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Why learning of graph representation?

Graphs are pervasive in many scientific disciplines.

The sub-area of graph representation has reached a certain

maturity, with multiple reviews, workshops and papers at top
Al/ML venues.

Deep learning needs to move beyond vector, fixed-size data.

Learning representation as a powerful way to discover hidden
patterns making learning, inference and planning easier.

11/05/2019



DIAGNOSTIC APPROACHES

CURRENT

IMAGING qj_’@

TISSUE —O
CELLULAR
COMPOSITION

BIOCHEMSTRY of
BODY FLUIDS

GENOTYPING

NOVEL
GENOMICS
TRANSCRIPTOMICS
PROTEOMICS
LIPIDOMICS

| METABOLOMICS

System
medicine

11/05/2019 https: //www.frontiersin.org /articles /10.3389 /fphys.2015.00225 /full i



https://www.frontiersin.org/articles/10.3389/fphys.2015.00225/full

Biology & pharmacy

Traditional techniques:
= Graph kernels (ML)

= Molecular fingerprints
(Chemistry)

O — Leu(LeuT)

~-

r 4,
P~ s
= o \ M=
e W sb e
U =< F253(Leu)
7 Nortriptyline F319
2] e\

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant

mechanism." Nature 503.7474 (2013): 85-90.
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Modern techniques

= Molecule as graph: atoms as
nodes, chemical bonds as edges




Targets

~

Chemistry DFT

~ 10% seconds [E,w0, .-

DFT = Density Functional Theory

Message Passing Neural Net
Gilmer, Justin, et al. "Neural message passing for qt S e A
chemistry." arXiv preprint arXiv:1704.01212 (2017) \:@} .ol ;}'Cf
. —2 cnp .

* Molecular properties ~ 1077 seconds
* Chemical-chemical = o= <

. ] :& > S =6 N =PI j:: %:6

interaction o -y TR

NP | NS

 Chemical reaction

Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to
products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...)
° 1 1 in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are
Sy nt h SNIN p I annin g highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and
C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.

11/05/2019 6



Materials science

* Crystal properties

* Exploring/generating
solid structures

* Inverse design

Xie, Tian, and Jeffrey C. Grossman.
"Crystal Graph Convolutional Neural
Networks for an Accurate and
Interpretable Prediction of Material

/@
_ .§
3 (O Output
s oo
@
Properties." Physical review 2

R Conv L, hidden Pooling L, hidden
letters 120.14 (2018): 145301.
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Videos as space-time region graphs

Similarity Relations ~  ------ Spatial-Temporal Relations

(Abhinav Gupta et al, ECCV’18)



Knowledge graphs

belong_to

belong_to

cnllabnrate_rwith

— Rudy_Giulian )

collaborate
_with

( Barack O bamag\

T~ ~ endorsed_by

/’j John_McCain )

born in - _ collaborate
- collaborate with? ™~ ~ live_in _with
| locate i live in
( Hawaii }———="—{ US. el f Hillary_Clinton )

https://www.zdnet.com/article /salesforce-research-knowledge-graphs-and-machine-learning-to-power-einstein /
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Ski - ram wo|wr) = -~ (U;OTI’W) -
P-8 pluolur) = g — (oo /

Loss function o | H |
o | \
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Negative sampling
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‘DeepWalk (KDD-2014)

Algorithm 1 DEEPWALK(G, w, d, v, t)
Input: graph G(V, E)
window size w
embedding size d
walks per vertex -y
walk length ¢
Output: matrix of vertex representations ® € RIVI*4
1: Initialization: Sample @ from U!V1*4
2: Build a binary Tree T from V <——— For Hierarchical Softmax
lterate over each epoch — 3: for i =0 to v do
4: O = Shuffle(V)
5 for each v; € O do _ ——— Finding neighbours of each node
6: Wy, = RandomW alk(G, v;i,t)
T SkipGI‘aIH(‘Pj Wy, , w) «<—— Update embedding of this node
8
9

Considered as #epochs

Embedding matrix

end for
- end for

Neighbour nodes  Window size



Node2Vec (KDD-2016)

Similar to DeepWalk in using Skip-gram model for unsupervised learning.

