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Resources

Slides and references:
 https://truyentran.github.io/pakdd18-tute.html
= Shorten URL: goo.gl/UuZZJ9

Key survey paper (updated frequently):

- Ching, Travers, et al. "Opportunities And Obstacles For Deep Learning In
Biology And Medicine." bioRxiv (2018): 142760
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https://truyentran.github.io/pakdd18-tute.html

Agenda

Topic 1: Introduction (20 mins) Topic 4: Healthcare (40 mins)

i : - = Time series (regular & irregular
Topic 2: Brief review of deep (reg gular)

learning (30 mins)
= Classic architectures

= EMR analysis: Trajectories prediction
= EMR analysis: Sequence generation

» Capsules & graphs Topic 5: Data efficiency (40 mins)

* Memory & attention = Few-shot learning

: . : . [ I
Topic 3: Genomics (30 mins) Generative models

. i<ed learning of
- Nanopore sequencing Unsupervised learning of drugs

* Genomics modelling Topic 6: Future outlook

QA (10 mins) Break (30 mins) QA (10 mins)
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Sensing technologies
and data

Raw signals are ideal
candidates for deep learning

Speech & vision techniques can
be applied with minimal
changes

#REF: Ravi, Daniele, et al. "Deep
learning for health informatics." IEEE
journal of biomedical and health
informatics 21.1 (2017): 4-21.

22/08/2018



EEG = Tensor RBM for alcoholic diagnosis

Subject representation

control alcoholic

=)

Aduanbady

Tensor Restricted

time

3D Spectrogram Boltzmann Machine

#Ref: Tu D. Nguyen, Truyen Tran, D. Phung, and S. Venkatesh,
Tensor-variate Restricted Boltzmann Machines, AAA/ 2015.

22/08/2018


Presenter
Presentation Notes
Each trial, a subject: visual stimuli and their brain activities were recorded.
The signals (in µV ) are sampled at 256Hz for 1 second.
Time-series signals: converted into 64 × 64 spectrograms using short-time Fourier transform with Hamming window of length 64, 54 overlapping samples.
This results in 3-mode tensors of size 64 × 64 × 64.
The pixels are normalized across the dataset to obtain zero-means and unit variances.��


EEG - Matrix LSTM = Classification

Recurrent dynamics

EEG segments as

matrices H; = O-(U:;:I-Xtviﬂ T UiIHt—lvh + B)

Temporal dynamics as 99 P, D @9

recurrence i i i i
#REF: Kien Do, Truyen Tran, @@@ @@@ @@@ @@@
Svetha Venkatesh, “Learning

Deep Matrix Representations”, ﬁ
arXiv preprint arXiv:1703.01454

s )
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ECG =2 CNN for heart attack
detection [

5 15
[
— 10 | | 10
| \,’
- ,_\_,/ }I | r’// i
\
- full blockage 20 60
0 0163 0325 0.488 Second 0 0.163 0325 0.488 Second
Normal ECG without noise M| ECG without noise
Normalized amplitude Normalized amplitude
Platelet 55 h 15
Thrombus \
0 0.0
|
Dead muscle 25 } 15
cells !
{Infarction) 10 f : a0
- Coronary arteries s N/J\\—Hlf |i|br“_'f/ ’\-ﬁﬁ .
0, 0163 0.325 0.488 Second 0y 0.963 035 0.488 Second

#REF: Acharya, U. Rajendra, et al. "Application of deep convolutional neural network
for automated detection of myocardial infarction using ECG signals." Information
22/08/2018 Sciences 415 (2017): 190-198.
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C (0 @& Secure | https://lukeoakdenraynerwordpress.com/2017/05/08/the-end-of-human-doctors-radiology-escape-velocity/ | * 9

a

Luke Oakden-Rayner

PhD Candidate / Radiologist

The End of Human Doctors - Radiology Archives
Escape Velocity

October 2017 (1)

_ SRR

E_I‘ nature21056-pfl.ppt ~ x 133058.full. pdf A i 5 179531 full.pdf A | garvan2017.svg = ' multiTimeline.csv A Show all X

“They should stop training radiologists now.”
Geoff Hinton (as of April 2017)

22/08/2018 https:/ /www.newyorker.com /magazine /2017 /04 /03 /ai-versus-md



Handling irregular time-series

Time,Parameter,Value
00:00,RecordID,132539
00:00,Age, 54
00:00,Gender,0
00:00,Height,-1
00:00,ICUType, 4
00:00,Weight,-1
00:07,GCS,15
00:07,HR,73
00:07,NIDiasABP65
00:07,NIMAP92.33

