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Some tasks in pattern recognition

» Classification/regression (a.k.a. supervised learning): given
a set of pairs {z() x(N}K € Z x X, estimate a functional f
so that, for any j > K

» in classification, we obtain xU) = arg max, f(x, zU)) with high
probability.

> in regression, we obtain HXU) - f(z(j))H < € with high
probability.

» Clustering/dimensionality reduction (a.k.a.
unsupervised/manifold learning): no x is given, try to estimate
some hidden variable h that is associated with z.



Classification example: handwritten digit recognition

» z is a vector of visual

descriptions (known as ol w®w it N\ (/4 A [
features)
» x is a discrete label w232 25>

xe{0.1,23456789. 5 40y q s 5
» Many thousands of training

pairs are needed toget upto & & 7 )2\ /1 & 2
99% recognition accuracy.
P83 T8 49497



Clustering: group data points Dimensionality reduction:
in a meaningful way discover intrinsic dimensions

Clustert
Cluster2
Cluster E
¢ Clusterd -0 s o




Supervised learning: minimising some regularised (convex)
empirical risk
» Assuming the functional f is parameterised by w € RV, which
is associated with the feature vector g(x, z).

» Often in classification we are interested in the linear form:
f(z) = argmaxyecxr w' g(x, 2)

K
R(w; K, ) = %ZR(X(")J(Z(”;W))+AQ(HWH)
i=1

W = argmin R(w; K, \)

where R(a, b) is the risk function, measuring the divergence of a, b;
Q(.) is some (convex) function and A > 0 specifies the penalty
strength.



Supervised learning: minimising some regularised (convex)
empirical risk (cont.)

» This may be just a standard optimisation problem that
efficient methods already exist.

» But things are getting complicated in the real-world, e.g:

» The parameter dimensionality can be extremely large, e.g.
N ~ 10°,

» The number of training pairs can be big, e.g. K ~ 107, but
the number of activated features per pair is usually small,

» The cost of acquiring the labels {x()}X, can be high,

» Training data come one-by-one, requiring constant
re-estimation of w

» Many features are just irrelevant or noisy (corresponding
Wi = 0)

» What if the model fails in unseen data? (need bounding in
errors)
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Graphical models

» It is the common language for many previously separate
models:

Ising Models (1920s)

Markov Random Fields (1980s)
Bayesian Networks (1980s)

Hidden Markov Models (1960s)
Boltzmann Machines (1980s)

Kalman Filters (1960s)

Many neural network variants (1990s)

vV vV vV vV VY VY

» and some recent developments

» Factor Graphs (2001)
> Relational Markov Networks (2002)
» Markov Logic-Networks (2006)



Graphical models

> Are the mix between graph theory and probability theory

> A graph G = (V, £) encodes the dependencies between
variables (represented by nodes)

» The dependency strength between local set of nodes, indexed
by ¢, is encoded in the potential functions ¢¢(xc) > 0

» The directed edge e € £ shows the dependency direction
(parent-child), as in Bayesian Networks,

» The undirected edge e € £ shows the correlations, as in
Markov Random Fields



Bayesian Networks

» Potentials are probabilities:
be(xc) = P(xilxc\;)

» The joint probability of the
network:

P(x) = [1. P(xilxc\i)

Markov Random Fields

» The joint probability of the
network:

P() = 3 [T oetxe)

where Z =" 1], dc(xc)-
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Conditional Random Fields

» Invented in 2001 by Lafferty et al

» The idea is simple: if we have the pair (x, z) but z is always
known and not of the patterns we are looking for, then

P(x,z) = P(x|z2)P(z)
» We only need to model P(x|z) by a Markov Random Field,
which is depending on z:

X‘z H¢c Xe, Z
where Z(z) =3 1, ¢c(xc, 2).



Maximum likelihood learning

» Assuming log-linear parameterisation:
be(xe, z) = exp{w " g(xc, )}
> In standard supervised learning, the risk is

R(x(i),z(i)) = —log P(x(i)\z(i))
= —wg(x{),2) +log (")
> log Z(2()) is convex in w, so is R(x()), z(1))

» Thus, learning is a convex optimisation problem
» So what?



Maximum likelihood learning (cont)

» The main problem is the log-partition function log Z(z)

» Generally it is NP-hard to compute, except for problems where
the graph G is a tree or a chain
» So its gradient

ViogZ(z) = Y P(x|2)) 8&(x2)
= ZZP(XC|Z)3(XCaZ)

» In short, for learning, we need to compute (infer) log Z(z) and
P(XC|Z) = Zx—\c P(XCaXXﬁC|Z)



Approximate inference by minimising Free energies

>

Assuming some physical interpretation of the models, drop
notation z for simplicity

» The entropy H[P] = — ), P(x)log P(x)

The Gibbs free energy F[P] = —log Z. It is generally known
that physical systems evolve to achieve minimum F[P].

Bethe free energy is an approximation to Gibbs

» It was proved in 2001 that minimising Bethe free energy turns

out to yield the Belief-Propagation algorithm by Julian Pearl,
the farther of graphical models

Soon after, Kikuchi free energy was also studied, yielding
better approximation.