Only modifies the search for neighboring nodes that balance between BFS and DFS.

Defines edge embedding based on node embedding
= Can solve link prediction problem

| Consider random walk that just
2" order Random Walk travelled edge (t, v). The walk
will decide which is the next
node x that it should go from v
by computing Tz

7T’UCB — apq (t, :E) : w'ugj

p p and q are
Oépq(t,iB) =q1 ifdi, =1 h

1 . Ypel’-pCIrCIme’rerS

q if dig =2



Algorithm 1 The node2vec algorithm.

LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
node r, Walk length [, Context size k, Return p, In-out q)
m = PreprocessModifiedWeights(G, p, q)

r
G_ - _(V’ E, ) Why it scales over DeepWalk?
Initialize walks to Empty
‘fm' iter = 1tor do Use Negative Sampling
for all nodes © € V do instead of Hierarchical Softmax
walk = node2vecWalk(G', u, )
Append walk to walks < Batch learning

N O d e 2 Ve C f = StochasticGradientDescent(k, d, walks)
( CO n t ) return f

node2vecWalk (Graph G’ = (V, E, ), Start node u, Length [)
Inititalize walk to [u]
for walk_iter = 1tol do
curr = walk|—1]
Veurr = GetNeighbors(curr, G')
s = AliasSample(Veyrr, )
Append s to walk
return walk
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| Message passing

Thin column

V1 Y2 Y3 Ya
es €>
PR
/>< -
€1
2\
X1 X9 X3 X4
Relation graph Stacked learning

#REF: Pham, Trang, et al. "Column Networks for Column nets

Collective Classification." AAAIl. 2017.
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| Factored message passing

(yla Y2, y3) mi_l
U2 t—1
t—1 Ty
U1 . ll lt

~ t

t—1 ~ =
t—1
V4 l3 /
U3
(a) A input graph with 4 (b) Input node update (c) Label node update

nodes and 3 labels

#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing
11/05/2019 approach.” Machine Learning, 2019.



Learning deep matrix representations, K Do, T Tran, S
Venkatesh, arXiv preprint arXiv:1703.01454

Graph attention
(Do et al arXiv’s17, Velickovi¢ et al ICLR” 18)

@

concat/avg

Figure 1: Left: The attention mechanism a(Wh;, Wh.j) employed by our model, parametrized by a

weight vector a € R?F ". Right: An illustration of multi-head attention (with K = 3 heads) by node
1 on its neighborhood. Different arrow styles and colors denote independent attention computations.

”/05;21;511: aggregated features from each head are concatenated or average to obtain i_{"l


https://arxiv.org/abs/1703.01454
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Graph morphism

Input: Graph

Output: A new graph. Same
nodes, different edges.

Model: Graph morphism

Method: Graph
transformation policy
network (GTPN)

L] |
C: 3 (C: nfmmm : 12 C: ¥6mmm(C: nfmmmN: 12
| |
C-
C: C: R Tl Py
. *“X:6
:é :,"' 6 :é ',," 6 - »C:10 . g :
: : : : N:GZ R ot
_ : H _ : : S
0; P (W] o @' s .8
C: / : /
: r:8 . r:8

Figure 1: A sample reaction represented as a set of graph transformations from reactants (leftmost) to
products (rightmost). Atoms are labeled with their type (Carbon, Oxygen,...) and their index (1, 2,...)
in the molecular graph. The atom pairs that change connectivity and their new bonds (if existed) are
highlighted in green. There are two bond changes in this case: 1) The double bond between O:1 and
C:2 becomes single. 2) A new single bond between C:2 and C:10 is added.

Kien Do, Truyen Tran, and Svetha Venkatesh. "Graph Transformation Policy Network for Chemical
Reaction Prediction." KDD’19.

