|
Grants
- AAA-MEDICAL: Integrating
synergistic expertise for better treatment of
Abdominal Aortic Aneurysm ($5M), NHMRC Synergy,
2024-2029.
- New biomarkers for
abdominal aortic aneurysm ($1M), MRFF Cardiovascular Health
Mission, 2023-2026.
- Assessing cerebral
palsy risk from video ($350K), Cerebral Palsy Alliance,
2022-2025.
- Optimising
treatments in mental health using AI ($5M), MRFF AI in Health,
2021-2026.
- Leveraging digital technology to reduce
the prevalence and severity of eating disorders in Australia ($840K), MRFF Million Minds Mission Grant
Opportunity, 2019-2022.
- ARC
research hub for digital
enhanced living, ($3M), ARC
Industrial Transformation Research Hubs, 2018–2022.
- Advanced
data analytics for
care management of chronic disease, ($760K), Barwon Health,
2013-2017.
- Improving
cancer care
($200K), Western
Alliance,
2016-2017.
- Accuracy of machine
scoring of fidgety
movements from high risk infant populations ($134K), Cerebral Palsy Alliance,
2016–2017.
Policy reports
Patents
Talks/Tutorials
- AI
in
Covid-19 pandemic, @VANJ
Webminar,
May 2020.
- Lecture on Deep
learning for biomedicine, Southeast
Asia Machine Learning (SEA ML) School, Depok, Greater
Jakarta,
Indonesia, July 2019.
- Deep
learning for biomedical discovery and data mining, Tutorial
at PAKDD'18,
Melbourne, Australia.
- Deep
learning for biomedicine, Tutorial at ACML'17 in Seoul, Korea.
- Deep neural nets for
healthcare, @Amazon
Seattle,
Feb 2017
Theses
- Thong Bach (PhD), Alignment AI, 2024-.
- Giang Do (PhD), Scaling LLMs, 2024-.
- Minh-Khoa Le (PhD), Structured learning and reasoning, 2023-.
- Minh-Thang Nguyen (PhD), Knowledge-guided machine learning, 2023-.
- Duc Nguyen (PhD), Learning dependency structures through time using neural networks, 2019-2023.
- Hung Le (PhD), Memory and attention in deep learning, 2018-2020, after just 2 years! Winner of Deakin's Thesis Award 2020.
- Trang Pham (PhD), Recurrent neural networks for structured data, 2016-2019.
- Shivapratap Gopakumar (PhD), Machine learning in healthcare: An investigation into model stability, 2014-2017.
- Tu Dinh Nguyen (PhD, with A/Prof Dinh Phung), Structured representation learning from complex data, 2012-2015.
Popular writing
- AI,
math, medicine, software, and the sciences: A shifting landscape,
Truyen
Tran, Medium,
August 2024.
- Living
in the future from 2017: AI for healthcare, Truyen Tran, Medium/Blogpost,
Feb 2017.
Preprints
- An
evaluation of randomized machine learning methods for redundant data:
Predicting short and medium-term suicide risk from administrative
records and risk assessments, T Nguyen, T Tran, S Gopakumar,
D Phung, S
Venkatesh, arXiv preprint arXiv:1605.01116
- PINNs for medical
image analysis: A survey. C Banerjee, K Nguyen, O Salvado, T Tran, C Fookes. arXiv preprint
arXiv:2408.01026
Publications
- MP-PINN: A Multi-Phase
Physics-Informed Neural Network for epidemic forecasting,
Thang Nguyen, Dung Nguyen, Kha Pham and Truyen Tran, in Proceedings of the 22nd
Australasian Data Science and Machine Learning Conference (AusDM'24),
Melbourne, Australia | 25-27 November 2024.
- Predicting
the risk of diabetes complications using machine learning and social
administrative data in a country with ethnic inequities in health:
Aotearoa New Zealand, N Nghiem, N Wilson, J Krebs, T Tran, BMC Medical Informatics and
Decision Making, 2024.