The needs
* Accuracy
* Interpretability

= As early as possible

00:07,NISysABP,147
The process: 00:07,RespRate, 19
00:07,Temp,35.1
“Irregular time-series = Regular 00:07,Urine,900
: . : 00:37,HR,77
time-steps - Data imputation =2 00:37,NIDiasABP,58
Bi-LSTM = Multiple attentions 2 , 00:37,NIMAP,91
e 00:37,NISysABP,157
CIaSSIflcatlon Source: healthpages.org 00:37'ReSquTe'] 9
#REF: Phuoc Nguyen, Truyen Tran, Svetha Venkatesh, “Deep ST zi5
Learning to Attend to Risk in ICU”, I/JCAI'17 Workshop on SRR 40
Knowledge Discovery in Healthcare II: Towards Learning Data: Physionet 2012

22/08/2018 Healthcare Systems (KDH 2017). ’



Result: Attend to risks

State
transition
Attention -
probabilities ‘ 0.06
Trnp;?rr%[.]ng
. . F'IaEEfE
Physiological e
Measures MECWI-"EHJ;
HC
D!asEEE
Ribrugin

ALP

1.00
0.75
0.50
0.25
0.00
—0.25
—0.50
—0.75
—1.00

1.00
0.75
0.50
0.25
0.00
—0.25

—0.50
—0.75
—1.00

H#REF: Phuoc Nguyen, Truyen Tran, Svetha Venkatesh, “Deep Learning to Attend to Risk in ICU”, IJCAI'17 Workshop on Knowledge Discovery in Healthcare Il:

Towards Learning Healthcare Systems (KDH 2017).
22/08/2018
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EMR Connects Services: System of Systems

Pharmacy

% 4;_3. &

|
Practice Management

Radiology

l_‘

i
[N

Experts

HOSP"C” Medical References

Five main functions

= Integrated view of patient
data

= Clinical decision support
= Clinician order entry

= Access to knowledge
resources

= Integrated communication
and reporting support



Modeling electronic medical
records (EMR)

=
EMR % _ —

Need to model the healthcare / ysicians, cincin L’;?v

processes, which are interactions

Of: aboratory Data Hosoi . z - .

* Disease progression

* Interventions & care processes

= Recording processes (Electronic
Medical/Health Records)

Source: medicalbillingcodings.org

22/08/2018 12


Presenter
Presentation Notes
Evolving concept:
Starting from standardized patient records in the 1900s & 1910s (Mayo Clinic).
HIS started in the 1960s.
US: Aimed at full digitalization in 2014!
Vietnam: Just started.
Digital record: Systematic collection of health information about individual patients or populations.
Accurately captures the state of the patient at all times.


Electronic Medical Record (EMR) – contains information from a single organization
Electronic Health Record (EHR) – records that span organizations
Personal Health Record (PHR) – governments (companies like Google & Microsoft) trying to unify records for citizens.





Clinical Decision Supports

Support protocol/planning of
treatment/discharge.

Suggest course of actions:
*E.g., medication/dose/duration.

Estimate risk & predict outcomes.
Alert/reminder.

Support (semi) automated
diagnosis.

heart failure digbetes
mental health

COPD

heart attack cancers

preterm
risk prediction
(prognosis)
suicide attempts
death

readmission stress

side effects
toxicity
quality-of-life

progression to advanced stages

length-of-stay



Warning: leakage!

Make sure the patients are counted AFTER first diagnosis
Often, we have future data as well
Retrospective nature

Never use outcomes to do anything, except for training the model

Our early suicide attempt classification from assessments was a

form of leakage:
Any attempt in history is considered as an outcome. BUT:

Previous attempts were accounted in current assessment already!



Preprocessing: Data normalization
& dictionary compression

Drugs & tests
Drug companies offer different brand names of the essentially the same drug
DDD/ATC is the central register for the medication classes, maintained by WHO
Several test names may be the same

Il(

It may not be robust to use the original “vocabularies”

Tens of thousands of ICD-codes, thousands of procedures, hundreds of DRGs,
thousands of medication classes

Codes are usually organized in hierarchy
Choosing the right hierarchy is statistical issue



DeepPatient: Representing medical records
with Stacked Denoising Autoencoder

B Decoder ~
\ ./

= Encoder

Feature detector Avuto-encoder Deep Auto-encoder

HRef: Miotto, Riccardo, et al. "Deep patient: An unsupervised representation to predict the
— future of patients from the electronic health records.” Scientific reports 6 (2016): 26094.