11/05/2019
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Graph recurrence

Graphs that represent interaction between entities through time
Spatial edges are node interaction at a time step

Temporal edges are consistency relationship through time

Spatio-temporal Temporal
Node factor Edge factor Edge factor

t

(a) Spatio-temporal graph representing an activity (b) Unrolled through time (c) Factor graph parameterization



Challenges

The addition of temporal edges make the graphs
bigger, more complex

Relying on context specific constraints to reduce the
complexity by approximations

Through time, structures of the graph may change

Hard to solve, most methods model short sequences
to avoid this



Structural RNN

CVPR16 best student paper Saxena group, Cornell

Exa m p I e : h u m a n -%U % Q Acti{ity Affordance Acti}rf_ity Affordance Activity Affordance
. . T
microwaving food 2
- Middle: s-t graph capturing § E
wn

spatial and temporal o e e
interactions between the
human and the objects.

= Top: Schematic representation
of structural-RNN architecture

Spatio-temporal
graph representation

Problem
(e.g. Activity)




Structural RNN

Node features: human and object poses,

Edge features: relative orientation

Node labels: human activity and object affordance.
affected by both its node and its interactions with other nodes (edges)

Spatio-temporal Temporal
Node factor Edge factor Edge factor

(a) Spatio-temporal graph representing an activity (b) Unrolled through time (c) Factor graph parameterization



Structural RNN — from s-t graph

Each factor is represented as a RNN

Form a feed forward bipartite graph from edge factors to node factors

Sharing factors between node and edge of same semantics type

* More compact
= Support node # changes

(a) Spatio-temporal graph with colors
indicating sharing of factors

edgeRNNs
(b) Corresponding S-RNN

0.0 Object

nodeRNNs

Xup T Xpw i
E_‘yv

R
3 E

Object

(c) Forward-pass for human node v

2 / Human

Xw,w

X‘UW

X
ww Human

//w

Kﬁ

-

£
s

Rg

3

(d) Forward-pass for object node w



Structural RNN - Applications

- : , Driver maneuver
Activity detection and Skeleton tracking

ity d prediction
anticipation
Splll'P
Left - R]ght - Outside
context
Driver
Left leg Right leg Inside
context

tivitv detection and anticination




Message-Passing Encoder-Decoder Recurrent Net

Prelim version published in (Morais et al,

CVPR’19)

Multiple interacting channels
Graphs are dynamics, with attention.
Mixture density network at each time step

11/05/2019
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Technical challenges

No regular structures (e.g. grid, sequence,...)
Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized over
all possible permutations

Generating graphs with variable size
Diversity of generated graphs
Smoothness of latent space



. vV ~ Prodel (V)
Generation methods | p ()=

data (V)

Classical random graph models, e.g., An exponential family of probability
distributions for directed graphs (Holland and Leinhardt, 1981)

Deep Generative Model Methods:

* Variational Graph AutoEncoders
= Graphite: Iterative Generative Modeling of Graphs
* GraphVAE: Towards Generation of Small Graph using Variational AutoEncoder
= Junction Tree Variational AutoEncoder for Molecular Graph Generation

Sequence-based & RL method:
* GraphRNN - A Deep Generative Model for Graphs
= Multi-Objective De Novo Drug Design with Conditional Graph Generative Model

11/05/2019 30



Variational Autoencoder
(Kingma & Welling, 2013)

Two separate processes: generative (hidden = visible) versus
recognition (visible 2 hidden)

mean vector
. sampled
Gaussian latent vector
hidden
P variables A Ny
’ Encoder — Decoder
R ../ . Network Network
ecognls;ng Generative N ”
net | net (conv) (deconv)
\
\
N v
‘ Data standard deviation
vector

http:/ /kvfrans.com /variational-autoencoders-explained /



Generative . V/
Ad Ve rsa ria I ] / N Discriminator
Networks candom s - Iy
(Goodfellow et al,2014)

Generator _/ /Fake image

po(data) Data distribution
l / Model distribution
N

GAN architecture. Source: DL4)J

---------------

Y I L L]

R
v f e

§ o P |

7.