- Fine-grained
fidgety movement classification using active learning. R
Morais, T Tran,
C Alexander, N Amery, C Morgan, A Spittle, V Le, ... IEEE J Biomed Health Informatics,
doi: 10.1109/JBHI.2024.
- Vision:
Requirements engineering for software development in aged care.
J Grundy, A Madugalla, J McIntosh, T
Tran, 2023
IEEE 31st International Requirements Engineering Conference Workshops.
- Robust and interpretable
general
movement assessment using fidgety movement detection,
Romero Morais, [...], Truyen Tran, and
Svetha Venkatesh, IEEE Journal of
Biomedical and Health Informatics, 2023.
- Protocol
for a bandit-based response adaptive trial to
evaluate the effectiveness of brief self-guided digital interventions
for reducing psychological distress in university students: The Vibe Up
Study. Kit Huckvale, [...], Truyen
Tran, [...], BMJ Open (2023).
- Application
of machine learning techniques to identify data reliability
and factors affecting outcome after stroke using electronic
administrative records, Santu Rana, Wei Luo, Truyen
Tran, Svetha Venkatesh, Paul Talman, Thanh G Phan, Dinh
Phung, Benjamin B Clissold, Frontiers in Neurology,
2021, doi: 10.3389/fneur.2021.670379.
- A
spatio-temporal attention-based model for infant movement assessment
from videos, Binh Nguyen-Thai, Vuong Le, C Morgan, N Badawi, Truyen Tran, Svetha
Venkatesh, IEEE journal
of biomedical and health informatics, 2021.
- Precision
Psychiatry with immunological and cognitive biomarkers: A multi-domain
prediction for the diagnosis of Bipolar Disorder or Schizophrenia using
machine learning, Brisa Fernandes, Chandan
Karmakar, Ryad
Tamouza, Truyen Tran,
Nora
Hamdani, Hakim Laouamri, Jean-Romain Richard, Robert Yolken, Michael
Berk, Svetha Venkatesh, Marion Leboyer, Translational Psychiatry,
05/2020
- Dual Memory Neural
Computer for Asynchronous Two-view Sequential Learning, H Le,
T Tran,
S Venkatesh, KDD'18.
- Resset: A Recurrent
Model for Sequence of Sets with Applications to Electronic Medical
Records, P Nguyen, T
Tran,
S Venkatesh, IJCNN'18.
- Finding Algebraic
Structure of
Care in Time: A Deep Learning Approach, Phuoc
Nguyen, Truyen Tran,
Svetha Venkatesh, NIPS
Workshop on Machine Learning for
Health (ML4H), 2017.
- Dual control memory
augmented neural networks for treatment recommendations, H
Le, T Tran,
S Venkatesh, PAKDD'18.
- Deep Learning to Attend
to Risk in
ICU, Phuoc Nguyen, Truyen
Tran, Svetha Venkatesh, IJCAI'17
Workshop on Knowledge Discovery in Healthcare II: Towards Learning
Healthcare Systems (KDH
2017).
- Predicting
healthcare trajectories from medical records: A deep learning approach,Trang
Pham, Truyen Tran,
Dinh
Phung, Svetha Venkatesh, Journal
of
Biomedical Informatics, April 2017, DOI:
10.1016/j.jbi.2017.04.001. [Tech
report PDF].
- DeepCare:
A Deep
Dynamic Memory Model for Predictive Medicine, Trang Pham, Truyen Tran, Dinh
Phung, Svetha Venkatesh, PAKDD'16,
Auckland, NZ, April 2016.
- Deepr: A Convolutional
Net for Medical Records, Phuoc Nguyen, Truyen Tran, Nilmini
Wickramasinghe, Svetha Venkatesh, IEEE
Journal of Biomedical and Health Informatics, vol.
21, no.