DeepPatient: Results on disease

classification

Time Interval = 1 year (76,214 patients)

Patient Representation AUC-ROC
RawFeat 0.659
PCA 0.696
GMM 0.632
K-Means 0.672
ICA 0.695

DeepPatient 0.773

22/08/2018

Classification Threshold = 0.6

Accuracy

0.805
0.879
0.891

0.887
0.882

0.929

F-Score

0.084
0.104
0.072
0.093
0.101

0.181



Trajectories modeling:

Challenges &
opportunities

Long-term dependencies
Irregular timing

Mixture of discrete codes and
continuous measures

Complex interaction of diseases and
care processes

Cohort of interest can be small (e.g.,
<1K)

Rich domain knowledge & ontologies

22/08/2018

visits /admissions prediction point

T~

________________________________

Multimodalities: Text, physiological
signals (e.g., EEG/ECG), images (e.g.,
MRI, X-ray, retina), genomics

New modalities: social medial, wearable
devices

Explainability!




¥ Untitled Document # | ¥ pradal.it.deakin.edu.au:30 ® =

C' [ pradal.tdeakin.edu.au:3000/view/StrokeMap/000005 e

Project name Home Page1 Page2

UR 000005 _
DOB  1936-01-01 History
Gender Female 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Occupation  home duties :H: .:—ﬁ [ [~ m E ] N
Marital Status  Married :HZ :HZ ;HE :HZ [
Risk 0.89 (2011/09/01) L I I |

1985 1996 1997 1999 2000 20Mm 2002 2003 2004 2005 2008 2007 2008 2009 2010 2011

Predictive Factors All Factors Events
Disease Other cataract 1995/05/24 Emergency Admission (9.8 days)
Strep & staph cause dis class oth chptr 59010 acute p}-‘elonephritis
Dwem.cular dlsegse O.f intestine 03842 septicemia due to other gramnegative or
Oth symptoms signs inv cogn fn awareness
Chronic kidney disease 5929 urinary calculus unspecified
Unspecified urinary incontinence 4011 benign essential hypertension
Essential (primary) hypertension 4140 coronary atherosclerosis
Other disorders of urinary system 8773 TS ([ LR
Type 2 diabetes mellitus
Heart failure
Abnormalities of gait and mobility
Pneumonia organism unspecified
Oth sym signs inv nervous & M/S systems
IMalaise and fatigue
Disrd lipoprotein metab & oth lipidaemia
Atrial fibrillation and flutter
Admission
pastProcNo
Procedure Generalised allied health interventions o [ [ e ®
Visualisation and interpretation are keys!
Cerebral anaesthesia e
Emergency
Context Place of occurrence

Personal history of medical treatment

Gomorwiity  Iyperenson incompicate A prototype system developed iHops (our spin-off)
cardiac-arrhythmias

pastRareProcNo



Deepr: CNN for repeated
short sequences

visi’rs///ciqur‘rlif?ions pred'i’rion point v output
N e { // @predicﬁon
A A
@ imegep @ il S recerd
E-W-K:%-K::)Egm“/,/ vector
ki ik o | I —

motifs and

#REF: Phuoc Nguyen et al., Deepr: A
Convolutional Net for Medical Records, IEEE
Journal of Biomedical and Health Informatics,
vol. 21, no. 1, pp. 22-30, Jan. 2017

@ max-pooling

word

vecto
' (e ii};i ----- :17:_- {"i;Eii """""" ;i;k'\
@ >k B A= H *x 0]
sequencing T A e DT A

@ convolution --
motif detection

@ embedding

22/08/2018
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Deepr: Disease

embedding & motifs

detection

E11148 150

Type 2 diabetes mellitus
Atrial fibrillation and flutter
Heart failure

E11 150 N17

Type 2 diabetes mellitus
Heart failure
Acute kidney failure

22/08/2018
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DeepCare: intervened long-term memory
of health

lliness states are a dynamic memory process - moderated by time
and intervention

Discrete admission, diagnosis and procedure - vector embedding
Time and previous intervention - “forgetting” of iliness

Current intervention - controlling the risk states

#REF: Trang Pham, et al., Predicting healthcare trajectories from medical records: A deep
learning approach, Journal of Biomedical Informatics, April 2017, DOI:
10.1016/j.ibi.2017.04.001.

22/08/2018 7



aggregation over
time — prediction

DeepCare: Dynamics

prev. memory — %k >| memory

/=

2/08/2018 New in DeepCare



DeepCare:

Structure

22/08/2018

Latent states

Vector embedding

Admission

Future risks

LSTM

Neural network N
Multiscale pooling ,'
N //I
> LSTM S LSTM |- 5! LSTM |
/ A
Long short-term ; !
memory ," “
\ “==LI=||
(S S IR IR |
Yoo
S W A _____________ PN B -
t N
\ I
----- L Y I )
---------------------------------------- o e
l
R e -
I _ i
< Time gap —
History > <€ Future >
24



0.05

0.00
:8?8 — decreasing illness
-0.15
-0.20
-0.25
— Increasing illness g

DeepCare: Two modes of forgetting as a function of time

22/08/2018 )