Approximate inference by minimising Kullback-Leibler
Divergence

» Assume that we can approximate P(x) by some Q(x) which is
much easier to deal with

» The natural goal is to push Q(x) to get closer to P(x) as
possible

» So Kullback-Leibler Divergence is a good objective function
)
P) )|
D(QIIP) Z Q(x) log & Plx

» When Q(x) = [];c) Qi(xi), we obtain the well-known
Mean-Field equation

1
Q,‘(X,‘) = ?exp{log ¢l XI Z Q_] Xj |Og¢U(XhXJ)}

JlGj)ee

where Z; ensures that ZX’, Qi(xi) =1.



Prediction or finding the maximiser of the distribution

» Given an input z, we are interested in knowing

%X = argmaxP(x|z)
X

RS, o
i (5ot 0)

[

The term > —log ¢c(xc, z) is often called the energy.
> If clique c is pairwise, i.e. ¢ = (i,j), we have

R = arg miny (Z(i,j)es —log gzﬁ,-J-(x;,xJ-,z))
» This is a NP-hard problem!



Approximate minimisation of energy using Min-Sum algorithm

» This is also known as Max-Product, Belief-Propagation or
Message Passing, sometimes Dynamic Programming or Viterbi
algorithm

> Assume pairwise cliques, let w;i(x;, xj, z) = — log ¢j(x;, X, 2)

» We maintain a set of messages passing along all edges e € £
pi—i(xi) = n](jiﬁ {Wij(xiaxjaz) Z /Lkﬂj(xj)}
kil(kj)eE
» Finally, the optimum is found by
% = argmin { > Mj—ﬁ(Xi)}
jl(ij)ee

» It can be proved that Min-Sum finds global minimum if the
graph is a tree or a chain.



Exploiting local structures for Dynamic Programming (Truyen
et al, 2007)

» It is known that for trees or chains, Dynamic Programming
requires only two passes through all edges

» The idea is to seek for trees or chains embedded in the graph
to improve the (pseudo) likelihood or the energy

> In the case of energy minimisation, this can be combined with
Basin-Hopping (a.k.a. Iterated Local Search)

basin—hopping

Yal search

. ( ) . basin




Applications: Vietnamese accent restoration (Truyen et al,

2008)

cong hoa xa Io i chu nghia viet nam
—l— hoi
09”9 hoi
cong hoi
cong hoi
céng hoi
cong héi
cc}ng Thoi ]
céng ot |
cong hoi
cong hoi

eong | h&i

accents

accentless terms

v

3 x 10° parameters
0.5 x 10° sentences

Stochastic gradient
descent

» 94.3% term-accuracy

Demo:
http://vietlabs.com



Applications of energy minimisation: Image denoising
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Run time (s)

Run-time comparison between
Min-Sum vs Tree-based ICM

» [CM: lterated Local Mode
> ILS: lterated Local Search
» (Truyen et al, 2007)
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Boltzmann Machines

» Invented in the 1980s, now
gaining much attention!

» Are Markov Random Fields
with some hidden /visible
variables

» Are powerful models in
discovering

» Low dimensionality of the

data
» Clusters

Projecting documents onto 2-D
(Hinton et al, 2007)

European Community

Interbank Markets Monetary/Economic

Energy Markets
il Disasters and
Accidents

Leading Ecnomic % LegallJudicial
Indicators
Government
Borrowings

Accounts/
Earnings ¥



Learning using incomplete likelihood

» Let x = (h, v) where h is the hidden subset of variables, and v

the visible
» For estimating the parameters w, we maximise the incomplete
log-likelihood
log P(vlw) = log Z P(h, v|w)
h
= log Z H odc(heyve) —log Z
h ¢
= logZ(v)—logZ

As before, log Z(v) and log Z are convex in w, so it is of
D.C. form.



Learning using incomplete likelihood (cont)

» There exists an algorithm known as DCA to find maximiser of
log P(v|w)

» At each step we solve a convex problem, which is presumably
easier the original

> It turns out that DCA and the well-known EM algorithm
(Dempster et al, 1977) are the same in this log-linear case.

» Due to lack of collaboration between fields, DCA was
reinvented in 2001 in the name of CCCP (Concave-Convex
Procedure)

» However, we found empirically that there is little numerical
advantage using DCA/EM/CCCP

» Generic numerical methods like Limited-memory BFGS or
Conjugate Gradients are often sufficient



Application: Movie
recommendation (Truyen et al,
2009, submitted)

» Based on ratings that users
already gave to old movies,
we predict if an user may like
a new movie

» This is called Collaborative
Filtering

» Amazon is most

well-known example

» Currently the Netflix
competition with $1mil prize

» 1.7 x 10* movies
» 0.5 x 10 users
» 1.0 x 108 ratings

Modelling: one Boltzmann machine
per user

Prediction errors as a function of
learning time

0.95 —SVD

- --ORD-USER

0.9 ——ORD-ITEM
——ORD-USER-ITEM

—v— ORD-USER-ITEM-CORR

o 5 10 15 20
Iterations
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Conclusions

» Unstructured and structured pattern recognition tries to
uncover meaningful patterns of the real-world data

» It requires a great deal of optimisation techniques
> It poses many new challenges in optimisation

» Non-convex, non-smooth

» Ultra high dimensionality, massive computing power needed to
evaluate objective function

» Very high level of sparsity, noise removal capacity
Evaluation errors and stochastic gradients

» High cost to acquire enough information for objective function
evaluation

» Often, approximate methods are the only possibility

» We still need some theoretical bounds on the tightness,
currently only few have been found

» We need mathematicians!
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