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Some tasks in pattern recognition

I Classi�cation/regression (a.k.a. supervised learning): given
a set of pairs {z(i), x (i)}Ki=1

∈ Z × X , estimate a functional f
so that, for any j > K

I in classi�cation, we obtain x (j) = argmaxx f (x , z (j)) with high
probability.

I in regression, we obtain
∥∥x (j) − f (z (j))

∥∥ < ε with high
probability.

I Clustering/dimensionality reduction (a.k.a.
unsupervised/manifold learning): no x is given, try to estimate
some hidden variable h that is associated with z .



Classi�cation example: handwritten digit recognition

I z is a vector of visual
descriptions (known as
features)

I x is a discrete label
x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

I Many thousands of training
pairs are needed to get up to
99% recognition accuracy.



Clustering: group data points
in a meaningful way

Dimensionality reduction:
discover intrinsic dimensions



Supervised learning: minimising some regularised (convex)
empirical risk

I Assuming the functional f is parameterised by w ∈ RN , which
is associated with the feature vector g(x , z).

I Often in classi�cation we are interested in the linear form:
f (z) = argmaxx∈X w

>g(x , z)

R(w;K , λ) =
1

K

K∑
i=1

R(x (i), f (z(i);w)) + λΩ(‖w‖)

ŵ = argmin
w

R(w;K , λ)

where R(a, b) is the risk function, measuring the divergence of a, b;
Ω(.) is some (convex) function and λ > 0 speci�es the penalty
strength.



Supervised learning: minimising some regularised (convex)
empirical risk (cont.)

I This may be just a standard optimisation problem that
e�cient methods already exist.

I But things are getting complicated in the real-world, e.g:

I The parameter dimensionality can be extremely large, e.g.
N ∼ 109,

I The number of training pairs can be big, e.g. K ∼ 107, but
the number of activated features per pair is usually small,

I The cost of acquiring the labels {x (i)}Ki=1
can be high,

I Training data come one-by-one, requiring constant
re-estimation of w

I Many features are just irrelevant or noisy (corresponding
wk = 0)

I What if the model fails in unseen data? (need bounding in
errors)
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Graphical models

I It is the common language for many previously separate
models:

I Ising Models (1920s)
I Markov Random Fields (1980s)
I Bayesian Networks (1980s)
I Hidden Markov Models (1960s)
I Boltzmann Machines (1980s)
I Kalman Filters (1960s)
I Many neural network variants (1990s)

I and some recent developments

I Factor Graphs (2001)
I Relational Markov Networks (2002)
I Markov Logic-Networks (2006)



Graphical models

I Are the mix between graph theory and probability theory

I A graph G = (V, E) encodes the dependencies between
variables (represented by nodes)

I The dependency strength between local set of nodes, indexed
by c , is encoded in the potential functions φc(xc) > 0

I The directed edge e ∈ E shows the dependency direction
(parent-child), as in Bayesian Networks,

I The undirected edge e ∈ E shows the correlations, as in
Markov Random Fields



Bayesian Networks Markov Random Fields

I Potentials are probabilities:
φc(xc) = P(xi |xc\i )

I The joint probability of the
network:
P(x) =

∏
c P(xi |xc\i )

I The joint probability of the
network:

P(x) =
1

Z

∏
c

φc(xc)

where Z =
∑

x

∏
c φc(xc).
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Conditional Random Fields

I Invented in 2001 by La�erty et al

I The idea is simple: if we have the pair (x , z) but z is always
known and not of the patterns we are looking for, then
P(x , z) = P(x |z)P(z)

I We only need to model P(x |z) by a Markov Random Field,
which is depending on z :

P(x |z) =
1

Z (z)

∏
c

φc(xc , z)

where Z (z) =
∑

x

∏
c φc(xc , z).



Maximum likelihood learning

I Assuming log-linear parameterisation:
φc(xc , z) = exp{w>g(xc , z)}

I In standard supervised learning, the risk is

R(x (i), z(i)) = − logP(x (i)|z(i))

= −w>g(x
(i)
c , z(i)) + logZ (z(i))

I logZ (z(i)) is convex in w, so is R(x (i), z(i))

I Thus, learning is a convex optimisation problem

I So what?



Maximum likelihood learning (cont)

I The main problem is the log-partition function logZ (z)

I Generally it is NP-hard to compute, except for problems where
the graph G is a tree or a chain

I So its gradient

∇ logZ (z) =
∑
x

P(x |z)
∑
c

g(xc , z)

=
∑
c

∑
xc

P(xc |z)g(xc , z)

I In short, for learning, we need to compute (infer) logZ (z) and
P(xc |z) =

∑
x¬c P(xc , xx¬c |z)



Approximate inference by minimising Free energies

I Assuming some physical interpretation of the models, drop
notation z for simplicity

I The entropy H[P] = −
∑

x P(x) logP(x)

I The Gibbs free energy F[P] = − logZ . It is generally known
that physical systems evolve to achieve minimum F[P].

I Bethe free energy is an approximation to Gibbs

I It was proved in 2001 that minimising Bethe free energy turns
out to yield the Belief-Propagation algorithm by Julian Pearl,
the farther of graphical models

I Soon after, Kikuchi free energy was also studied, yielding
better approximation.