50
40
30
20
10

Intervention recommendation (precision@3)

| DeepCare: prediction results

12 months 3 months

Diabetes Mental

® Markov ™ DeepCare

22/08/2018

12 months 3 months
80
75
70
65
-l
55
Diabetes Mental

m SVM ® Random Forests m DeepCare

Unplanned readmission prediction (F-score)

26



Modeling multiple disease-
treatment interactions over time

Co-morbidity is the norm in modern medicine
Each hospital visit contains a set of diseases and a set of treatments
There are interactions between multi-diseases and multiple-treatments

Algebraic view: Health = RNN(lliness — Intervention)
ve = p(A) where A=d; — p;
es
e+ [les]|

where eg = max (0, E €;)
1S

fe(S) <

#REF: Phuoc Nguyen, Truyen Tran, and Svetha Venkatesh. "Resset: A Recurrent Model for
2082018 Sequence of Sets with Applications to Electronic Medical Records." IJCNN (2018).

27



Readmission
Mortality
Length of stay (O

LSTM >LSTMF—>
A
Visit embedding
Set interaction
%? f_z? Set function f_z?
o o o o

Diseases Treatments Diseases Treatments
Visit t, Visit 1,

22/08/2018

Next diseases Current

lliness state

Recency-biased pooling

LSTM
N
[ ) o
Diseases Treatments
()

Visit t

28



Deepr [14] 0.680
| Results (AUC) MDMTP+LTSM 0718

Method Diabetes Mental health

BoW+LR 0.673 0.705
0.714
0.726

MDMT+LSTM 0.701 0.730

—0.20

4 110
. !_ ¥l I_

(a) Wﬂfsening p.mgressiﬂ.n (P = 0.7[}) (b) Imﬁrﬂving pfﬂgressiﬂh (P = 0..23)

22/08/2018
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Trajectories prediction

Generating a subset of treatments lllustration of the DNC architecture
. . Controller Heads Memory Links Usage
Generating an entire health/care
trajectory Output wme__’
A'P.

Challenges: global loss, meaningful
evaluation metrics

)

l Read
' Read

A solution: Attention and Memory-
augmented neural nets (MANN) 4

Input

Source: deepmind.com

{ memory

#REF: Graves, Alex, et al. "Hybrid computing using a
neural network with dynamic external memory.”

Nature 538.7626 (2016): 471-476.

(LeCun, 2015)

22/08/2018 30



Memory is needed for complex
input/output sequences

Diagnoses are encoded to an external
memory by the encoder

The decoder reads the memory and
produces a sequence of treatment
codes. During decoding, the memory is
write-protected (DCw-MANN)

LSTMe

(Encoder)

LSTMp
(Decoder)

Memory captures long-term
dependencies inside and amongst
admissions

Memory enables skip-connection
attentions

#REF: Hung Le, Truyen Tran, and Svetha Venkatesh. “Dual Control Memory
Augmented Neural Networks for Treatment Recommendations”, PAKDD1 8.

22/08/2018 31



Treatment prediction results

First drug predictions: precision and Jaccard Score MIMIC3 dataset.

Models Precision Jaccard
Logistic Regression 0.412 0.311
Random Forest 0.491 0.405
LSTM 0.220 0.138
LSTM + attention 0.224 0.142
DNC 0.577 0.529
DCw-MANN 0.598 0.556

Top Drug predictions: Jaccard Score on top code GPI 1-3 MIMIC3 dataset.

Models Jaccard on GPI 1 Jaccard on GPI 3
Basic LEAP 0.510 0.385
LEAP + RL 0.558 0.434

HREF: Zhang et al., “LEAP: Learning to prescribe effective and safe

22/08/2018 3

treatment combinations for multimorbidity”, KDD’17.



Healthcare has multiple sequential
vViews

Reads multiple EMR channels
(disease, procedure, medication)

Memory can be shared or
separated.

Generate a sequence of outputs
(e.g., medications
recommendation, or future
disease progression).