1, pp. 22–30, Jan. 2017, Doi:
10.1109/JBHI.2016.2633963
- Stabilizing Linear
Prediction Models using Autoencoder, Shivapratap
Gopakumara, Truyen Tran,
Dinh Phung, Svetha Venkatesh, International
Conference on Advanced Data Mining and Applications (ADMA
2016).
- Guidelines for
Developing and Reporting of Machine Learning Predictive Models in
Biomedical Research,
Wei Luo Dinh Phung; Truyen Tran; Sunil Gupta; Santu Rana; Chandan
Karmakar; Alistair Shilton; John Yearwood; Nevenka Dimitrova; Tu Bao
Ho; Svetha Venkatesh; Michael Berk, JMIR,
18(12), 2016.
- Forecasting
patient outflow from
wards having no real-time clinical data, Shivapratap
Gopakumara, Truyen Tran,
Wei Luo, Dinh Phung, Svetha Venkatesh, ICHI'16.
- Screening
for Post 32-Week Preterm Birth Risk: How Helpful is Routine Perinatal
Data collection? Wei Luo, Emily Y-S Huning, Truyen Tran, Dinh
Phung, Svetha Venkatesh, Heliyon,
Volume 2, Issue 6, June 2016, Article e00119.
- Preterm
Birth
Prediction: Deriving Stable and Interpretable Rules from High
Dimensional Data, Truyen
Tran, Wei
Luo, Dinh Phung, Jonathan Morris, Kristen Rickard, Svetha Venkatesh, Conference on Machine Learning
in Healthcare, LA, USA Aug 2016.
- Predicting Risk of
Suicide Attempt Using History of Physical Illnesses From Electronic
Medical Records, Chandan
Karmakar, Wei Luo, Truyen Tran, Michael Berk, and
Svetha Venkatesh, JMIR Mental Health (JMH).
- Consistency of the
Health of the Nation Outcome Scales (HoNOS) at inpatient-to-community
transition, Wei Luo, Richard Harvey, Truyen Tran, Dinh
Phung, Svetha Venkatesh, Jason Connor, BMJ Open 2016;6:e010732
doi:10.1136/bmjopen-2015-010732
- Forecasting Daily
Patient Outflow From a Ward Having no Real-Time Clinical Data,
Shivapratap Gopakumara, Truyen
Tran, Wei Luo, Dinh Phung, Svetha Venkatesh, JMIR,
Vol 4, No 3 (2016): Jul-Sept.
- Is
demography destiny? Application of machine learning techniques
to accurately predict population health outcomes from a minimal
demographic dataset, Wei Luo , Thin Nguyen, Melanie Nichols, Truyen Tran, Santu
Rana, Sunil Gupta, Dinh Phung, Svetha Venkatesh, Steve Allender. PLoS ONE, May 4,
2015DOI: 10.1371/journal.pone.0125602.
- Stabilizing
Sparse Cox Model
using Statistic and Semantic Structures in Electronic Medical Records.
Shivapratap Gopakumar, Tu Dinh Nguyen, Truyen
Tran, Dinh
Phung, and Svetha Venkatesh, PAKDD'15,
HCM City, Vietnam, May 2015.
- Web
search activity data accurately predicts population chronic disease
risk in the USA,
Thin Nguyen, Truyen Tran,
Wei Luo, Sunil Gupta, Santu Rana, Dinh Phung,
Melanie Nichols, Lynne Millar, Svetha Venkatesh, Steven Allender, Journal of Epidemiology
& Community Health, 2015,
doi:10.1136/jech-2014-204523.
- Learning
vector
representation of medical objects via EMR-driven nonnegative restricted
Boltzmann machines (e-NRBM), Truyen
Tran,
Tu
D. Nguyen, D.
Phung, and S. Venkatesh, Journal
of Biomedical Informatics, 2015,
doi:10.1016/j.jbi.2015.01.012.
- Tensor-variate
Restricted Boltzmann Machines,
Tu D. Nguyen, Truyen Tran,
D.