Approximate inference by minimising Kullback-Leibler
Divergence

I Assume that we can approximate P(x) by some Q(x) which is
much easier to deal with

I The natural goal is to push Q(x) to get closer to P(x) as
possible

I So Kullback-Leibler Divergence is a good objective function

D(Q||P) =
∑
x

Q(x) log
Q(x)

P(x)

I When Q(x) =
∏

i∈V Qi (xi ), we obtain the well-known
Mean-Field equation

Qi (xi ) =
1

Zi

exp{log φi (xi ) +
∑

j |(i ,j)∈E

Qj(xj) log φij(xi , xj)}

where Zi ensures that
∑

xi
Qi (xi ) = 1.



Prediction or �nding the maximiser of the distribution

I Given an input z , we are interested in knowing

x̂ = argmax
x

P(x |z)

= argmax
x

(
1

Z (z)

∏
c

φc(xc , z)

)
= argmin

x

(∑
c

− log φc(xc , z)

)
The term

∑
c − log φc(xc , z) is often called the energy.

I If clique c is pairwise, i.e. c = (i , j), we have

x̂ = argminx

(∑
(i ,j)∈E − log φij(xi , xj , z)

)
I This is a NP-hard problem!



Approximate minimisation of energy using Min-Sum algorithm

I This is also known as Max-Product, Belief-Propagation or
Message Passing, sometimes Dynamic Programming or Viterbi
algorithm

I Assume pairwise cliques, let ωij(xi , xj , z) = − log φij(xi , xj , z)

I We maintain a set of messages passing along all edges e ∈ E

µj→i (xi ) = min
xj

{
ωij(xi , xj , z)

∑
k 6=i |(k,j)∈E

µk→j(xj)

}
I Finally, the optimum is found by

x̂i = argmin
xi

{ ∑
j |(i ,j)∈E

µj→i (xi )

}
I It can be proved that Min-Sum �nds global minimum if the

graph is a tree or a chain.



Exploiting local structures for Dynamic Programming (Truyen
et al, 2007)

I It is known that for trees or chains, Dynamic Programming
requires only two passes through all edges

I The idea is to seek for trees or chains embedded in the graph
to improve the (pseudo) likelihood or the energy

I In the case of energy minimisation, this can be combined with
Basin-Hopping (a.k.a. Iterated Local Search)

local search

local search

basin−hopping

basin

basin



Applications: Vietnamese accent restoration (Truyen et al,
2008)

I 3× 106 parameters

I 0.5× 106 sentences

I Stochastic gradient
descent

I 94.3% term-accuracy

I Demo:

http://vietlabs.com



Applications of energy minimisation: Image denoising

Noisy penguin Local method

(ICM)

Min-Sum Tree-based ICM
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Run-time comparison between
Min-Sum vs Tree-based ICM

I ICM: Iterated Local Mode

I ILS: Iterated Local Search

I (Truyen et al, 2007)
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Boltzmann Machines

I Invented in the 1980s, now
gaining much attention!

I Are Markov Random Fields
with some hidden/visible
variables

I Are powerful models in
discovering

I Low dimensionality of the
data

I Clusters

Projecting documents onto 2-D
(Hinton et al, 2007)



Learning using incomplete likelihood

I Let x = (h, v) where h is the hidden subset of variables, and v
the visible

I For estimating the parameters w, we maximise the incomplete
log-likelihood

logP(v |w) = log
∑
h

P(h, v |w)

= log
∑
h

∏
c

φc(hc , vc)− logZ

= logZ (v)− logZ

As before, logZ (v) and logZ are convex in w, so it is of
D.C. form.



Learning using incomplete likelihood (cont)

I There exists an algorithm known as DCA to �nd maximiser of
logP(v |w)

I At each step we solve a convex problem, which is presumably
easier the original

I It turns out that DCA and the well-known EM algorithm
(Dempster et al, 1977) are the same in this log-linear case.

I Due to lack of collaboration between �elds, DCA was
reinvented in 2001 in the name of CCCP (Concave-Convex
Procedure)

I However, we found empirically that there is little numerical
advantage using DCA/EM/CCCP

I Generic numerical methods like Limited-memory BFGS or
Conjugate Gradients are often su�cient



Application: Movie
recommendation (Truyen et al,
2009, submitted)

I Based on ratings that users
already gave to old movies,
we predict if an user may like
a new movie

I This is called Collaborative
Filtering

I Amazon is most
well-known example

I Currently the Net�ix
competition with $1mil prize

I 1.7× 104 movies
I 0.5× 106 users
I 1.0× 108 ratings

Modelling: one Boltzmann machine
per user
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Conclusions

I Unstructured and structured pattern recognition tries to
uncover meaningful patterns of the real-world data

I It requires a great deal of optimisation techniques

I It poses many new challenges in optimisation

I Non-convex, non-smooth
I Ultra high dimensionality, massive computing power needed to

evaluate objective function
I Very high level of sparsity, noise removal capacity
I Evaluation errors and stochastic gradients
I High cost to acquire enough information for objective function

evaluation

I Often, approximate methods are the only possibility

I We still need some theoretical bounds on the tightness,
currently only few have been found

I We need mathematicians!



Shameless advertisement: PhD positions available

I Lab: IMPCA, Department of Computing, Curtin University of
Technology [See impca.cs.curtin.edu.au]

I Full scholarships

I Theoretical and applied sub-areas:

I Computer vision
I Graphical models
I Multimedia
I Social networks modelling and analysis
I Compressive sensing

I See more on: truyen.vietlabs.com/scholarship.html