#Ref: Le, Hung, Truyen Tran, and Svetha Venkatesh. "Dual Memory Neural Computer for

Asynchronous Two-view Sequential Learning." KDD18.
22/08/2018 3



Model AUC F1 P@1 P@2 P@5

Diagnosis Only
D M N C . d Fu g Binary Relevance | 826 691 799 771 703
o o Classifier Chains | 66.8 63.8 683 668 61.1
prescri pt 10N LSTM 849 709 908 867 791
DNC 854 714 90.0 86.7 798

: . Procedure Only
Two views: Binary Relevance | 81.8 694 826 80.1 73.6
: Classifier Chains | 634 61.7 83.7 803 719
+ D|agn05e5 LSTM 839 708 881 860 784
+ P roced ures DNC 83.2 704 884 858 78.7

Diagnosis and procedure

Two modes Of memory: Binary Relevance | 84.1 70.3 81.0 78.2 723
Classifier Chains | 646 63.0 84.6 815 742
+ Late fusion LSTM 858 721 916 86.8 805
DNC 864 724 909 874 80.6
+ Early fusion Dual LSTM | 854 714 906 871 805
WLAS 86.6 725 919 881 809
DMNC,; 874 732 924 889 82.6
DMNC, 87.6 734 921 899 825

22/08/2018 4



70

65

60

55

50

DMNC: disease progression

Diabetes Mental health

®m DMNC (late) ® DMNC (early) = DeepCare W DMNC (late) = DMNC (early) m DeepCare
60

67.6
66.5 66.2
55 52.7°36 5,7
50.1
61.361.2 50 49.6
59.6 46.9 262 471
57.156.9 45
53.7 40.2
1 B
35
P@1 P@2 P@3 P@1 P@2 P@3

22/08/2018 3




Big room: Towards personalized
healthcare

Medical practice as recommender systems
Personalizing clinical practice guides

Research done on “homogeneous”, healthy subjects

It is very hard for doctors to “manually” personalize their
“recommendations”

Better: on-demand drug design (next)

22/08/2018
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Agenda

Topic 1: Introduction (20 mins)

Topic 2: Brief review of deep
learning (30 mins)
= Classic architectures

= Capsules & graphs
* Memory & attention

Topic 3: Genomics (30 mins)
* Nanopore sequencing
* Genomics modelling

QA (10 mins)

22/08/2018

Break (30 mins)

Topic 4: Healthcare (40 mins)

* Time series (regular & irregular)

* EMR analysis: Trajectories prediction
* EMR analysis: Sequence generation

Topic 5: Data efficiency (40 mins)
* Few-shot learning

= Generative models

= Unsupervised learning of drugs

Topic 6: Future outlook

QA (10 mins)

37



Few-shot deep learning

EIW. X X,
G (X,)=Gy (X,
Lots of biomedical problems are data poor |
Rare drugs output G, G,
Rare diseases e
Huge cost of data collection (e.g., ask a doctor to label T
data for you!!l) X, X,
"HEHHH,HJ'

Distance metrics learning (DML) methods ighdimensioal inpu

Learn to full any pair of the similar data points, and push

the dissimilar #REF: Chopra, Sumit, Raia Hadsell, and

Well-known methods: Siamese networks Yann LeCun. "Learning a similarity metric
. ] discriminatively, with application to face
Meta-learni ng strategies verification." Computer Vision and Pattern
Tasks are presented in sequence Recognition, 2005. CVPR 2005. IEEE
New tasks can borrow from similar prior tasks Computer Society Conference on. Vol. 1.

IEEE, 2005.

22/08/2018 38



External Memory External Memory

Meta-learning strategies @ &= . &
/A VA==

A
(Santoro et al, 2016) * —
Class Prediction Backpropagated
T Tl Signal T
—> |:|—P"'—P|:|""® ,,,,, » |:|_’,,_ X, v X,-....:
g o ]
| i 2 ||
? 1‘ Shuffle: T \ 1‘ Bind and Encode Retrieve Bound Information
(X0Ye1) (Xe11,%) Labels (%1.0) (x2,31)
| | Classes . (b) Network strategy
Episode Samples (Hochreiter et al., 2001)
Supervised Learning Reinforcement Learning
Predicted Labels Vo V. Vo aTt-l Eit 41 Actions

TTETIETEY e |08
i I i Convolution | /,I/ i
. i !  Meta-Le i i
(Mishra et al, 2017) i %{) | Metatowrmers | /cf;i;o i
e d'ds o e

(Current Example, X X, X Xy Ko X X X (Current Observation,

Previous Label) yt.a Yt.z yt-1 Yt - - Moy r, Previous Reward)

22/08/2018 Figure 1: Overview of our temporal-convolution-based meta-learner (TCML). The same class of 39

model architectures can be applied to both supervised and reinforcement learning.