-

i

e
Lo

i

N\

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

11/05/2019 (Goodfellow’s, NIPS 201 4) 3




Variational methods

Minimize the upper bound on the negative log-likelihood,
equivalent to maximizing the ELBO:

L(9,0;G) = Eg, (51— log pa(G|z)] + KL[qy(2|G)||p(2)]




GraphVAE (Simonovsky and Komodakis)

The graph size
Latent vector for
are bounded k>n
whole graph

Adjacency matrix
P(G|G) by graph matching
/ Y

@

~ | Z E @ O

argmax

o W b AN

Edge types  Node types

1 (2|G)




Junction Tree VAE (Jin et. al.)

Algorithm 2 Tree decomposition of molecule G = (V, E)

V1 < the set of bonds (u, v) € F that do not belong to any rings.
V5 < the set of simple rings of G.
for 1,75 in V5 do
Merge rings r1, r2 into one ring if they share more than two atoms (bridged rings).
end for
Vo < atoms being the intersection of three or more clusters in V; U V5.
V+—VouWViul,
E+{(i,j,c) eVxVXR||inj| >0} Sete=o0ifi e Vyorj € Vy, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, £).

Molecule Cluster graph Junction tree

1/ |oo"-.‘1

|




Table 1. Reconstruction accuracy and prior validity results. Base-
line results are copied from Kusner et al. (2017); Dai et al. (2018);
Simonovsky & Komodakis (2018).

Method Reconstruction Validity
CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE? 76.2% 43.5%
GraphVAE - 13.5%
JT-VAE 76.7 % 100.0% ,

N

Constraint during adding nodes



GraphRNN

A case of graph
dynamics: nodes and
edges are added
sequentially.

Solve tractability using
BFS

You, Jiaxuan, et al.
"GraphRNN: Generating
realistic graphs with deep
auto-regressive

models." ICML (2018).

11/05/2019
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>

| | he |
O—03 O—CGN\ |
PO

Sample + Edge-level Update
_—

Node-level Update

Figure 1. GraphRNN at inference time. Green arrows denote the
graph-level RNN that encodes the “graph state” vector h; in its
hidden state, updated by the predicted adjacency vector S; for
node 7(v;). Blue arrows represent the edge-level RNN, whose
hidden state is initialized by the graph-level RNN, that 1s used to
predict the adjacency vector S;' for node 7 (v;).



Graphs step-wise construction
using reinforcement learning

Graph rep (message passing) | graph validation (RL) | graph
faithfulness (GAN)

(1) (0} ({{%
- / [0]NodelD
Y nge AT Sample 5 |NodelD 2 | Env 0.1 | Step reward
71 oY EdgeType update 0 | Final reward
(1) NodelD @ 0 |Stop
@ Node
—— Edge AR
N |4 |NodelD
. ;ﬂaesssﬁgge S,gple 5 |NodelD A | Env rger 0.1 | Step reward
_ Nod EdgeType update 1 |Final reward
e
embedding Stop
(d) Dynamics
(a) State— G, Scaffold —C  (b) GCPN —my(a;|G;uC) (c)Action—a,~mg  p(Gpy1|Grar) (e) State — Gryy  (f) Reward —r,

1/05/2015 You, Jiaxuan, et al. "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation." NeurIPS (2018). B
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Reasoning

Reasoning is to deduce knowledge from
previously acquired knowledge in response
to a query (or a cue)

Early theories of intelligence:
“focuses solely on reasoning,

“learning can be added separately and later!
(Khardon & Roth, 1997).

(Dan Roth; ACM
Fellow; 1JCAIl John
McCarthy Award)

Khardon, Roni, and Dan Roth. "Learning to reason.”" Journal of the ACM
s (JACM) 44.5 (1997): 697-725. 0



Inferring relations .