Phung, and S. Venkatesh, AAAI
2015.
- A
framework for feature
extraction from hospital medical data with applications in risk
prediction, Truyen
Tran, Wei Luo, Dinh Phung, Sunil Gupta, Santu Rana,
Richard Lee Kennedy, Ann Larkins and Svetha Venkatesh, BMC Informatics,
2015, DOI:10.1186/s12859-014-0425-8.
- Stabilizing
high-dimensional
prediction models using feature graphs, Shivapratap
Gopakumar, Truyen Tran,
Tu Dinh Nguyen, Dinh Phung, and Svetha Venkatesh, IEEE Journal of Biomedical and
Health Informatics, 2014
DOI:10.1109/JBHI.2014.2353031S
- Stabilizing
sparse Cox model using clinical structures in electronic medical records,
S Gopakumar, Truyen Tran,
D Phung, S Venkatesh, 2nd
International Workshop on Pattern Recognition for Healthcare Analytics,
August 2014
- Speed
up health research through topic modeling of coded clinical data,
Wei Luo, Dinh Phung, Vu Nguyen, Truyen
Tran, Svetha Venkatesh, 2nd
International Workshop on Pattern Recognition for Healthcare Analytics,
August 2014
- iPoll:
Automatic polling using online search, T Nguyen, D Phung, W
Luo, Truyen Tran,
S Venkatesh, Proc. of 15th
International Conference on Web Information System Engineering
(WISE), 2014
- HealthMap:
A visual platform for patient suicide risk review, S Rana, W
Luo, Truyen Tran,
D Phung, S Venkatesh, R Harvey, HISA
Big Data, Melbourne April, 2014
- Predicting
unplanned readmission after myocardial infarction from routinely
collected administrative hospital data, Santu Rana, Truyen Tran, Wei
Luo, Dinh Phung, Richard L. Kennedy, and Svetha Venkatesh, Australian Health Review, 2014
doi:dx.doi.org/10.1071/AH14059
- Risk
stratification using data from electronic medical records better
predict suicide risks than clinician assessments, Truyen Tran, Wei
Luo, Dinh Phung, Richard Harvey, Michael Berk, Richard Lee Kennedy,
Svetha Venkatesh, BMC
Psychiatry,
14:76, 2014.
- Machine-learning
prediction of cancer survival: a retrospective study using electronic
administrative records and a cancer registry, Sunil
Gupta, Truyen Tran,
Wei Luo, Dinh Phung, Richard Lee Kennedy, Adam
Broad, David Campbell, David Kipp, Madhu Singh, Mustafa Khasraw, Leigh
Matheson, David M Ashley, Svetha Venkatesh, BMJ Open, 2014,
doi:10.1136/bmjopen-2013-004007
- Stabilized
sparse ordinal regression for medical risk stratification, Truyen Tran, Dinh
Phung, Wei Luo, and Svetha Venkatesh, Knowledge
and Information Systems,
2014, DOI: 10.1007/s10115-014-0740-4.
- An
integrated framework for
suicide risk prediction, Truyen
Tran, Dinh
Phung, Wei Luo, Richard Harvey, Michael Berk, and Svetha Venkatesh, In
Proc. of 19th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
Chicago, USA, August, 2013.
- Latent
patient profile modelling and
applications with Mixed-Variate Restricted Boltzmann Machine,
Tu
D. Nguyen, Truyen Tran,
D. Phung, and S. Venkatesh, In
Proc. of 17th
Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’13), Gold Coast, Australia, April 2013.
- Classification
and Pattern
Discovery of Mood in Weblogs, Thin Nguyen, Dinh
Q. Phung, Brett
Adams, Truyen Tran
and Svetha Venkatesh.
In Proc. of Pacific-Asia
Conference on Knowledge Discovery
and Data Mining (PAKDD), 21-24 June, Hyderabad, India,
2010
|