One-shot learning for drug discovery

Compound Label Structure
, )
Lithium ] L
lon i
Ethanol O E ‘
{1 m—
g < Caffeine ] ._..D % W —
—a Bm—
Tosylic O
Acid
#HREF: Altae-Tran, Han, et al. bopamine 5
"Low Data Drug Discovery .
with One-Shot -
Learn'ng." ACS Central §L s ? prediction
) E Styrene O] -
science 3.4 (2017): 283-293. S ] o
=z

22/08/2018 10



Generative deep learning for drug

discovery

Predicting bioactivities from
molecules

Drug representation,
unsupervised learning from
graphs

Generate from bioactivities to
molecular graphs

12-15 years

$500M - $2B

| Target validation, |

| | f |
' | Target assay : | Phasell: | Phaselll :
Target : | hits-to-leads | Phase I: ; ' FDA review
| identification | CONSTUCtON o dicinal | safety | efficacy, | efficacy, | and approval
| and screening | : . | safety | safety
. | chemistry safety \ \ ' :
Efficacy proof of concept
Target 5 1
screen years 2
- - | ] 3
Target screen Safety package 4
$1-4 million S12-15 million
Nature Reviews | Drug Discovery

#REF: Roses, Allen D. "Pharmacogenetics in drug discovery
and development: a translational perspective." Nature

reviews Drug discovery 7.10 (2008): 807-817.



Traditional method: Combinatorial
chemistry

Generate variations on a template

Returns a list of molecules from this template that
Bind to the pocket with good pharmacodynamics?
Have good pharmacokinetics?
Are synthetically accessible?

#REF: Talk by Chloé-Agathe Azencott titled “Machine learning for therapeutic
research”, 12/10/2017

22/08/2018
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First step: Map molecule - drug
properties (binding/acting)

Drugs are small bio-molecules

Traditional techniques:
= Graph kernels (ML)

* Molecular fingerprints (Chemistry)

C
%
-
ﬁ"

s ———Leu(LeuT)

TM3 } - Y24 ",
I\ 7 F253(LeﬁT}$' T™M6
’7 Nortriptyline F319

|

Modern techniques

= Molecule as graph: atoms as nodes,
chemical bonds as edges

#REF: Penmatsa, Aravind, Kevin H. Wang, and Eric Gouaux. "X-
ray structure of dopamine transporter elucidates antidepressant

mechanism." Nature 503.7474 (201 3): 85-90.

22/08/2018 s



Molecular fingerprints

Algorithm 1 Circular fingerprints.

| : Input: molecule, radius R, fingerprint length S
2 . Initialize: fingerprint vector < Og
3 : foreach atom a in molecule

4: v, < qla) #extract initial atom features

5:for L =1 to R #loop through layers

6 : foreach atom a in molecule

7 : ri...rn = neighbors(a)

8 : v < [P, T, ....TN]| #combine neighbor features
9: r, < hash(v) #refine atom features

10: i « mod(r,,S) #convert to index

11: x; + 1 #Write 1 (indicator) at index

[2: Return: binary vector .

22/08/2018
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H#REF: Duvenaud, David K., et al.
"Convolutional networks on graphs for
learning molecular fingerprints." Advances in
neural information processing systems. 2015.
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Graph memory networks
(N

Task /query Bioactivities
_’l Controller l : Message passing as refining y
/" N atom representation
Memory
XTS5 o
molecule query

N A7
/\/'M'L q

#Ref: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Graph Memory
2t Networks for Molecular Activity Prediction.” ICPR’18. 4




- Graph memory networks: Results

FP+5VM
FP+RF
FP+GB
NeuralFP
GraphMem

80 -

L

7
7

6
6
q}i > O B L B 0 o) e
® (P ANt M@ 60*’3’3 P\’ﬁ’x %69"\ %‘Jc'ﬂ W e@g

Figure 2: Fl-score (%) for NCI datasets. FP = Fingerprint; RF = Random Forests;: GBM = Gradient
Boosting Machine. Best view in color.
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Drug generation

We now have methods for compute bioactivties of
a drug molecule

We need a reverse method to generate drug
molecules from desirable bioactivities

The space of drugs is estimated to be 1e+23 to
1le+60

= Only 1e+8 substances synthesized thus far.

It is impossible to model this space fully.

The current technologies are not mature for graph
generations.

Source: pharmafactz.com

But approximate techniques do exist.
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Theory: Generative models

Many applications:

* Text to speech
) Vo~ P?'ir'u::rd{:f(v)
e Simulate data that are hard to

obtain/share in real life (e.g., healthcare) P;.-,-!_mgﬂg (’U) ~ P(gﬂ_m (’V)

* Generate meaningful sentences

conditioned on some input (foreign
language, image, video)

* Semi-supervised learning
* Planning
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A family: RBM/DAE > DBN/SDAE

- DBM

p(v,h;?) oc exp [—\E (v, h; ”#}f/')]

ene'rgy

Restricted Boltzmann Machine
(~1994, 2001)

22/08/2018

A

\ 4

A 4

E—

Deep Belief Net
(2006)

I
1

—

Deep Boltzmann Machine

(2009)



Variational Autoencoder
(Kingma & Welling, 2014)

Two separate processes: generative (hidden = visible) versus
recognition (visible = hidden)

mean vector
. sampled
Gaussian latent vector
hidden
a variables P N
/ Encoder — Decoder
R . ! Network Network
ecognls'mg Generative N e d
conv econv
het \ net ( ) ( )
\
\
N Vv
‘ Data standard deviation
vector

http:/ /kvfrans.com /variational-autoencoders-explained /



GAN: implicit density models

(Adapted from Goodfellow’s, NIPS 2014)

pp(data) Data distribution
l / Model distribution
Fa

.
S e e
pox Py .

