis
Chemical planning
Chemical reaction as graph morphism

Wrapping up
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The three basic questions in drug discovery

Given a molecule, is this drug? Aka properties/targets/effects prediction.
* Drug-likeness

* Targets it can modulate and how much

* |Its dynamics/kinetics/effects/metabolism if administered orally or via injection

Given a target, what are molecules?

* If the list of molecules is given, pick the good one. If evaluation is expensive, need to search, e.g.,
using Bayesian Optimization.

* If no molecule is found, need to generate from scratch = generative models + Bayesian
Optimization, or Reinforcement Learning.

* How does the drug-like space look like?

Given a molecular graph, what are the steps to make the molecule?
* Synthetic tractability

= Reaction planning, or retrosynthesis

25/09/2021 145



s N

Ri O

HO\%f

! OH
retrosynthesis direction .
c
d
O?YL R 2
OH

Retrosynthesis
prediction

Once a molecular structure is designed, how
do we synthesize it?

Retrosynthesis planning/prediction

* ldentify a set of reactants to synthesize a target R/ O
V7,
molecule HO%{ HO
* This is reverse of chemical reaction prediction H H >

forwardsynthesis direction HO

Two ML approaches:

_|_
OH
* Template-based Ce
d
* Template-free o%\H\R2
OH

146

25/09/2021



GTPN: Synthesis via reaction prediction
as neural graph morphism

Input: A set of graphs = a
single big graph with
disconnected components

Output: A new set of graphs.
Same nodes, different edges.

Model: Graph morphism

Method: Graph
transformation policy network
(GTPN)

25/09/2021

C-
J C:, :« D\
\ \ ) > A of
Het " » C:6 :6 ""o :6 ’C:fc X 5 -:
N: 25 -~ % wl
1

NP | NP

Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to
products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...)
in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are
highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and
C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.
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MoleculeChef: |,

Searching for
synthesizable
molecules

fragments products score via simulation
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Traditional non-ML techniques

* Aims to generate synthesizable molecules

rather than just any molecules with given

properties

e Step 1: Generative models to select a set of
initial reactants from existing molecules

e Step 2: Use a reaction model to predict the

products

Bradshaw, J., et al.
molecules."
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"A model to search for synthesizable

Generative ML techniques

optimization in
latent space

generate generate
reactants products
- E . . . ‘
reaction
predictor OH
i

W

selected
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Advances in Neural Information Processing Systems 32 (2019).

MoleculeChef
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G2G: Framework for retrosynthesis prediction

This is reverse of GTPN
Input: Target graph (molecule)
Output: Set of graphs (reactants)

Two stages:
* Reaction center identification
= Graph translation
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I e |
|~y e/ |
| Product Synthon(s) |
i\ Step 1: Reaction Center Identification: /l

_____________________ .I_ — — -
|mm -
S ~

/ \
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| /H \/@y Conditional % |
| s Reactant |

i N o i
| N G Generation A\
| I/:~/ F _. — TN i
I
| Synthon(s) Reactant(s) :
i\ Step 2: Variational Graph Translation /
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Reasoning on biomedical knowledge graphs
* Recommendation
" Drug repurposing

Agenda Retrosynthesis

* Chemical planning
* Chemical reaction as graph morphism

Wrapping up

25/09/2021 150



Topics
covered

25/09/2021

A: Intro to drug discovery pipeline & ML tasks

B1: Molecular representation and property prediction
B2: Protein representation and protein-drug binding
C1: Molecular optimisation & generation

C2: Drug synthesis & machine reasoning
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b Subject enrolment section
Q} Patient dropout

Q) Monitoring of trial

\

Understand critical
process parameters

Guide future production cycle

Regulation of in-line quality ZACLLES Appllcatlons
Ensure QA with aid of ELN of AI

and other techniques

Automated manufacturing

Pharmaceutical
manufacturing

Personalized manufacturing

Correlating manufactoring
errors to set parameters

e gedod

Sourece: DARIUSZ JACOSZEK, 2021

Pharmaceutical R Market positioning

product b Market prediction and analysis
management Q) Product costing

J

@ Target protein structure prediction

Drug o .
design . Drug protein interaction
Drug @ De novo drug design
discovery
Drug @ Bioactivity prediction

screening @ Toxicity prediction

@ Physicochemical property prediction

J

Pharmaceutical b Aid in deciding suitable excipients
product

Q) Monitoring and modifying development process
development

b Ensuring in-process specification compliance

/

https:/ /nexocode.com/blog/posts/artificial-intelligence-in-drug-discovery-and-development /
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Drug discovery enjoys SOTA ML tools

Attention, transformers & graphs
Deep generative models
Reinforcementlearning & planning
Self-supervised learning

Advances in NLP

Reasoning over biomedical knowledge graphs

25/09/2021
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The room is wide open

- Biomed complexity + huge chemical space

- Data quality issues + biases + incompleteness
- Huge computational investment

= Uncertainty handling

* More efficient human-machine co-creation.

* Q: Can we automate the entire discovery and
synthesis process?

*Q: Can we “3D print” a drug in real-time as
needed for each patient?

= Q: Is there any chance for “foundation
model” as found in Internet data?

25/09/2021
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Picture taken from (Bommasani et al, 2021)
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