A e
\ .I~ :
.-r.l - .
A PR -
(U.S.Governmentj*— _ _belong.to? _ _ _ —( Rudy_Giulian ) 4 e Relation space

belong_to belong_to collaborate II il';'l p
hg -7 @,

collaborate_with _with

( Barack_Obamau John_McCain ) . Ly &
— - ) -

~ . endorsed_by Relation hasis space
—

born in - " collaborate
- collaborate with? =~ ~ live_in _with - "
-~ - Entity space
" locate_in live_in A .
[ Hawaii = = [Hlllary_Cllnton ]

. "
https:/ /www.zdnet.com/article /salesforce-research-knowledge-graphs-and-machine- Do, Kien, Truyen Tran, and Svetha Venkatesh. KnOWIedge
. . . . . . n
learning-to-power-einstein/ graph embedding with multiple relation projections.” 2018

24th International Conference on Pattern Recognition (ICPR).
IEEE, 2018.
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Querying a graph

Task/query Bioactivities
—’[ Controller ]—>

~

N

Memory

11/05/2019

Message passing as refining
node & query representation

e
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o
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#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory

Networks for Molecular Activity Prediction." ICPR’18.
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Querying a
graph (2)

Neural Turing Machine
(Grave et al, 2014)

External Input External Output

T \ ............. / ______________________________

Controller

/7 N\

’ Read Heads } ’ Write Heads

I |

Memory

https://rylanschaeffer.github.io /content /research/neural_turing_machine /main.html

11/05/2019

Random Training Graph

Underground Input:
(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)

(OxfordCircus, Euston, Victoria)

- 84 edges in total

London Underground

MNotting
Hill Gate

Green Park

Gloucester
Road G StJamess

Lelcester Square

Piccadilly
Circus

Victoria Park
Westminster
Kei;l:l;:on -
Traversal Shortest

Traversal Question:
(BondSt, _, Central),

(_, _, Circle), (_, _, Circle),

(_, _, Circle), (_, _, Circle),

(_, _, Jubilee), (_, _, Jubilee),

Answer:
(BondSt, NottingHillGate, Central)
(NottingHillGate, GloucesterRd, Circle)

(Westminster, GreenPark, Jubilee)
(GreenPark, BondsSt, Jubilee)

Shortest Path Question:

(Moorgate, PiccadillyCircus, )

Answer:

(Moorgate, Bank, Northern)

(Bank, Holborn, Central)

(Holborn, LeicesterSq, Piccadilly)
(LeicesterSq, PiccadillyCircus, Piccadilly)

Differentiable Neural Computer (Grave et al, 2016)
43



Querying multiple graphs

Query Controller | Output

Detects high-order
patterns from r*/ \
disconnected paths ;

/\ ht Write
r K

Learns graph Read
similarity

Models graph-graph
Interaction

Supports structured
gueries

Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv
11/05/2019 preprint arXiv:1808.04247(2018). 44



On going and future work

Graph translation, graph2graph,
graph2seq

Graphs in context (e.g., crystals,
human activities in scene)

Semi-supervised learning
Manifolds learning

Graph as hidden layers (e.g., see
Ying et al, NIPS’19)

Generative models of sequence of
graphs

11/05/2019

Theoretical properties of graphs (e.g., Xu
et al, ICLR’19)

Graph matching

Higher-order graph neural networks
(e.g., Morris, AAAI'19)

Graphs for logical inference
Graphs of multi-agent communication
Continuous time graph dynamics

Graph density — anomaly detection

45



For more refs

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P.S. (2019). A comprehensive survey on graph neural
networks. arXiv preprint arXiv:1901.00596.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., ... & Gulcehre, C.

(2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

Goyal, P, & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Systems, 151, 78-94.

Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K., & Koh, E. (2018). Attention models in graphs: A survey. arXiv
preprint arXiv:1807.07984.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications.

IEEE Data Engineering Bulletin.

Nickel, M., Murphy, K., Trez}o, V., Gabrilovich, E. (2016). A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE. 104.1, 11-33.
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The graph team @ A A2[2 (.

Dr Vuong Le Dr Thin Nguyen

Dr Trang Pham Mr Tin Pham Mr Kien Do Mr Thao Minh Le
(Now @Google)

11/05/2019
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Thank you!

’ (] (]
We’re hiring
PhD & Postdocs
truyen.tran@deakin.edu.au

https: / /truyentran.github.io /scholarship.html

http://ahsanqawl.com/2015/10/qa/
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