IR I

P A

'
v
W s

N

. -
v
LI

. T

AN

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium
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Progressive GAN: Generated images

22/08/2018

e

female6.png M malel.png M male2.png M male3.png

Karras, T., Aila, T, Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.
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Drug generation approaches

Representing molecules using ~ Sequences

fingerprints lterative methods
Representing graph as string,  Reinforcement learning
and use sequence VAEs or Discrete objectives
GANSs.

Any combination of these +
Graph VAE & GAN memory.

Model nodes & interactions

Model cliques



Kadurin, Artur, et al. "The cornucopia of meaningful leads: Applying deep
adversarial autoencoders for new molecule development in oncology."

Oncotarget 8.7 (2017): 10883.

| Molecule =
fingerprints . 1
DECODER
EOIO?(IO—» —2Q0-00
/ ENCODER N

|

Input of the encoder : the fingerprint of a molecule

The decoder outputs the predicted fingerprint .

The generative model generates a vector E, which is then discriminated
from the latent vector of the real molecule by the discriminator.



Presenter
Presentation Notes

and DruGAN: An advanced generative adversarial autoencoder model for de-novo generation of new molecules with desired molecular properties in silico


N OH
. \
Molecule = string AR ,
__/ o
F
Using SMILES representation of drug, to convert a 3
molecular graph into a string . <3
- SMILES = Simplified Molecular-Input Line-Entry System '*‘_\\.a_{'l
. N N / \ > 4 O
Then using sequence-to-sequence + VAE/GAN to T N=7"%
. 2
model the continuous space that F
encodes/decodes SMILES strings .
= Allow easy optimization on the continuous space <3
C N 4 O
AL By ¢
1—/ — 0
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
22/08/2018 Source: wikipedia.org



VAE for drug space modelling

clceocel

CONTINUOUS MOLECULAR
REPRESENTATION
Latent Space

DECODER
Neural Network

Discrete Structure ENCODER
SMILES Neural Network

b

@

Property
f2)

Most Probable Decoding
argmax p(*lz)

Discrete Structure
SMILES

Uses VAE for sequence-to-sequence.

#REF: Bowman, Samuel R., et al. "Generating sentences
from a continuous space." arXiv preprint
arXiv:1511.06349 (2015).

Gomez-Bombarelli, Rafael, et al. "Automatic chemical
design using a data-driven continuous representation of
molecules." ACS Central Science (2016).

22/08/2018

LATENT

MOLECULAR

SPACE

SPACE

Kyeunar Newosk (115°7) = 0-027 OPTIMIZATION 0-725 0-824
ENCODE/'U “. DECODER Ve
of o “

TooFt

kcALcumED(US = 0.004

0.080 0.000
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1 N OH
Drawbacks of string . \
° HN N 0
representation —/ 5
F
String =2 graphs is not unique! 3
3
Lots of string are invalid B <
g N—\\4_<CJ
Precise 3D information is lost N _/‘N 7 N b
. . 1 _2 0
Short range in graph may become long range in F
string .
A better way is to encode/decode graph directly. C <‘”
N @]
4
A
= — O
F
HREF: Godmez-Bombarelli, Rafael, et al. "Automatic chemical D
design using a data-driven continuous representation of
molecules." arXiv preprint arXiv:1610.02415 (2016). N1CCN(CCT)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0

-
22/08/2018 Source: wWikipedia.org



Better approach: Generating
molecular graphs directly

No regular, fixed-size structures

Graphs are permutation invariant:
#permutations are exponential function of #nodes

The probability of a generated graph G need to be marginalized over
all possible permutations

Multiple objectives:
Diversity of generated graphs
Smoothness of latent space

Agreement with or optimization of multiple “drug-like” objectives



GraphVAE

Handles irregular structures
Predict the whole adjacency matrix, node types and edge types

Deals with variable size graph
Bounded by the size of the largest graph in training data.

Handles permutation invariance
Matching every pair of nodes in 2 graphs

Partially promotes diversity

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.

22/08/2018
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Th h si
Latent vector for e graph size

whole grqph are bounded k>n
Adjacency matrix
P(G|G) by graph match ng
Y
: D
A " €
o
q5(2|G) =
~F gl
po(G|z) o

argmax

y/ y d C\)f

Edge types  Node types

HREF: Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of
Small Graphs Using Variational Autoencoders. arXiv preprint arXiv:1802.03480.
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Junction tree VAE

Junction tree is a way to build
a “thick-tree” out of a graph

Cluster vocab:
" rings

* bonds

= atoms

Jin, W.,, Barzilay, R., & Jaakkola, T. (201 8). Junction Tree
Variational Autoencoder for Molecular Graph
Generation. ICML’18.

22/08/2018

Molecule

Molecular

Tree decomposition

@}qL o O
S

c
Junction
Tree T |

C;
._(/\/
Cj

Encode l (Sec 2.3)
ZT AN .
Decode l (Sec 2.4)

O N — N,
(Sec 2.5)
cl



Algorithm 2 Tree decomposition of molecule G = (V, F)

V1 < the set of bonds (u, v) € F that do not belong to any rings.
V5 < the set of simple rings of GG.
for 1,7 in V5 do
Merge rings 71, r2 into one ring if they share more than two atoms (bridged rings).
end for
Vi < atoms being the intersection of three or more clusters in V7 U V5.
YV« VouUVi UV
E+—{(1,4,¢) e VXV xR||inj| >0}. Setc=oc0ifi € Vyorj e Vp, and ¢ = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, £).

Method Reconstruction Validity

CVAE 44.6% 0.7%

GVAE 53.7% 7.2%
Jin, W., Barzilay, R., & Jaakkola, T. SD-VAE?Z 76.2% 43.5%
(2018). Junction Tree Variational GraphVAE ) 13.59%

Autoencoder for Molecular Graph

Generation. ICML’18. JT-VAE 76.7 % 100.0%
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Agenda

Topic 1: Introduction (20 mins)

Topic 2: Brief review of deep
learning (30 mins)

= Classic architectures

= Capsules & graphs

* Memory & attention

Topic 3: Genomics (30 mins)
* Nanopore sequencing
= Genomics modelling

QA (10 mins)

22/08/2018

Break (30 mins)

Topic 4: Healthcare (40 mins)

* Time series (regular & irregular)

= EMR analysis: Trajectories prediction
= EMR analysis: Sequence generation

Topic 5: Data efficiency (40 mins)
= Few-shot learning

= Generative models

= Unsupervised learning of drugs

Topic 6: Future outlook

QA (10 mins)
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Living in the future: Al for health care

() e )

We tend to overestimate the short-term and

underestimate the long-term. e .
RODNEY BROOKS
Bear in mind that anything beyond 5 years are MIT RETHINK

nearly impossible to predict! |
POST: [FOR&AI] THE SEVEN DEADLY SINS OF

Letls map Kai'FU Leeis ViSion: PREDICTING THE FUTURE OF Al

= Wave 1: Internet data (= PubMed, social media)

= Wave 2: Business data (= EMR) JEPTENBER T, 2017 £S5 ,
o ) [FoR&AI] The Seven Deadly Sins of

- Wave 3: Digitalize the physical world (= Drugs) Predicting the Future of Al

= Wave 4: Full automation (= Robot surgeons, GPs)

rodneybrooks.com/the-seven-deadly-sins-of-predicting-the-future-

of-ai/
Some SpeCU|atIOnS (by mE)Z [An essay in my series on the Future of Robotics and Artificial
* https://letdataspeak.blogspot.com.au/2017/02/living-in- — ]

future-deep-learning-for.html

L 1611.09340.pdf ~ “Y Ce-Insights_Health...pdf # Showall X
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Toward personalized medicine

Will this patient response to that treatment?
Can we find the best treatment for a patient?
Which biomarkers predict the patient’s response?

Sound familiar to Recommender Systems (patient = user,
treatment = item)?

Can we synthesize a drug for the patient on-demand?

HREF: Talk by Chloé-Agathe Azencott titled “Machine learning for therapeutic
22/08/2018 I’eseCII'Ch”, 1 2/] 0/201 7
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Towards a dialog system - Replace GP?

Leveraging existing knowledge
- Medical knowledge bases
- Medical texts

* Probably needs to build knowledge bases from
text

So tell me, what's your energy like?

Me and Woebot @

And what are you doing now (besides talking
to lil ol me)?

write it here *

Personalizing through EMRs
- Learn from hospitals data

Ask right questions = Finding answers .
. . How about your mood, how do you feel right
from databases = Generating dialog - now?

write it here *

Never ending learning (NEL).
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Thank you!

’ (] (]
We're hiring
PhD & Postdocs
truyen.tran@deakin.edu.au

https:/ /truyentran.github.io /scholarship.html

http://ahsanqawl.com/2015/10/qa/
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